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Abstract

In this chapter, extended finite element method (XFEM) has been used to simulate the
fatigue crack growth problems in functionally graded material (FGM) in the presence of
hole, inclusion and minor crack under elastic and plastic conditions. The fatigue crack
growth analysis of alloy/ceramic FGMs, alloy and equivalent composite is done by
XFEM in the presence of multiple discontinuities under mode-I mechanical load. The
validity of linear elastic fracture mechanics (LEFM) theory is limited to the brittle mate-
rials. Therefore, the elastic plastic fracture mechanics (EPFM) theory needs to be utilized
to characterize the plastic behavior of the material. A generalized Ramberg-Osgood
material model has been used to model the stress-strain behavior of the material. Plas-
ticity has been checked by Von Mises Yield criteria. J-integral has been used to calculate
the SIF. Crack growth direction is determined by maximum principal stress criteria.

Keywords: FGM, composite materials XFEM, elastic-plastic loading, fatigue fracture,
crack propagation, discontinuities, inclusions, holes, minor cracks

1. Introduction

Development of novel materials improves performance and efficiency of the structures, and

also leads to development of advanced and sophisticated structures. This complex process of

materials, structures and technology has led to the development of composite materials.

Strength and stiffness plays a key role in evaluating the worth of the material. These charac-

teristics provide strength to the structure to retain its desired shape and size under loading or

any other external action.

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Cracks/flaws are inevitable in all engineering materials. Loading under severe environmental

conditions may either initiate new cracks or may cause the propagation of pre-existing cracks

in the structures. Theoretically, fracture can be defined as the breaking or rupturing of a

material resulting into its separation into two or more pieces.

Composite materials manifested in the middle of the twentieth century. Composites are naturally

occurring or engineered materials made from two or more constituents with different chemical

or physical properties distinct boundary among constituents. Lightweight composite materials

with high strength to weight and stiffness to weight ratios have been used successfully in aircraft

industry and other engineering applications. Under high temperature conditions the strength of

the metal is deteriorated whereas, ceramics have excellent resistance to heat.

FGMs can be referred as multiphase composite materials in which the composition or microstruc-

ture or both are spatially varied which lead to a certain gradation in the local material properties.

FGMs can be defined as multi-phase composites. FGMs are synthesized such that they own

continuous variations in volume fractions of their components in space to return a pre-established

composition. FGMs possess continuously varying properties in one ormore than one direction and

the form non-homogeneous macrostructure due to these variations. By gradually varying the

volume fraction of the constituents, FGMs exhibit a smooth and continuous change from one

surface to another, thus reducing interface problems, andminimizing thermal stress concentrations.

The ceramic phase of FGMs provides a good resistance to heat, while the metal phase provides a

strong mechanical performance and hence reduces the possibility of catastrophic failure.

The major advantages of FGM over conventional materials are firstly, FGM satisfies the work-

ing conditions for which it is specifically developed. Secondly, it is economical as it reduces

material costs for particular engineering applications. Thirdly, it can reduce the magnitude of

residual and thermal stresses generated under working conditions. Finally, FGMs exhibit

better fracture toughness and bond strength. This is normally achieved by using a ceramic

layer connected with a metallic layer. FGMs have wide area of engineering applications like in

the computer circuit and aerospace industries. FGMs have typical applications is in aircraft

and automotive industries as thermal barrier coatings (TBCs).

In general, all structural components are subjected to thermo-mechanical cyclic load. The

fatigue life of these components is generally predicted without considering the effect of

defects/discontinuities present in component. However, FGMs are commonly made by

sintering process, which are porous in nature. These discontinuities at the vicinity of a major

crack tip lead to increase the effective SIF at the major crack tip due to which the life of the

components get depreciated. Hence, the analysis of FGMs in the vicinity of discontinuities

becomes very important from the design point of view. To widen the spectrum of applications

of FGMs, the fatigue/fracture behavior should be properly evaluated.

