
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

3

A Multilevel Greedy Algorithm for the
Satisfiability Problem

Noureddine Bouhmala1 and Xing Cai2

1Vestfold University College,
2Simula Research Laboratory,

Norway

1. Introduction

The satisfiability (SAT) problem is known to be NP-complete [3] and plays a central role in
many domains such as computer-aided design, computing theory, and artificial intelligence.
Generally, a SAT problem is defined as follows. Given a propositional formula

with m clauses and n boolean variables, where each variable has value of either True or
False. Negation of boolean variable xi is denoted by x i. Each clause Cj has the following
form:

where Ij, I j are two sets of literals. The literals in Ij are from a subset of the n boolean

variables, and the literals in I j are from a subset of the negation of the n boolean variables.

Moreover, we have I ∩ I j = 0. The task is to determine whether evaluates to true. Such

an assignment of the n boolean variables, if it exists, is called a satisfying assignment for
(and is called satisfiable). Otherwise is said to be unsatisfiable. Most SAT solvers use a
conjunctive normal form (CNF) representation of the formula . In CNF, the formula is
represented as a conjunction of clauses, each clause is a disjunction of literals, where a literal
is a boolean variable or its negation. For example, P ∨ Q is a clause containing the two
literals P and Q. The clause P ∨ Q is satisfied if either P is true or Q is true. When each clause
in contains exactly k literals, the restricted SAT problem is called k-SAT. In the numerical
experiments of this chapter, we will focus on the 3-SAT problem, where each clause contains
exactly 3 literals. Since we have two choices for each boolean variable, and taken over n

variables, the size of the search space S is |S| = 2n. The chapter is organized as follows. In
Section 2 we review various algorithms for SAT problems. Section 3 explains the basic
greedy GSAT algorithm. In Section 4, the multilevel paradigm is described. Section 5
presents the multilevel greedy algorithm. In Section 6, we look at the results from testing the
new approach on a test suit of problem instances. Finally in Section 7 we give a summary of
the work. O

pe
n

A
cc

es
s

D
at

ab
as

e
w

w
w

.in
te

ch
w

eb
.o

rg

Source: Advances in Greedy Algorithms, Book edited by: Witold Bednorz,
ISBN 978-953-7619-27-5, pp. 586, November 2008, I-Tech, Vienna, Austria

www.intechopen.com

 Advances in Greedy Algorithms

40

2. Methods for SAT

The SAT problem has been extensively studied due to its simplicity and applicability. The
simplicity of the problem coupled with its intractability makes it an ideal platform for
exploring new algorithmic techniques. This has led to the development of many algorithms
for solving SAT problems which usually fall into two main categories: systematic algorithms
and local search algorithms. Systematic search algorithms are guaranteed to return a
solution to a SAT problem if at least one exists or prove it insoluble otherwise.

2.1 Systematic search algorithms
The most popular and efficient systematic search algorithms for SAT are based on the Davis-
Putnam (DP) [4] procedure which enumerates all possible variable assignments. This is
achieved by setting up a binary search tree and proceeding until it either finds a satisfying
truth assignment or concludes that no such assignment exists. In each recursive call of the
algorithm the propositional formula is simplified by unit propagation. A boolean variable
xi is selected according to a predefined rule among the n boolean variables. Next, find all the

clauses that include the literal xi and delete it from all these clauses. Let C = {C1,C2, . . . ,Ck} be

the set of k(<= m) clauses resulting from this process. Similarly, let D = {D1,D2, . . . ,Dr}

denote the set of r(<= m) clauses resulting from deleting the literal ¯xi. Moreover, let R =

{R1,R2, . . . ,R(m−k−r)} represent the set of m − k − r clauses that include neither of these two
literals. Finally, the original propositional formula is reduced to

Note that the propositional formula simpler does not contain the boolean variable xi since

none of the clauses set C, D and R include xi. If thus an empty clause is obtained, the current

partial assignment can not be extended to a satisfying one and backtracking is used to
proceed with the search; if an empty formula is obtained, i.e., all clauses are satisfied, the
algorithm returns a satisfying assignment. If neither of these two situations occur, an
unassigned variable is chosen and the algorithm is called recursively after adding a unit
clause containing this variable and its negation. If all branches are explored and no
satisfying assignment has been reached, the formula is found to be unsatisfiable. For
efficiency reasons, the search tree is explored in depth-first search manner. Since we are only
interested in whether the SAT problem is satisfiable or not, we stop as soon as the first
solution is found. The size of the search tree depends on the branching rule adopted (how to
select the branch variable) thereby affecting the overall efficiency of DP. This has led to the
development of various improved DP variants which differ in the schemes employed to
maximize the efficiency of unit propagation in their branching rules.

