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Abstract

Nowadays, semiconducting thin films, thanks to their unique and excellent properties,
play a crucial role for the design of devices for energy conversion and storage, such as
solar cells, perovskite solar cells, lithium-ion batteries (LIBs), and fuel cells. Since the
nanostructured arrangements can improve the behavior of the materials in several
application fields, in this chapter we propose the electrospinning process as electro-
hydrodynamic deposition to obtain semiconducting materials, in the form of nanofiber
mats. The nanostructured mats are able to provide high surface-area-to-volume ratio and a
microporous structure, which are crucial aspects for energetic application. In this chapter,
we deeply describe the electrospinning process and how nanofibers obtained can be used
in energy devices, satisfying all the requirements to improve overall final performances.

Keywords: semiconducting materials, nanofiber mats, electrospinning, energy
conversion devices, energy storage devices

1. Introduction

Nowadays, different deposition techniques, based on the application of an external electric

potential, are carried out in order to prepare thin film and coatings. A thin film is defined as a

layer of material with a thickness in the range from few nanometers (namely monolayer) to

several micrometers. All electrodeposition processes, which can be divided in chemical methods

and physical methods as proposed in Figure 1, ensure the deposition of different classes of

materials as metals, semiconductors, ceramics, and organo-ceramics in the form of thin films,

onto several substrate materials. Semiconducting thin films show a variety of unique and excel-

lent properties that make them particularly attractive in several application areas. Among them,

these materials play a preeminent role for the design of devices for energy conversion, such as

solar cells and perovskite solar cells [1]. The behavior of semiconducting materials can be

improved toward energy-related applications, when their shape and dimension are controlled
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up to the nanometer scale, in the so-called nanostructured arrangements. In this chapter, electro-

hydrodynamic depositions are proposed in order to obtain semiconducting materials in the form

of nanofiber mats, able to combine high surface-area-to-volume ratio together with a micropo-

rous structure well suited for energetic application. The electro-hydrodynamic techniques

involve an external electric field applied to a polymeric solution to provide the final deposition

of nanomaterial. As proposed in Figure 1, two different processes, i.e., electrospinning and

electrospray, can be classified as electro-hydrodynamic techniques. Indeed, electrospinning

ensures the direct assembly of nanofiber mats with different morphologies and properties, as

described in this chapter.

Electrospinning process is based on the principle that strong repulsive forces, induced by exter-

nal applied electric field, can overcome the surface tension in a charged polymeric jet [2, 3].

Therefore, through this technique, the polymer can be arranged in a mat with a high surface-

area-ratio-to-volume, showing a micro�/macroporous structure. Moreover, final nanofibers are

based not only on polymers but also on metals, ceramics, and metal oxides, obtained by

implementing further different chemical and thermal treatments. However, electrospray tech-

nique is an electro-hydrodynamic technique, which occurs at low viscosity values of initial

polymeric solution. Indeed, in this case, the surface tension overcomes the viscoelastic forces, and

consequently, the instauration of charged droplets with different diameters and concentrations

occurs during the process.

During the last decade, different works have been presented in the literature, focusing their

attention on nanostructured semiconducting metal oxides (as TiO2, ZnO, CuO, and SnO2) in

order to design well-performing and green energy systems (such as in dye-sensitized solar cells,

lithium-ion batteries (LIBs), fuel cells). In this scenario, nanofibers progressively increased their

importance as one of the most important nanostructures to be selected to improve the final

performance of the devices.

Figure 1. Different deposition techniques obtained by applying an external electric field and/or potential difference.

These techniques can be divided in electrodeposition methods and electro-hydrodynamic techniques, as explained in the

diagram.
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2. Electrospinning technique and its principles

The electrospinning is an electro-hydrodynamic process that provides polymer-based fibers

with diameter distribution in the range from few nanometers to several micrometers by

involving electrostatic forces [4–7]. The process is based on the concept that electrostatic forces

induce columbic interactions between charged elements of the polymeric fluid, leading then to

overcome the surface tension in a charged polymeric jet and ensuring the nanofiber formation.