Over the years, greater understanding of fracture mechanics has undoubtedly prevented a

significant number of structural failures. Fracture mechanics approach for the design of struc-

tures includes flaw size as one of the key variables. Fracture toughness replaces strength of

material as a relevant material attribute, and its evaluation is mainly done in composites using

the J-integral approach [1]. Failure of FGM has always been a trending domain of research for

scientists and engineers due to the wide spectra of their engineering applications.
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Fatigue and quasi-static fracture are two forms of crack growth phenomenon. Fatigue fracture

refers to the slow propagation of cracks under cyclic loading conditions where the stress

intensity factors are below the fracture toughness of the material. Quasi-static fracture is

observed near the end of the fatigue life when the increased crack length leads to stress

intensity factors which are above the fracture toughness [2, 3].

In many cases, multiple cracks may exist in the components. There interaction resulting in the

variation of stress intensity factor, stress distribution and propagation direction of the major

crack. In the past, the failure of structures was analyzed in the presence of multiple cracks [4].

Some efforts have been made using analytical, experimental and simulation techniques to

analyze the effect of interaction among multiple cracks [5–7].

Although, many analytical [8, 9] and experimental methods [10, 11] have been explored for the

calculation of fracture parameters even then the drawbacks associated with experimental

investigation and scarcity of analytical solution have impelled the analysts towards alternative

techniques. Numerical methods hold the promise in this regard.

Many numerical methods are available to simulate the problems of fatigue failure in materials.

These include finite element method (FEM), boundary element method, hybrid boundary node

method [12, 13], meshfree methods [14–18] and extended finite element method [19, 20]. Out of

these methods, FEM has been widely used for solving a wide variety of engineering and

industrial problems [21–26]. It has achieved a remarkable success in solving various linear

and non-linear problems [27–34]. Despite its numerous advantages and unparalleled success,

it is not well-suited for solving the problems involving crack propagation. In crack growth

problems, element edges provide natural lines along which a crack can grow. This is advanta-

geous if the crack path is known a priori, but in most of the fracture phenomenon, the crack

path is unknown. Thus, FEM requires a conformal mesh and re-meshing to ensure that the

element boundaries coincide with the moving discontinuities (crack). Moreover, crack tip

singularity cannot be accurately modeled by standard finite element approximation. There-

fore, the modeling of crack growth becomes quite tedious and time consuming due to the

modification in mesh topology at each stage of crack propagation. To overcome this difficulty,

a new method known as extended finite element method (XFEM) has been developed to

model arbitrary discontinuities without a need of conformal mesh or re-meshing. Level set

method (LSM) is used in conjunction with XFEM for defining as well as tracking the geometry

of cracks and other discontinuities like holes and inclusions. To cope up with these problems,

XFEM has been adopted as a tool for the analysis of fatigue crack propagation in FGM.

2. Calculation of SIF for FGM

A domain based interaction integral approach can be used for calculating the stress intensity

factors for homogeneous, bi-layer and functionally graded materials under thermal as well as

mechanical loading. In this chapter, interaction integral approach will be extended to calculate

the SIFs for FGM and bi-layered FGM under mechanical loads. The interaction integral

is calculated based on J-integral. The J-integral for an elastic body subjected to thermo-

mechanical load is given as,

Fatigue Fracture of Functionally Graded Materials Under Elastic-Plastic Loading Conditions Using Extended…
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J ¼ ∮
Γo

~W δ1j � σij
∂ui
∂x1

� �

njdΓ (1)

For the interaction integral calculation of an elastic body, consider two equilibrium states i.e.

state 1, the actual state with given boundary conditions and state 2, an auxiliary state of the

cracked body. The parameters for auxiliary state are represented with superscript a. The final

expression for the interaction integral takes the form [35]

M12 ¼

ð
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σij
∂uai
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þ σ
a
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� σ
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ikε
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where, the auxiliary field for the FGM may be taken from [36] as.