2.2 Stochastic local search algorithms
Due to their combinatorial explosion nature, large and complex SAT problems are hard to
solve using systematic algorithms. One way to overcome the combinatorial explosion is to
give up completeness. Stochastic local search (SLS) algorithms are techniques which use this
strategy. SLS algorithms are based on what is perhaps the oldest optimization method: trial

www.intechopen.com

A Multilevel Greedy Algorithm for the Satisfiability Problem

41

and error. Typically, they start with an initial assignment of the variables, either randomly or
heuristically generated. Satisfiability can be formulated as an optimization problem in which
the goal is to minimize the number of unsatisfied clauses. Thus, the optimum is obtained
when the value of the objective function equals zero, which means that all clauses are
satisfied. During each iteration, a new solution is selected from the neighborhood of the
current one by performing a move. Choosing a good neighborhood and a search method are
usually guided by intuition, because very little theory is available as a guide. Most SLS
algorithms use a 1-flip neighborhood relation for which two truth value assignments are
neighbors if they differ in the truth value of one variable. If the new solution provides a
better value in light of the objective function, the new solution replaces the current one. The
search terminates if no better neighbor solution can be found.
One of the most popular local search methods for solving SAT is GSAT [9]. The GSAT
algorithm operates by changing a complete assignment of variables into one in which the
maximum possible number of clauses are satisfied by changing the value of a single
variable. An extension of GSAT referred as random-walk [10] has been realized with the
purpose of escaping from local optima. In a random walk step, an unsatisfied clause is
randomly selected. Then, one of the variables appearing in that clause is flipped, thus
effectively forcing the selected clause to become satisfied. The main idea is to decide at each
search step whether to perform a standard GSAT or a random-walk strategy with a
probability called the walk probability. Another widely used variant of GSAT is the
WalkSAT algorithm originally introduced in [12]. It first picks randomly an unsatisfied
clause and then in a second step, one of the variables with the lowest break count appearing
in the selected clause is randomly selected. The break count of a variable is defined as the
number of clauses that would be unsatisfied by flipping the chosen variable. If there exists a
variable with break count equals to zero, this variable is flipped, otherwise the variable with
minimal break count is selected with a certain probability (noise probability). The choice of
unsatisfied clauses combined with the randomness in the selection of variables enable
WalkSAT to avoid local minima and to better explore the search space.
Recently, new algorithms [12] [13] [14] [15] [16] have emerged using history-based variable
selection strategy in order to avoid flipping the same variable. Apart from GSAT and its
variants, several clause weighting based SLS algorithms [17] [18] have been proposed to
solve SAT problems. The key idea is associate the clauses of the given CNF formula with
weights. Although these clause weighting SLS algorithms differ in the manner how clause
weights should be updated (probabilistic or deterministic) they all choose to increase the
weights of all the unsatisfied clauses as soon as a local minimum is encountered. Clause
weighting acts as a diversification mechanism rather than a way of escaping local minima.
Finally, many other SLS algorithms have been applied to SAT. These include techniques
such as Simulated Annealing [19], Evolutionary Algorithms [20], and Greedy Randomized
Adaptive Search Procedures [21].

3. The GSAT greedy algorithm

This section is devoted to explaining the GSAT greedy algorithm and one of its variants
before embedding it into the multilevel paradigm. Basically, the GSAT algorithm begins
with a randomly generated assignment of the variables, and then uses the steepest descent

www.intechopen.com

 Advances in Greedy Algorithms

42

heuristic to find the new truth value assignment which best decreases the number of
unsatisfied clauses. After a fixed number of moves, the search is restarted from a new
random assignment. The search continues until a solution is found or a fixed number of
restart is performed. As with any combinatorial optimization , local minima or plateaus (i.e.,
a set of neighboring states each with an equal number of unsatisfied clauses) in the search
space are problematic in the application of greedy algorithms. A local minimum is defined
as a state whose local neighborhood does not include a state that is strictly better. The
introduction of an element of randomness (e.g., noise) into a local search methods is a
common practice to increase the success of GSAT and improve its effectiveness through
diversification [2].