An electrospinning system is constituted by three major components, as sketched in Figure 2(a):

(i) high-voltage supply; (ii) a spinneret, which represents one of the two electrodes, containing

the metallic needle of the syringe, where the polymeric solution is loaded; and (iii) the counter

electrode, also named grounded electrode, which is the second electrode, where the nanofibers

are collected. It involves a high-voltage supply in order to inject charges with a certain polarity in

the polymeric solution and then generates a polymeric charged jet, accelerated toward a counter

electrode with opposite polarity. In a typical process, the voltage (0–30 kV) is applied between

the first electrode (tip of needle) and the second electrode (counter electrode). This implies the

indirectly definition of electric field intensity as the ratio between the voltage value and working

distance. The working distance is the distance between the first electrode and the counter

electrode. The spinneret is linked with a syringe, in which the polymeric (or melt) solution is

loaded and a syringe pump allows to control the solution flows with a constant rate, defined as

flow rate. When the voltage is applied, the drop at the tip of the needle becomes highly

electrified, and the charges are uniformly distributed on its surface. Therefore, the repulsive

forces, acted between all charged elements of polymeric solution, induce an elongation of the

spherical drop to form a conical shape, known as Taylor’s cone. When the repulsive forces

Figure 2. A sketch of electrospinning setup is proposed in (a). In (b) a representation of bending instabilities characteriz-

ing the charged polymeric jet during the electrospinning process is proposed. (reprinted with the permission from

(polymer, 2008, 49, 2387–2425) copyright (2008) Elsevier).
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overcame the surface tension of the droplet, the charged polymeric jet is ejected from the tip of

Taylor’s cone. During the flight, the solvent evaporation together with the instauration of several

instabilities (defined whipping or bending instabilities) [8–10] occurred, leading then to the

deposition of nanofiber mat, characterized by a small-size diameter distribution and by a high

surface-area-to-volume ratio. In particular, the electrified jet proceeded with a straight path

directly toward the counter electrode until the formation of successive instabilities, as sketched

in Figure 2(b).

The theoretical principle that explains the correlation between the formation of bending insta-

bilities with the columbic interactions, the external electric field, and the surface tension is not

widely investigated in the literature. However, during the process, the free end of the jet shows

different envelope loops, which repeats itself in a smaller and smaller scale as the jet diameter

is reduced [10]. During the bending instability, the charged jet is divided in sub jets, achieving

a progressive diameter reduction, determined by Eq. (1) as explained in the literature [2]:

r0
3
¼

4ε _m0

kπσr
(1)

where ε is the fluidic permittivity (C V�1 cm�1), _m0 is the mass flow rate (g s�1) when r0 (cm) is

defined, k is a dimensionless parameter depending on the electric currents, σ is electric conduc-

tivity (A V�1 cm�1), and r is the density (g cm�3) of obtained nanofibers mats. Electrospinning

process is applied on the polymer-based materials, including both synthetic and natural poly-

mers. However, metallic carbon nanofibers and ceramic nanofibers can be obtained by

electrospinning process, starting from polymeric solutions, and by occurring successive treat-

ments, such as pyrolysis, calcination, and so on. One of the main advantages of this process is

represented by the different nanostructures that can be obtained, such as hollow, porous, and

dense nanofibers. Therefore, all wide nanostructures are achieved by varying and defining the

process parameters, such as electric potential, flow rate, polymer concentration, working dis-

tance, and ambient condition.

3. Definition of electrospinning parameters and their correlation with

the nanofiber properties

Since the modulation of morphological properties of the nanofiber mats is directly dependent

on the process parameters, it is mandatory to define all these process parameters, which can be

divided in three main categories [3, 11, 12]:

i. Parameters of the polymeric solution (or polymer melt), i.e., viscosity, concentration, and

polymer molecular weight

ii. Parameters of electrospinning process, i.e., voltage, flow rate, and working distance

between two electrodes

iii. External parameters, i.e., humidity and temperature

The first two categories are analyzed in the following paragraphs.
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3.1. Polymer solution parameters