σ
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The SIFs are calculated from the interaction integral as [36]:

Mode-I SIF is given as,

KI ¼
M12E

∗ cosh2
πε

tip
� �

2
with Ka

I ¼ 1 and Ka
II ¼ 0 (4a)

Mode-II SIF is given as,

KII ¼
M12E

∗ cosh2
πε

tip
� �

2
with Ka

I ¼ 0 and Ka
II ¼ 1 (4b)

where, E∗ ¼ 2E1 E2

E1þE2
with Ei ¼

E
tip
i for plane stress

E
tip
i = 1� ν

tip
i

� �2
� �

for plane strain

8

>

<

>

:

with i ¼ 1, 2

3. Fatigue crack growth

Here we use Paris law for stable crack propagation, the generalized Paris’s law is given as:

da

dN
¼ C ΔKIeq

� �m
(5)
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Where, a is the crack length and N is the number of loading cycles. C and m are material

properties to find the rate of crack growth. At each crack tip, the local direction of crack growth

θc can be calculated by the maximum principal stress theory [37]. Crack is assumed to grow in

a direction perpendicular to the maximum principal stress. Thus, by enforcing the condition

that the local shear stress is zero for θ ¼ θc,

KIsinθc þ KII 3cosθc � 1ð Þ ¼ 0 (6)

The solution of Eq. (6) gives

θc ¼ 2tan�1
KI �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K2
I þ 8K2

II

q

4KII

0

@

1

A (7)

According to this criterion, the equivalent mode-I SIF is obtained as

KIeq ¼ KI cos
3 θc

2

� �

� 3KIIcos
2 θc

2

� �

sin
θc

2

� �

(8)

For stable crack propagation, the generalized Paris’ law for FGM is given as

da

dN
¼ C xð Þ ΔKIeq

� �m xð Þ
(9)

where, C xð Þ and m xð Þ are the functions of the location.

In the numerical example, the crack growth value Δa is assumed and the corresponding

number of cycles ΔN is computed from Eq. (9). When multiple crack tips are present, the crack

growth value Δa is assumed for the most dominant crack tip, corresponding ΔN is computed

and then at the other crack tips the crack growth is computed corresponding to ΔN. Eventu-

ally, when the maximum value of KIeq for any crack tip becomes more than the fracture

toughness KIC at corresponding location then the simulation is terminated. At this point, the

total number of cycles elapsed is the fatigue life of the FGM.

4. Modeling of the properties of FGM

In this chapter, the results have been presented for a FGM plate as shown in Figure 1. The

FGM plate is manufactured by reinforcing an alloy with ceramic. The volume fraction of

ceramic is varied in the x-direction to get a material property variation in the x-direction. It is

assumed that at x ¼ 0 the FGM have the properties of the alloy and at x ¼ L properties of

ceramic. The major crack is always taken at the center of the FGM plate in the x-direction. The

interface, when present is also in the same direction. The material properties of the aluminum

alloy and alumina used in FGM are tabulated in Table 1 [38, 39].

Fatigue Fracture of Functionally Graded Materials Under Elastic-Plastic Loading Conditions Using Extended…
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The variation of the elastic modulus for FGM is modeled as

E xð Þ ¼ Ealloye
α x where α is given as α ¼ 1

L
ln

Eceramic

Ealloy

� �

(10)

A plot of E xð Þ for L = 100 mm is shown in Figure 2. The fatigue life of FGM has been compared

with the same of the aluminum alloy and an equivalent composite of aluminum alloy/alumina.

The equivalent composite considered in this example has the same overall volume fractions of

aluminum alloy and ceramic as the FGM. The volume fractions of ceramic and aluminum alloy

in the FGM are obtained as

VFGM
ceramic xð Þ ¼ E xð Þ � Ealloy

Eceramic � Ealloy
¼ Ealloye

α x � Ealloy

Eceramic � Ealloy
(11a)

VFGM
alloy xð Þ ¼ 1� VFGM

ceramic xð Þ (11b)

In this example, the equivalent composite is assumed to have the same amount of metal and

ceramic. The volume fraction of alumina in the equivalent composite is calculated as

Figure 1. Geometry of the FGM plate along with its dimensions.