Fig. 1. The GSAT Random Walk Algorithm.

The algorithm of GSAT Random Walk, which is shown in Figure 1, starts with a randomly
chosen assignment. Thereafter two possible criteria are used in order to select the variable to
be flipped. The first criterion uses the notion of a “noise” or walk-step probability to
randomly select a currently unsatisfied clause and flip one of the variables appearing in it
also in a random manner. At each walk-step, at least one unsatisfied clause becomes
satisfied. The other criterion uses a greedy search to choose a random variable from the set
PossFlips. Each variable in this set, when flipped, can achieve the largest decrease (or the
least increase) in the total number of unsatisfied clauses. The walk-step strategy may lead to
an increase in the total number of unsatisfied clauses even if improving flips would have
been possible. In consequence, the chances of escaping from local minima of the objective
function are better compared with the basic GSAT [11].

www.intechopen.com

A Multilevel Greedy Algorithm for the Satisfiability Problem

43

4. The multilevel paradigm

The multilevel paradigm is a simple technique which at its core applies recursive coarsening
to produce smaller and smaller problems that are easier to solve than the original one.
Figure 2 shows the generic multilevel paradigm in pseudo-code. The multilevel paradigm
consists of three phases: coarsening, initial solution, and multilevel refinement. During the
coarsening phase, a series of smaller problems is constructed by matching pairs of vertices
of the input original problem in order to form clusters, which define a related coarser
problem. The coarsening procedure recursively iterates until a sufficiently small problem is
obtained. Computation of an initial solution is performed on the coarsest level (the smallest
problem). Finally, the initial solution is projected backward level by level. Each of the finer
levels receives the preceding solution as its initial assignment and tries to refine it by some
local search algorithm. A common feature that characterizes multilevel algorithms is that
any solution in any of the coarsened problems is a legitimate solution to the original
problem. This is always true as long as the coarsening is achieved in a way that each of the
coarsened problems retains the original problem’s global structure.

Fig. 2. The Multilevel Generic Algorithm.

The key success behind the efficiency of the multilevel techniques is the use of the multilevel
paradigm, which offers two main advantages enabling local search techniques to become
much more powerful in the multilevel context. First, by allowing local search schemes to
view a cluster of vertices as a single entity, the search becomes restricted to only those
configurations in the solution space in which the vertices grouped within a cluster are
assigned the same label. During the refinement phase a local refinement scheme applies a
local transformation within the neighborhood (i.e., the set of solutions that can be reached

www.intechopen.com

 Advances in Greedy Algorithms

44

from the current one) of the current solution to generate a new one. As the size of the
clusters varies from one level to another, the size of the neighborhood becomes adaptive and
allows the possibility of exploring different regions in the search space. Second, the ability of
a refinement algorithm to manipulate clusters of vertices provides the search with an
efficient mechanism to escape from local minima.
Multilevel techniques were first introduced when dealing with the graph partitioning
problem (GPP) [1] [5] [6] [7] [8] [22] and have proved to be effective in producing high
quality solutions at lower cost than single level techniques. The traveling salesman problem
(TSP) was the second combinatorial optimization problem to which the multilevel paradigm
was applied and has clearly shown a clear improvement in the asymptotic convergence of
the solution quality. Finally, when the multilevel paradigm was applied to the graph
coloring problem, the results do not seem to be in line with the general trend observed in
GPP and TSP as its ability to enhance the convergence behaviour of the local search
algorithms was rather restricted to some problem classes.