Several solution parameters, such as viscosity solution, conductivity, dielectric constant, and

surface tension, influence the formation of polymeric charged jet and consequently morpho-

logical properties of nanofiber mats. The solution viscosity represents the resistance offered by

a fluid to its progressive deformation, induced by shear stress or tensile stress. In particular,

the viscosity is due to the collisions between all particles that move in a fluid at different

velocities. Therefore, solution viscosity can be defined as the measure of force/stress needed

to keep the fluid moving in a certain space. The concentration of polymer, dissolved in the

solution, directly influences its viscosity the higher the polymeric concentration, the higher the

solution viscosity. As determined by several works in the literature, in order to guarantee the

instauration of charged polymeric jet during the process, leading to the collection of

nanofibers, the viscosity must be in the following range (Eq. (2)) [13–15]:

0:02 ≤ η ≤ 300ð Þ Pa∗s (2)

The formation of nanofibers with or without defects depends on both viscosity and surface

tension of the solution. The surface tension is a polymeric solution property due to all cohesive

forces between fluidic molecules, ensuring then/leading then to the distribution of a fluid into

the minimum surface area condition. Indeed, in one liquid all inner molecules interact with

each neighboring molecule, inducing a resulting force equal to zero and a lower state of

energy. On the contrary, since the same number of neighboring does not surround the mole-

cules on the surface, an internal pressure is occurred, which induces the liquid surface to

occupy the minimal area, reducing its energy state. According to Laplace’s law, the spherical

shape can satisfy conditions of minimal area for a liquid [3], minimizing the “wall tension” of

the drop surface, as sketched in Figure 3. Related to the electrospinning process, the surface

tension of polymeric solution ensures the generation of a spherical droplet, suspended at the

tip of the needle.

Figure 3. Representation of theoretical concept of Laplace’s law (a) represents the cylindrical vessel (T = PR, where R is

the radius of tube) and (b) represents the spherical vessel (T = PR/2, where R is the radius of tube).
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In order to explain the correlation between the solution concentration, solution viscosity, and

surface tension, it is important to distinguish two different electro-hydrodynamic processes,

obtained by using polymeric solutions with different viscosity values. Indeed, if viscosity is

lower than 0.1 Pa*s (η ≤ 0.1 Pa*s), the surface tension overcomes the viscoelastic forces, a

noncontinuous charged polymeric jet is generated, and consequently, droplets with different

diameters and with different concentrations are collected. This process is defined as electrospray

[13–15]. When viscosity value is higher than 2 Pa*s (η ≥ 2 Pa*s), the electrospinning process is

ensured, thus providing the formation of nanofibers. Therefore, the charged polymeric jet

travels as a continuous jet toward counter electrode, in which dried nanofiber mats were

collected on.

Different works in the literature, moreover, demonstrate that the increment of solution viscos-

ity guarantees the formation of a uniform mat of nanofibers, without the presence of beads,

known as one of the most common defects into the nanofibers mats [13]. It is widely explained

how the molecular weight of polymer (Mw) and the polymeric concentration can control the

presence of defects and diameter distributions inside the nanofiber mats. As the molecular

weight increases, the number of beads and droplet is reduced. Since the increasing of the

molecular weight can increase the instabilities distribution, the final nanofiber mats show a

nonuniform distribution of diameters. Moreover, a low polymer concentration induces thinner

fiber diameters, due to the evaporation of the solvent [14]. The direct correlation between

polymeric concentration and viscosity modifies the jet deformations induced by viscoelastic

forces during electrospinning. Therefore, when the polymeric concentration is too low, the

electrospray process results to be the main electrified process deposition. On the contrary,

when the solution viscosity is too high, during the electrospinning, the leak of charged jet from

the tip of the needle could be compromised.

3.2. Electrospinning process parameters

All the parameters, related to the electrospinning process, such as voltage, flow rate, and

working distance, tune the diameter distribution in the nanofiber mats, thus controlling the

porosity distributions and the surface area of nanofibers.

Different works in the literature [3] demonstrated that the correlation between the voltage applied

and the nanofiber morphology is not well defined. Nevertheless, this process parameter is quite

important in order to establish, for each solution, the threshold value, above which the charged

polymeric jet is originated, thus ensuring the nanofiber deposition on the counter electrode.

Another fundamental parameter is the working distance, whose value can influence the com-

pletely evaporation of the solvent. Indeed, it is needed to define the minimum value of distance,

able to provide the fiber’s sufficient time to dry before depositing on the collector [15–18].