Material properties Aluminum alloy Alumina

Elastic modulus E GPað Þ 70 300

Poisson’s ratio, ν 0.33 0.21

Coefficient of thermal expansion γ (/
�
C) 25 � 10�6 8.2 � 10�6

Fracture toughness KIC MPa
ffiffiffiffi

m
pð Þ 29 3.5

Paris law parameter C in m=cycle MPa
ffiffiffiffi

m
pð Þ�m 10�12 2.8 � 10�10

Paris law parameter, m xð Þ 3 10

Table 1. Material properties of aluminum alloy and alumina.
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V
composite
ceramic ¼

1

L

ðL

0

VFGM
ceramic xð Þdx (11c)

where, L is the length of the plate. For L ¼ 100 mm, V
composite
ceramic ¼ 38:28% and V

composite
alloy ¼ 61:72%.

The variation in volume fraction of ceramic (alumina) in the FGM is shown in Figure 3. The

volume fraction for the equivalent composite has also been indicated. Now, using the rule of

mixtures for the equivalent composite

Ecomposite ¼ EalloyV
composite
alloy þ EceramicV

composite
ceramic (12)

we get Ecomposite ¼ 158:04 GPa. The Poisson’s ratio for the equivalent composite as well as for

the FGM may be calculated as [40]

ν xð Þ ¼
νalloyV

FGM
alloy xð ÞEceramic þ νceramicV

FGM
ceramic xð ÞEalloy

VFGM
alloy xð ÞEceramic þ VFGM

ceramic xð ÞEalloy

(13a)

and νcomposite ¼
νalloyV

composite
alloy Eceramic þ νceramicV

composite
ceramic Ealloy

V
composite
alloy Eceramic þ V

composite
ceramic Ealloy

(13b)

The Poisson’s ratio is shown in Figure 4.

Figure 2. Variation of modulus of elasticity along the length of the plate.
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Figure 3. Variation of volume fraction of ceramic along the length of the plate.

Figure 4. Variation of Poisson’s ratio along the length of the plate.
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The coefficient of thermal expansion for the FGM by the rule of mixtures is calculated as

γ xð Þ ¼ γalloyV
FGM
alloy xð Þ þ γceramicV

FGM
ceramic xð Þ (14a)

The coefficient of thermal expansion for the equivalent composite is given by

γcomposite ¼ γalloyV
composite
alloy þ γceramicV

composite
ceramic (14b)

The value of the coefficient of thermal expansion for the equivalent composite is calculated

using Eq. (14b) and is found to be γcomposite = 18.57 � 10�6/
�

C. A variation of coefficient of

thermal expansion for the FGM is shown in Figure 5.

The fracture toughness of the FGM as well as the equivalent composite may be expressed as a

function of the volume fraction of the ceramic by the following formula given by [41]

KIC xð Þ ¼
K
alloy
IC þ Kceramic

IC

2

þ
K
alloy
IC � Kceramic

IC

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� VFGM
ceramic xð Þ

q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VFGM
ceramic xð Þ

q

� �

(15a)

K
composite
IC ¼

K
alloy
IC þ Kceramic

IC

2

þ
K
alloy
IC � Kceramic

IC

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� V
composite
ceramic

q

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V
composite
ceramic

q

� �

(15b)

The variation of fracture toughness is shown in Figure 6.