5. A multilevel framework for SAT

• Coarsening: The original problem P0 is reduced into a sequence of smaller problems P0,

P2, . . . , Pm. It will require at least O(log n/n’) steps to coarsen an original problem with n

variables down to n’ variables. Let V v

i denote the set of variables of Pi that are combined

to form a single variable v in the coarser problem Pi+1. We will refer to v as a
multivariable. Starting from the original problem P0, the first coarser problem P1 is
constructed by matching pairs of variables of P0 into multivariables. The variables in P0

are visited in a random order. If a variable has not been matched yet, then we randomly
select another unmatched variable, and a multivariable consisting of these two variables
is created. Unmatchable variables are simply copied to the coarser level. The new
multivariables are used to define a new and smaller problem. This coarsening process is
recursively carried out until the size of the problem reaches some desired threshold.

• Initial solution: An initial assignment Am of Pm is easily computed using a random

assignment algorithm, which works by randomly assigning to each multivariable of the
coarsest problem Pm the value of true or false.

• Projection: Having optimized the assignment Ak+1 for Pk+1, the assignment must be

projected back to its parent Pk. Since each multivariable of Pk+1 contains a distinct subset

of multivariables of Pk, obtaining Ak from Ak+1 is done by simply assigning the set of

variables V
k

v
 the same value as v ∈ Pk+1 (i.e., Ak[u] = Ak+1[v], ∀u ∈V

k

v).

• Refinement: At each level, the assignment from the previous coarser level is projected

back to give an initial assignment and further refined. Although Ak+1 is a local minimum

of Pk+1, the projected assignment Ak may not be at a local optimum with respect to Pk.

Since Pk is finer, it may still be possible to improve the projected assignment using a
version of GSAT adapted to the multilevel paradigm. The idea of GSAT refinement as
shown in Figure 3 is to use the projected assignment of Pk+1 onto Pk as the initial
assignment of GSAT. Since the projected assignment is already a good one, GSAT will
hopefully converge quickly to a better assignment. During each level, GSAT is allowed
to perform MAXFLIPS iterations before moving to a finer level. If a solution is not

www.intechopen.com

A Multilevel Greedy Algorithm for the Satisfiability Problem

45

found at the finest level, a new round of coarsening, random initial assignment, and
refinement is performed.

Fig. 3. The GSAT Refinement Algorithm.

6. Experimental results

6.1 Benchmark instances
To illustrate the potential gains offered by the multilevel greedy algorithm, we selected a
benchmark suite from different domains including benchmark instances of SAT competition
Beijing held in 1996. These instances are by no means intended to be exhaustive but rather
as an indication of typical performance behavior. All these benchmark instances are known
to be hard and difficult to solve and are available from the SATLIB website
(http://www.informatik.tudarmstadt. de/AI/SATLIB). All the benchmark instances used
in this section are satisfiable and have been used widely in the literature in order to give an
overall picture of the performance of different algorithms. Due to the randomization of the
algorithm, the time required for solving a problem instance varies between different runs.
Therefore, for each problem instance, we run GSAT and MLVGSAT both 100 times with a
max-time cutoff parameter set to 300 seconds. All the plots are given in logarithmic scale
showing the evolution of the solution quality based on averaged results over the 100 runs.

6.1.1 Random-3-SAT
Uniform Random-3-SAT is a family of SAT problems obtained by randomly generating 3-
CNF formula in the following way: For an instance with n variables and k clauses, each of
the k clauses is constructed from 3 literals which are randomly drawn from the 2n possible
literals (the n variables and their negations), such that each possible literal is selected with
the same probability of 1/2n. Clauses are not accepted for the construction of the problem
instance if they contain multiple copies of the same literal or if they are tautological (i.e.,
they contain a variable and its negation as a literal).

6.1.2 SAT-encoded graph coloring problems

The graph coloring problem (GCP) is a well-known combinatorial problem from graph
theory: Given a graph G = (V, E), where V = v1, v2, . . . , vn is the set of vertices and E the set of

www.intechopen.com

 Advances in Greedy Algorithms

46

edges connecting the vertices, the goal is to find a coloring C : V → N, such that two vertices
connected by an edge always have different colors. There are two variants of this problem:
In the optimization variant, the goal is to find a coloring with a minimal number of colors,
whereas in the decision variant, the question is to decide whether for a particular number of
colours, a coloring of the given graph exists. In the context of SAT-encoded graph coloring
problems, we focus on the decision variant.