The flow rate is known as the rate at which the polymer solution is injected to the tip of the

needle, defining then the flowing mass of solution and consequently the position of Taylor’s

cone related to the syringe needle. Moreover, a direct correlation between flow rate and the

length of liner path, which precedes the bending instabilities, can be observed during the

process [3]. At low values of flow rate, Taylor’s cone is formed inside the tip of the needle,

thus leading to an intermittent polymeric jet; however, at too high values of flow rates, the
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charged jet results to be continuous, leading to the formation of nanofiber mats, characterized

by a large number of beads together with a nonuniform diameter distribution. Indeed, as the

flow rate increases, the diameters of nanofibers mat increase [3].

This overview on all those parameters, which influence the morphology properties of nanofibers

nets, provides important instruments in order to tune/control, during the electrospinning, the

formation of some defects, i.e., nano-netting, able to optimize nanofiber mats, involved in several

applications, like catalysis, sensors, optics, tissue engineering, and energy storage.

The nano-nets appear as spider-weblike structure, characterized by secondary ultrathin

nanofibers interconnected with the main nanofibers [19]. There are some works in the literature

[20–22] that study spider-weblike nanofibrous mat obtained by using an electrospun colloidal

solution, containing the polymer and metal oxide nanoparticles. Kim et al. [20] obtained the

nano-netting structure starting from a polymeric solution containing solid powder of ZnOmixed

with a solution of nylon-6 and acetic acid. The ZnO nanoparticles induce a solution charge

density increase, providing the separation of the thinner fibers from the main nanofiber web.

Moreover, Amna et al. [21] proposed the formation of secondary thinner web when ZnO

nanoparticles were dissolved in a sol–gel solution of polyurethane in dimethylformamide

(DMF).

4. Hollow nanostructures and coaxial electrospinning

One of the main important aspects of the electrospinning process is represented by the possi-

bility to provide different types of nanofiber morphology, obtained by modifying the

electrospinning technique. As an example, coaxial electrospinning is applied to the preparation

of polymer core-shell nanofibers and hollow nanofibers composed not only of polymers but

also of ceramics. Coaxial electrospinning is obtained by using two syringe supports disposed

in a concentric configuration, and each syringe contains different spinning solutions, as

sketched in Figure 4(A). All parameters, described above, which influence the formation of

polymeric jet during the electrospinning process, are the same. Coaxial electrospinning pro-

vides further advantages, when the molecular weight of polymer is too low to ensure the fiber

formations, avoiding the droplets and consequently the electrospray process. Incorporating

these kinds of polymer as the core into a core-shell nanofibers, it is possible to ensure the

formation of a continuous jet and consequently the collection of nanofibers on the counter

electrode. Moreover, core-shell fibers can offer a solution when it is needed to keep the

functional components (proteins, enzymes, bacteria, viruses) maintaining their functionality.

Core-shell nanofibers are characterized by a shell, based on solid materials, such as natural or

synthetic polymers, and by a core, which is commonly a solvent (like water) with bio-systems.

However, the hollow nanofibers are carried out when a wall is based on inorganic polymeric

composites or ceramic materials, and the core results to be empty (as sketched in Figure 4(B–D)).

There are two different approaches implemented to obtain hollow nanofibers. The first one is

based on the concept of sacrificial polymer templates that is then removed. Choi et al. [23]

fabricated hollow ZnO nanofibers by using polyvinyl alcohol (PVA) as polymeric template.
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Another approach is based on coaxial electrospinning, starting from two immiscible liquids

through the coaxial spinneret, followed by a selective removal of the core. Li et al. [24] studied

hollow nanofibers, obtained by coaxial electrospinning, and used a polymeric solution of

polyvinylpyrrolidone (PVP) and titania precursor (Ti (OiPr)4) as shell and mineral oil as core.

An example of the resulting hollow nanofiber is reported in Figure 4(D).

Du et al. [22] used coaxial electrospinning in order to design TiO2/ZnO core-shell nanofibers as

photo-anodes in dye-sensitized solar cells (DSSCs). The resulting DSSC efficiency was close to

5%. This improvement can be related to the enhanced light-harvesting efficiency and electron

collection efficiency.