The Paris law parameters are assumed to have exponential variation in a manner similar to the

elastic modulus. Thus, the variation in the parameters of Paris equation is taken as

C xð Þ ¼ Calloye
ϑ x,where,ϑ ¼

1

L
ln

Cceramic

Calloy

� �

(16)

m xð Þ ¼ malloye
ς x,where, ς ¼

1

L
ln

mceramic

malloy

� �

(17)

For the equivalent composite, we find the location at which the volume fraction of ceramic in

the FGM is same as that of the equivalent composite. This location x may be found by either

Figure 5 or by using the formula x ¼ 1
α
ln

Ecomposite

Ealloy

� �

, where α is defined in Eq. (10). For the

present example x ¼ 56 mm. The Paris law parameters of the equivalent composite is assumed

to be same as that of the FGM at x ¼ x . Thus,

Ccomposite ¼ Calloye
ϑ x (18a)

mcomposite ¼ malloye
ς x (18b)
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The values of C and m for the equivalent composite comes out to be Ccomposite ¼ 2:34� 10�11 m=

cycle MPa
ffiffiffiffiffi

m
pð Þ�m

and mcomposite ¼ 5:88. The variation of C and m are shown in Figures 7 and 8

respectively.

Plastic behaviour for FGM can be modeled using Ramberg Osgood equation [42]

ε ¼ σ

E
þ σ

H

� �1=n

(19)

Here, H is the strength coefficient and n is the strain hardening exponent. The value of

n ¼ 0:0946 is used for the present example. The values of the parameters of Paris equation are

taken as C ¼ 3� 10�11 and m ¼ 3. In actual case the path of crack growth is curved but in this

study the linear crack growth path is taken. Linear crack extension length Δa for an edge crack

is kept constant. For a center crack maximum crack extension length Δamax is kept on principal

crack tip. The principle crack tip is the crack tip where ΔKIeq maximum. Crack increment at the

other crack tip is given by:

Δa ¼ Δamax

ΔKIeq

ΔKIeq max

� �m

(20)

The crack tip extension at the principal crack tip is Δamax and at the other crack tip extension

is smaller. The crack extension takes place KIeq max < KIC . Crack becomes unstable when

Figure 5. Variation of coefficient of thermal expansion along the length of the plate.
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KIeq max > KIC. Simulation continues until this condition is met. Here, KIeq max is the equivalent

SIF for mode-I at principal crack tip and KIC is the material property called fracture toughness

or critical SIF. KIC for FGM is given by [35]

Figure 6. Variation of fracture toughness along the length of the plate.

Figure 7. Variation of C xð Þ along the length of the plate.
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KIC xð Þ ¼ Kceramic
IC

E xð Þ

1� ν
2
FGM

Vm xð Þ
1� ν

2
alloy

Ealloy

K
alloy
IC

Kceramic
IC

 !2

þ 1� Vm xð Þð Þ
1� ν

2
ceramic

Eceramic

8

<

:

9

=

;

2

4

3

5

1=2

(21)

where KIC xð Þ is the fracture toughness of the FGM at point x. K
alloy
IC and Kceramic

IC are the fracture

toughness of the alloy and ceramic, while νalloy and νceramic are Poisson’s ratios for the alloy

and ceramic respectively. Vm xð Þ denotes the volume fraction for the alloy at point x.

The constitutive relation for the elastic-plastic material is given as

σ uð Þ ¼ Dep xð Þε uð Þ (22)

where x is the vector of x and y-coordinates, Dep xð Þ is elastic-plastic constitutive matrix varying

in x-direction. The elastic constitutive matrix can be written for plane stress condition as

De xð Þ ¼
E xð Þ

1� ν xð Þ2
n o

1 ν xð Þ 0

ν xð Þ 1 0

0 0
1� ν xð Þ

2

2

6

6

4

3

7

7

5

¼ D (23a)

and for plane strain condition as

Figure 8. Variation of m xð Þ along the length of the plate.
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De xð Þ ¼
E xð Þ