6.1.3 SAT-encoded logistics problems
In the logistics planning domain, packages have to be moved between different locations in
different cities. Within cities, packages are carried by trucks while between cities they are
transported by planes. Both trucks and airplanes are of limited capacity. The problem
involves 3 operators (load, unload, move) and two state predicates (in, at). The initial and
goal state specify locations for all packages, trucks, and planes; the plans allow multiple
actions to be executed simultaneously, as long as no conflicts arise from their preconditions
and effects. The question in the decision variant is to decide whether a plan of a given length
exists. SAT-based approaches to logistics planning typically focus on the decision variant.

6.1.4 SAT-encoded block world planning problems
The Blocks World is a very well-known problem domain in artificial intelligence research.
The general scenario in Blocks World Planning comprises a number of blocks and a table.
The blocks can be piled onto each other, where the down-most block of a pile is always on
the table. There is only one operator which moves the top block of a pile to the top of
another pile or onto the table. Given an initial and a goal configuration of blocks, the
problem is to find a sequence of operators which, when applied to the initial configuration,
leads to the goal situation. Such a sequence is called a (linear) plan. Blocks can only be
moved when they are clear, i.e., no other block is piled on top of them, and they can be only
moved on top of blocks which are clear or onto the table. If these conditions are satisfied, the
move operator always succeeds. SAT-based approaches to Blocks World Planning typically
focus on the decision variant where the question is to decide whether a plan of a given
length exists.

6.1.5 SAT-encoded quasigroup problems

A quasigroup is an ordered pair (Q, ·), where Q is a set and · is a binary operation on Q such
that the equations a · x = b and y · a = b are uniquely solvable for every pair of elements a, b

in Q. The cardinality of the set Q is called the order of the quasigroup. Let N be the order of
the quasigroup Q then the multiplication table Q is a table N ×N such that the cell at the
coordinate (x, y) contains the result of the operation x · y. The multiplication of the
quasigroup must satisfy a condition that there are no repeated result in each row or column.
Thus, the multiplication table defines a Latin square. A complete Latin square is a table that
is filled completely. The problem of finding a complete Latin square can be stated as a
satisfiability problem.

6.2 Experimental results
Figures 4-15 show individual results which appear to follow the same pattern within each
application domain. Overall, at least for the instances tested here, we observe that the search

www.intechopen.com

A Multilevel Greedy Algorithm for the Satisfiability Problem

47

pattern happens in two phases. In the first phase, both MLVGSAT and GSAT behave as a
hill-climbing method. This phase is short and a large number of the clauses are satisfied. The
best assignment climbs rapidly at first, and then flattens off as we mount the plateau,
marking the start of the second phase. The plateau spans a region in the search space where
flips typically leave the best assignment unchanged. The long plateaus become even more
pronounced as the number of flips increases, and occurs more specifically in trying to satisfy
the last few remaining clauses. The transition between two plateaus corresponds to a change
to the region where a small number of flips gradually improve the score of the current
solution ending with an improvement of the best assignment. The plateau is rather of short
length with MLVGSAT compared with that of GSAT. For MLVGSAT the projected solution
from one level to its finer predecessor offers an elegant mechanism to reduce the length of
the plateau as it consists of more degrees of freedom that can be used for further improving
the best solution. The plots show a time overhead for MLVGSAT specially for large
problems due mainly to data structures settings at each level. We feel that this initial
overhead, which is a common feature in multilevel implementations is more susceptible to
further improvements, and will be considerably minimized by a more efficient
implementation. Comparing GSAT and MLVGSAT for small problems (up to 1500 clauses)
and as can be seen from the left sides of Figures 6,8, both algorithms seem to be reaching the
optimal quality solutions. It is not immediately clear which of the two algorithms converges
more rapidly. This is probably very dependent on the choice of the instances in the test
suite. For example the run time required by MLVGSAT for solving instance flat100-239 is
more than 12 times higher than the mean run-time of GSAT (25sec vs 2sec). The situation is
reversed when solving the instance block-medium (20sec vs 70sec). The difference in
convergence behavior of the two algorithms becomes more distinctive as the size of the
problem increases. All the plots show a clear dominance of MLGSAT over GSAT
throughout the whole run. MLVGSAT shows a better asymptotic convergence (to around
0.008%−0.1%) in excess of the optimal solution as compared with GSAT which only reach
around (0.01%- 11%). The performance of MLVGSAT surpasses that of GSAT although few
of the curves overlay each other closely, MLVGSAT has marginally better asymptotic
convergence.
The quality of the solution may vary significantly from run to run on the same problem
instance due to random initial solutions and subsequent randomized decisions. We choose
the Wilcoxon Rank test in order to test the level of statistical confidence in differences
between the mean percentage excess deviation from the solution of the two algorithms. The
test requires that the absolute values of the differences between the mean percentage excess
deviation from the solution of the two algorithms are sorted from smallest to largest and
these differences are ranked according to the absolute magnitude. The sum of the ranks is
then formed for the negative and positive differences separately. As the size of the trials
increases, the rank sum statistic becomes normal. If the null hypothesis is true, the sum of
ranks of the positive differences should be about the same as the sum of the ranks of the
negative differences. Using two-tailed P value, significance performance difference is
granted if the Wilcoxon test is significant for P < 0.05.
Looking at Table 1, we observe that the difference in the mean excess deviation from the
solution is significant for large problems and remains insignificant for small problems.