5. Nanofiber deposition controlled by counter electrode and by patterning

The final step of electrospinning process is represented by the deposition of dried nanofiber

mats on the counter electrode (collector). The collector is a conductive electrode, connected to

the ground potential in order to provide a stable potential difference between the first elec-

trode (tip of needle) and the second one (counter electrode). In electrospinning process, the

deposition texture depends on the electrode configurations. Different works in the literature

demonstrated the correlation between the morphological and physical properties of nanofibers

with different types of counter electrodes. Indeed, different collectors can be divided into

Figure 4. Core-shell nanofibers obtained by coaxial electrospinning (A) and hollow nanofibers (B-C-D) are proposed. The

figure is adapted and reprinted with the permission from (Li and Xia [25]. Copyright (2004) American Chemical Society).
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(i) flat-plate collector, (ii) rotating drum collector, (iii) rotating wheel with edge, and (iv)

parallel strips [4].

5.1. Flat-plate collector

In the majority of electrospinning setup, a flat-plate collector is used, thus leading to collect a

non-woven nanofibers mats, namely as a random distribution of nanofibers on the counter

electrode and on all substrate positioned on the top of it. The formation of a non-woven mat of

nanofibers is induced by a layer-by-layer deposition on the planar surface. However, some

applications required a certain alignment among the nanofibers. In order to induce certain

fiber orientations, specific geometries of counter electrode, combined with its motion, are

required (as proposed in Figure 5).

5.2. Rotating drum collector

Rotating cylindrical collectors combined with high rotating speed (up to 1000 rpm), as

represented in Figure 5(a), enhance a distribution of parallel nanofibers on it. In this configu-

ration, the two components of velocity (rotating velocity and linear tangential velocity) play a

key role in the alignment of nanofibers. The linear tangential velocity of each point on the

collector surface is directly proportional to angular velocity and radius of cylinder. Therefore,

when the tangential velocity assumes a threshold value able to guarantee the solvent evapora-

tion of the jet, the nanofibers assumed a circular shape on the collector. However, if the

tangential velocity results to be too low, random distribution of nanofibers occurred. Finally,

if the tangential velocity is too high, the fiber jet will be broken, and the continuous nanofibers

will no collect. Different works in the literature used drum collector in order to obtain aligned

metal oxide nanofibers, based on TiO2 [25, 26] and ZnO [23]. Aligned ZnO nanofibers are

Figure 5. A schematic representation of different electrospinning collectors. In (a) and (b), the rotating drum and disk

collectors are shown, allowing the aligned nanofiber mats.
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electrospun starting from a gel containing the precursor of metal oxides and zinc acetate. The

electrospun ordered nanofibers were then calcined at 450–500�C in oxygen atmosphere to

induce the nucleation and growth of ZnO [23]. The aligned ceramic nanofibers show a higher

surface-area-to-volume ratio, leading to enhance charge collection and their transport.

5.3. Rotating disk collector

The rotating disk can be defined as a thinner drum collector, on which the nanofibers are

deposited on its edge. For this approach, collected nanofibers appear more aligned than the

ones obtained with drum collector, described above [12, 27, 28]. Figure 5(b) represents a

schematic view of rotating disk, and the nanofibers intercept the edge of counter electrode.

With this kind of architecture of counter electrode, the rotation of the disk generates a tangen-

tial force, which acts on the polymeric jet, carrying out the nanofiber deposition only on the

edge of the disk. This force reduces their diameter, stretching the nanofibers. In this configura-

tion, the alignment of nanofibers results to be better than the one obtained by using rotating

drum collector. However, the main limitation of this collector is that only a small quantity of

aligned fibers can be obtained. In order to overcome the limitations induced by these kinds of

counter electrode to obtain aligned nanofibers and to guarantee the formation of oriented

nanofibers, several methods can be implemented. In particular, they mainly involve the mod-

ulation of external field provided by a specific geometry of counter electrode.