1� 2ν xð Þf g 1þ ν xð Þf g

1� ν xð Þ ν xð Þ 0

ν xð Þ 1� ν xð Þ 0

0 0
1� 2ν xð Þ

2

2

6

6

4

3

7

7

5

¼ D (23b)

The incremental theory of plasticity [43] has been used to model the elastic-plastic constitutive

relation for a material. An incremental stress vector dσ and incremental strain vector dε are

such that dσ ¼ Dep:dε. Where Dep is the elastic-plastic constitutive matrix, which is determined

as discussed under:

Total strain increment is the sum of elastic and plastic strains

dε ¼ dεe þ dεp (24)

Elastic incremental strain and stress is determined

dσ ¼ Dedεe (25)

F σð Þ ¼ f σð Þ (26)

where σ is the stress tensor and σ is the equivalent stress, F and f are two different failure

functions. By the flow rule the incremental strain is related to the gradient of a function known

plastic potential. If the plastic potential function and the failure function is same, then the

following relation is obtained,

dεp ¼ ∇F:d λ (27)

Plastic modulus Η is given as

Η ¼
dσ

dεp
(28)

For a given strain energy δw, and according to the definitionof dεp we must have,

δw ¼ σ:dεp (29)

According to the Von Mises criteria, F ¼ J2, where J2 is the second invariant of deviatoric stress

tensor. So, we must have F σð Þ ¼ σ
2

3 , Thus Eqs. (26) and (27) result in

dσ ¼ De dε� dεp
	 


(30)

After taking the derivatives from both sides of failure criteria equation

∂F

∂σ
dσ

� �

¼
∂f

∂σ
:

∂σ

∂εp
:

∂εp

∂w
:

∂w

∂εp
:∂εp

� �

(31)
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For simplicity we take ∂F
∂σ

¼ a, ∂f
∂σ

¼ a

a:dσ ¼ a:Η:

1

σ

� �

σ:dεp (32)

dλ is calculated by omitting dσ between Eqs. (30) and (31) and substituting dεp from Eq. (27).

By substituting dλ in Eq. (27), the final form of material matrix is obtained as [43]

Dep ¼ De �Dp (33)

where Dp ¼
Da aTD

a
σ
ΗσT þ aTDa

(34)

5. XFEM: Introduction and formulation for cracks and discontinuities

in FGM

XFEM or the extended finite element method is a numerical technique which allows crack

modeling irrespective of the mesh, and eliminates the cumbersome process of remeshing in

problems involving change in the crack geometry like crack growth. XFEM models a crack by

enriching the standard finite element approximation with some functions, which are obtained

from the theoretical background of the problem. Moving discontinuities are tracked by the level

set method. XFEM is a numerical method, based on the finite element method (FEM) that is

especially designed for treating discontinuities. The formulation is done as discussed in [35, 44].

The solution of FGM differs from homogeneous materials only in the spatial gradation in the

material properties. After calculating the values of stress and strain, the SIF is determined.

6. Numerical examples and discussion

The FGM plate considered in all the numerical simulations has 100% aluminum alloy on one

side and 100% alumina on the other side. The volume fraction of alumina changes from 0% on

one side to 100% on the other side so as to produce an FGM. The equivalent composite is

equivalent to the FGM in the sense that both the FGM and the composite plate contain the

same amount of aluminum alloy and alumina. The fatigue crack growth analysis of alloy/

ceramic FGMs, aluminum alloy and equivalent composite is done by XFEM in the presence of

multiple cracks, holes and inclusions under mode-I mechanical load and their fatigue life are

compared. The constituents of the FGM plate are aluminum alloy and alumina. A major crack

of large initial length is assumed to exist at the edge of the plate. The major crack is assumed to

be in the direction of material gradation. The fatigue crack growth analyses of the FGM, the

equivalent composite and the aluminum alloy plates have been carried out in the presence of

minor cracks, holes and inclusions till the final failure of the plate under mode-I mechanical

load. The effect of these small defects on the fatigue life as well as on the crack path has been

investigated in detail.
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6.1. Example 1

A rectangular FGM plate of length (L) 100 mm. and height (D) 200 mm. with 100% aluminum

alloy on left side and 100% ceramic (alumina) on right side is considered. Property variation is

taken in x-direction, where x = 0 to x = 100 mm. The plate with a major edge crack of length

a = 20 mm is analyzed under plane strain condition in the presence of multiple discontinuities.