www.intechopen.com

 Advances in Greedy Algorithms

48

Fig. 4. Log-Log plot:Random:(Left) Evolution of the best solution on a 600 variable problem
with 2550 clauses (f600.cnf). Along the horizontal axis we give the time in seconds , and
along the vertical axis the number of unsatisfied clauses. (Right) Evolution of the best
solution on a 1000 variable problem with 4250 clauses. (f1000.cnf).Horizontal axis gives the
time in seconds, and the vertical axis shows the number of unsatisfied clauses.

Fig. 5. Log-Log plot: Random:Evolution of the best solution on a 2000 variable problem with
8500 clauses (f2000.cnf). Along the horizontal axis we give the time in seconds , and along
the vertical axis the number of unsatisfied clauses.

Fig. 6. Log-Log plot: SAT-encoded graph coloring:(Left) Evolution of the best solution on a
300 variable problem with 1117 clauses (flat100.cnf). Along the horizontal axis we give the
time in seconds, and along the vertical axis the number of unsatisfied clauses. (Right)
Evolution of the best solution on a 2125 variable problem with 66272 clauses (g125-17.cnf).
Horizontal axis gives the time in seconds, and the vertical axis shows the number of
unsatisfied clauses.

www.intechopen.com

A Multilevel Greedy Algorithm for the Satisfiability Problem

49

Fig. 7. Log-Log plot: SAT-encoded graph coloring:Evolution of the best solution on a 2250
variable problem with 70163 clauses (g125-18.cnf). Along the horizontal axis we give the
time in seconds , and along the vertical axis the number of unsatisfied clauses.

Fig. 8. SAT-encoded block world:(Left) Evolution of the best solution on a 116 variable
problem with 953 clauses (medium.cnf). Along the horizontal axis we give the time in
seconds , and along the vertical axis the number of unsatisfied clauses. Log-Log plot (Right)
Evolution of the best solution on a 459 variable problem with 7054 clauses (huge.cnf).
Horizontal axis gives the time in seconds, and the vertical axis shows the number of
unsatisfied clauses.

Fig. 9. Log-Log plot: SAT-encoded block world:Evolution of the best solution on a 1087
variable problem with 13772 clauses (bw-largeb.cnf). Along the horizontal axis we give the
time in seconds, and along the vertical axis the number of unsatisfied clauses.

www.intechopen.com

 Advances in Greedy Algorithms

50

Fig. 10. Log-Log plot: SAT-encoded Logistics:(Left) Evolution of the best solution on a 843
variable problem with 7301 clauses (logisticsb.cnf). Along the horizontal axis is the time in
seconds , and along the vertical axis the number of unsatisfied clauses. (Right) Evolution of
the best solution on a 1141 variable problem with 10719 clauses (logisticsc.cnf). Horizontal
axis gives the time in seconds, and the vertical axis shows the number of unsatisfied clauses.