5.4. Patterning designed on counter electrode

Since some applications in energy field requires highly ordered structure, different works in

the literature designed different patternings on a planar counter electrode, able to overcome

all limitations introduced by different types of counter electrode (drum or rotating disk

counter electrode) and enhance the aligned of nanofibers [29]. An example is shown in

Figure 6(A). Two gold bars are placed on the planar counter electrode, and their disposition

breaks the asymmetry of the deposition, ensuring the deposition of parallel fibers. In a

similar way, a quadripolar arrangement of isolated strips of electrodes, as represented in

Figure 6(B), induces a cross grating type of fiber deposition. Wu et al. [12] used two silver

plate placed on the planar counter electrode, inducing a final aligned nanofiber mat with a

highly ordered structure. The initial polymeric solution was made of CuO precursor mixed

with PVA, dissolved in deionized water. The aligned CuO nanofibers, obtained after the

calcination treatment conducted in air at a temperature of 500�C, enhanced their electrical

transfer properties.

Figure 6. (A) Parallel arrangement of nanofibers induced by two gold strips, placed on planar counter electrode and (B)

quadripolar arrangement of isolated strips of electrodes.
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6. Application of semiconducting nanofibers

For the last decades, tremendous efforts have been devoted to the exploitation of renewable,

efficient, and low environmental impact of energy sources, able to contribute to the rise of new

models for a sustainable human development [30]. Nanostructured materials have demonstrated

a huge potential in energy devices, significantly contributing to improve the final performance of

the systems [31, 32]. Nanofibers by electrospinning belong to this intriguing class of materials. As

described in the previous paragraphs, nanofibers offer a wide range of strategies to fine tune

their morphology in order to meet the requirements of the final application. This versatility of the

process provides the nanofibers with a huge potential for energy-related applications [33, 34].

Good examples exist, showing the integration of nanofibers in energy systems for both energy

production and storage. In the following paragraphs, some examples are provided, especially

focusing on photovoltaic systems and lithium-ion batteries.

6.1. Energy production

In photovoltaic devices, photons from solar light are directly converted into electrons thanks to

the presence of proper materials. In traditional solar cells, adsorption/conversion is granted by

a semiconducting material in a thin-film form, as GaAs, InP, and Si. In the most recently

proposed systems, conversion is performed by organic molecules, as in dye-sensitized solar

cells (DSSCs) [35, 36] or metalorganic lead halide perovskites in the so-called perovskite solar

cells (PSCs) [37]. In both cases, a semiconductor is then needed to capture the generated

electrons resulting in an electric current generation.

The leading wide bandgap, mesoporous semiconductor in these devices is TiO2. Since the

photo-generated charges have to be efficiently injected in the conduction band of the nano-

structured semiconductor, the higher the injection efficiency, the lower the losses associated to

the process. For this reason, the design of the semiconductor at the nanoscale plays a key role

to obtain high-performing photo-electrodes. Nanofibers are quite promising candidates for

obtaining well-performing devices since they offer several strategies to control and tune their

morphology as needed by the final application.

As an example, the porosity of nanofiber mats can be considered: in DSSC, the possibility to

control the dye uptake and the penetration of viscous, solid, or semisolid is a quite important

feature. It is possible to change and control the nanofiber mat porosity, tuning the electrospinning

process parameters, in order to optimize nanofiber mats for the design of photo-anodes in DSSC

[38]. Nanofibers by electrospinning offer several strategies for low-temperature processing of

photo-anodes: this is quite important for an easy integration of nanostructured semiconductors

in plastic substrates for flexible devices [39, 40].

Several metal oxide semiconductors have been successfully fabricated by electrospinning, as

TiO2, ZnO, and SnO2 [39, 40], for the design of well-performing photo-anodes.

Core-shell nanofibers [41]; TiO2-graphene composite nanofibers [42]; electrospun ZnO photo-

electrodes made of ZnO nanofibers with a dense, twisted structure [43]; and SnO2/TiO2 core-shell

nanofiber-based photo-anodes have been successfully integrated in DSSC devices. Similarly,

TiO2- and Au-decorated TiO2 nanofibers [44–46] have been proposed in PCSs.
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Another important class of devices for energy conversion is represented by fuel cells. They are

electrochemical devices, able to convert the chemical energy stored in several classes of mole-

cules, acting as fuels (e.g., H2, methanol, ethanol) into electricity in the presence of a catalyst.