Fig. 11. Log-Log plot:SAT-encoded logistics:Evolution of the best solution on a 4713 variable
problem with 21991 clauses (logisticsd.cnf). Along the horizontal axis we give the time in
seconds, and along the vertical axis the number of unsatisfied clauses.

Fig. 12. Log-Log plot:SAT-encoded quasigroup:(Left) Evolution of the best solution on a 129
variable problem with 21844 clauses (qg6-9.cnf). Along the horizontal axis we give the time
in seconds , and along the vertical axis the number of unsatisfied clauses.(Right) Evolution
of the best solution on a 729 variable problem with 28540 clauses (qg5.cnf). Horizontal axis
gives the time in seconds, and the vertical axis shows the number of unsatisfied clauses.

www.intechopen.com

A Multilevel Greedy Algorithm for the Satisfiability Problem

51

Fig. 13. Log-Log plot:SAT-encoded quasigroup:Evolution of the best solution on a 512
variable problem with 148957 clauses (qg1-8.cnf). Along the horizontal axis we give the time
in seconds , and along the vertical axis the number of unsatisfied clauses.

Fig. 14. Log-Log plot:SAT competition Beijing: (Left) Evolution of the best solution on a 410
variable problem with 24758 clauses (4blockb.cnf). Along the horizontal axis we give the time
in seconds, and along the vertical axis the number of unsatisfied clauses. (Right) Evolution of
the best solution on a 8432 variable problem with 31310 clauses (3bitadd-31.cnf). Horizontal
axis gives the time in seconds, and the vertical axis shows the number of unsatisfied clauses.

Fig. 15. Log-Log plot:SAT competition Beijing:(Left) Evolution of the best solution on a 8704
variable problem with 32316 clauses (3bitadd32.cnf). Along the horizontal axis we give the
time in seconds, and along the vertical axis the number of unsatisfied clauses. (Right)
Evolution of the best solution on a 758 variable problem with 47820 clauses (4blocks.cnf).
Horizontal axis gives the time in seconds, and the vertical axis shows the number of
unsatisfied clauses.

www.intechopen.com

 Advances in Greedy Algorithms

52

Table 1. Wilcoxon statistical test.

7. Conclusions

In this chapter, we have described and tested a new approach to solving the SAT problem
based on combining the multilevel paradigm with the GSAT greedy algorithm. The
resulting MLVGSAT algorithm progressively coarsens the problem, provides an initial
assignment at the coarsest level, and then iteratively refines it backward level by level. In
order to get a comprehensive picture of the new algorithm’s performance, we used a
benchmark set consisting of SAT-encoded problems from various domains. Based on the
analysis of the results, we observed that within the same computational time, MLVGSAT
provides higher quality solution compared with that of GSAT. Other conclusions that we
may draw from the results are that the multilevel paradigm can either speed up GSAT or
even improve its asymptotic convergence. Results indicated that the larger the instance, the
higher the difference between the mean percentage excess deviation from the solution. An
obvious subject for further work would be the use of efficient data structures in order to
minimize the overhead during the coarsening and refinement phases. It would be of great
interest to further validate or contradict the conclusions of this work by extending the range
of problem classes. Finally, obvious subjects for further work include designing different
coarsening strategies and tuning the refinement process.

8. References

[1] S.T. Barnard and H.D. Simon. A fast multilevel implementation of recursive spectral
bisection for partitioning unstructured problems. Concurrency: Practice and

Experience, 6(2):101-17, 1994.

www.intechopen.com

A Multilevel Greedy Algorithm for the Satisfiability Problem

53

[2] C. Blum and A. Roli. Metaheuristics in combinatorial optimization: Overview and
conceptual comparison. ACM Computing Surveys, 35(3):268-308, 2003.

[3] S.A. Cook. The complexity of theorem-proving procedures. Proceedings of the Third ACM

Symposium on Theory of Computing, pages 151-158, 1971.
[4] M. Davis and H.Putnam. A computing procedure for quantification theory. Journal of the

ACM, 7:201-215, 1960.
[5] R. Hadany and D. Harel. A Multilevel-Scale Algorithm for Drawing Graphs Nicely.

Tech.Rep.CS99-01, Weizmann Inst.Sci, Faculty Maths.Comp.Sci, 1999.
[6] B. Hendrickson and R. Leland. A multilevel algorithm for partitioning graphs. In S.

Karin, editor, Proc.Supercomputing’95, San Diego, 1995. ACM Press, New York.
[7] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning

irregular graphs. SIAM J.Sci. Comput., 20(1):359-392, 1998.
[8] G. Karypis and V. Kumar. Multilevel k-way partitioning scheme for irregular graphs.

J.Par.Dist.Comput., 48(1):96-129, 1998.
[9] B. Selman, H. Levesque, and D. Mitchell. A new method for solving hard satisfiability

problems. Proceedings of AAA’92, pages 440-446. MIT Press, 1992.
[10] B. Selman, Henry A. Kautz, and B. Cohen. Noise strategies for improving local search.

Proceedings of AAAI’94, pages 337-343. MIT Press, 1994.
[11] B. Selman and H.K. Kautz. Domain-independent extensions to GSAT: Solving large

structured satisfiability problems. In R. Bajcsy, editor, Proceedings of the international

Joint Conference on Artificial Intelligence, volume 1, pages 290-295. Morgan Kaufmann
Publishers Inc., 1993.

[12] D. McAllester, B. Selman, and H. Kautz. Evidence for invariants in local search.
Proceedings of AAAI’97, pages 321-326. MIT Press, 1997.

[13] F. Glover. Tabu search – Part I. ORSA Journal on Computing, 1(3):190-206, 1989.
[14] P. Hansen and B. Jaumand. Algorithms for the maximum satisfiability problem.

Computing, 44:279-303, 1990.
[15] I. Gent and T. Walsh. Unsatisfied variables in local search. In J. Hallam, editor, Hybrid

Problems, Hybrid Solutions, pages 73-85. IOS Press, 1995.
[16] L.P. Gent and T.Walsh. Towards an understanding of hill-climbing procedures for SAT.

Proceedings of AAAI’93, pages 28-33. MIT Press, 1993.
[17] B. Cha and K. Iwama. Performance tests of local search algorithms using new types of

random CNF formula. Proceedings of IJCAI’95, pages 304-309. Morgan Kaufmann
Publishers, 1995.

[18] J. Frank. Learning short-term clause weights for GSAT. Proceedings of IJCAI’97, pages
384- 389. Morgan Kaufmann Publishers, 1997.

[19] W.M. Spears. Simulated Annealing for Hard Satisfiability Problems. Technical Report,
Naval Research Laboratory, Washington D.C., 1993.

[20] A.E. Eiben and J.K. van der Hauw. Solving 3-SAT with adaptive genetic algorithms.
Proceedings of the 4th IEEE Conference on Evolutionary Computation, pages 81-86. IEEE
Press, 1997.

[21] D.S. Johnson and M.A. Trick, editors. Cliques, Coloring, and Satisfiability, Volume 26 of

DIMACS Series on Discrete Mathematics and Theoretical Computer Science. American
Mathematical Society, 1996.

www.intechopen.com

 Advances in Greedy Algorithms

54

[22] C. Walshaw and M. Cross. Mesh partitioning: A multilevel balancing and refinement
algorithm. SIAM J.Sci. Comput., 22(1):63-80, 2000.

www.intechopen.com

Greedy Algorithms

Edited by Witold Bednorz

ISBN 978-953-7619-27-5

Hard cover, 586 pages

Publisher InTech

Published online 01, November, 2008

Published in print edition November, 2008

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Each chapter comprises a separate study on some optimization problem giving both an introductory look into

the theory the problem comes from and some new developments invented by author(s). Usually some

elementary knowledge is assumed, yet all the required facts are quoted mostly in examples, remarks or

theorems.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Noureddine Bouhmala and Xing Cai (2008). A Multilevel Greedy Algorithm for the Satisfiability Problem,

Greedy Algorithms, Witold Bednorz (Ed.), ISBN: 978-953-7619-27-5, InTech, Available from:

http://www.intechopen.com/books/greedy_algorithms/a_multilevel_greedy_algorithm_for_the_satisfiability_pro

blem

© 2008 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