Different types of fuel cells exist according to the fuel that is converted (i.e., direct methanol

fuel cells (DMFC)), the electrolyte that they use (i.e., solid oxide fuel cells (SOFCs)), or the

catalyst that controls the oxidation process (i.e., microbial fuel cells (MFCs)).

In this area of energy, semiconducting nanofibers are especially proposed to design new

cathode, when the oxygen reduction reaction (ORR) occurs at the cathode. As an example,

manganese oxide nanofibers are successfully proposed to catalyze the ORR as an alternative to

platinum [47]. One of the main disadvantages of metal oxides as catalysts to drive the ORR is

related to their low electrical conductivity. To overcome this issue, different strategies have

been proposed. A successful method is based on the use of composite nanofibers made of

doped semiconductors, as proposed by Alvar et al. that optimized a process to embed carbon

nanoparticles into mesoporous Nb-doped TiO2 nanofibers [48].

6.2. Energy storage

In the area of energy storage, lithium-ion batteries (LIBs) play a crucial role as a promising

technology toward sustainability. In a LIB, a negative electrode and a positive electrode are

present, both able of reversibly intercalate Li+ions, and separated by a nonaqueous lithium-ion

conducting electrolyte. During discharge, Li+ions carry the current from the negative to the

positive electrode, through the nonaqueous electrolyte. During charge, an external high volt-

age is applied that forces lithium ions to migrate from the positive to the negative electrode,

where the process known as intercalation occurs, during which they are embedded in the

porous electrode material [31].

In this field, semiconducting nanofibers by electrospinning have been especially proposed for the

fabrication of high-efficiency anodes. Good examples are represented by TiO2 nanofibers. Han

et al. fabricated TiO2 hollow nanofibers sheathed with TiOxNy/TiN layers with the aim to

optimize capability diffusion of lithium ions and electronic conductivity. The fabrication process

was based on electrospinning to fabricate hollow nanofibers, followed by a thermal treatment in

NH3 atmosphere [49]. Another possibility is represented by the synthesis of composite TiO2-

based nanofibers. Zhang et al. proposed the fabrication by electrospinning, followed by a calci-

nation step of TiO2-graphene composite nanofibers able to behave as highly durable anodes [50].

Another interesting possibility offered by electrospinning is the decoration of carbon-based

nanofibers with metal oxide catalysts, by adding the oxide precursor into the solution already

containing the carbon precursor. The nucleation of the semiconducting oxide in the form of

nanoparticles can then be achieved by the thermal process, which also permits the carboniza-

tion of the nanofibers. An interesting example of this process is offered by the work of Ji et al.

[51]. They synthetized carbon nanofibers decorated with α-Fe2O3 nanoparticles, demonstrat-

ing homogenous dispersion of the nanoparticles along the carbon-based nanofibers. The com-

posite mats were tested as anodes in Li-ion batteries; the resulting electrodes showed good

reversibility and capacity.
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High-capacity anodes for Li-ion batteries can be also designed using SnOx, but strategies are

needed for this semiconductor to improve its stability over cycles. Indeed, the variation of the

volume induced by the intercalation process is detrimental for its mechanical stability,

resulting in reduced lifetime of SnOx-based anodes. In order to significantly improve the

cycling durability of the resulting anodes, the electrospinning method is used to synthetize

carbon-based nanofibers decorated with small-size SnOx nanoparticles [52].

The possibility to use carbon-based nanofibers in the area of energy storage offers new interesting

possibility to design flexible devices. Indeed, carbon-based mats can be processed to be freestand-

ing and usually exhibit very high bendability, offering several possibilities of integration as

electrodes in devices for smart electronics. In this area, several processes are developed to deco-

rate the starting carbon mats with metal oxides to design new, well-performing anodes. Samuel

et al. [53] decorated carbon-based nanofibers with MnO nanoparticles, demonstrating the possi-

bility to couple the high performances achievable by this semiconducting oxide (923 mAh g�1 at a

current rate of 123 mA g�1 after 90 cycles) with optimal flexibility of the carbon mats.
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