In all simulations, the plate dimensions, initial crack length and material properties are taken

to be same. The properties of FGM, composites and aluminum alloy are already described in

Table 1. The material properties of the inclusions are taken as Ε ¼ 20 GPa and ν ¼ 0:2. The

plate domain is discretized using uniformly distributed 117 nodes in x-direction and 235 nodes

in y-direction. The fatigue crack growth analysis is performed by taking a crack increment of

Δa ¼ a
10= 2 mm. A cyclic tensile load varying from σmax ¼ 70 MPa to σmin ¼ 0 MPa is applied in

all the simulations. The geometric discontinuities like holes, inclusions and minor cracks are

added in the plate in addition to the major edge or center crack to analyze their effect on the

fatigue life of the material. The fatigue life of the FGM, equivalent composite and aluminum

alloy are obtained under mode-I loading, and are compared with each other.

6.2. Plate with a major edge crack under linear elastic condition

Figures 9 and 10 show a plate with a major edge crack of length a = 20 mm at the left and right

edge respectively. These plates have been analyzed under plane strain condition using a

uniform mesh of 117 by 235 nodes. The plots of the fatigue life for different materials are

shown in Figure 11. From these figures, it is seen that the equivalent composite withstands

7885 cycles before it fails while the FGM with crack on alloy side undergoes 15,561 cycles and

Figure 9. Plate with an edge crack on the alloy rich side under mode-I loading.
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pure aluminum alloy undergoes 19,145 cycles before failure. It is also observed that when a

major crack initiates from the ceramic (alumina) rich side then it fails much earlier (4872 cycles)

as compared to when the crack initiates from the aluminum alloy side.

These plots show that when a crack is present on the ceramic rich side, the life diminishes by a

considerable extent as compared to when a crack is present on the alloy rich side. The equiv-

alent composite shows the minimum life except in case when a crack is present on the ceramic

side. It is also observed that the crack follows nearly a straight path in all the materials.

6.3. Plate with a major edge crack, minor cracks, holes and inclusions under linear elastic

condition

In this case, a major crack of length a = 20 mm. is taken at the left and the right edge of the plate

(100� 200 mm) as shown in Figures 12 and 13 respectively. In addition to the major edge

crack, 36 minor cracks, 15 holes and 15 inclusions are randomly distributed in the plate. The

length of the minor cracks varies from 3.5 to 4.5 mm, and orientation varies from 0 to 60
�

randomly. The holes and inclusions have variations in their radii from 3 to 4.5 mm randomly. A

cyclic mode-I mechanical load is applied at the top edge of the plate. The plots for crack

extension with number of cycles are shown in Figure 14.

It is also observed that the crack deflects in all the materials. Moreover, it is seen that the

number of cycles to failure in case of aluminum alloy is about 18,111 cycles whereas in case of

FGM with crack on the alloy and ceramic rich sides is 14,622 cycles and 3111 cycles respec-

tively. The fatigue life of the composite plate is found to 6956 cycles. Thus, it can be stated that

Figure 10. Plate with an edge crack on the ceramic rich side under mode-I loading.
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Figure 12. Plate with an edge crack on the alloy rich side under mode-I loading.

Figure 11. A plot of crack extension with number of cycles.
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Figure 13. Plate with an edge crack on the ceramic rich side under mode-I loading.

Figure 14. A plot of crack extension with number of cycles.
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due to the presence of minor cracks, holes and inclusions, the life of the aluminum alloy is

reduced by about 5.42%, whereas the fatigue life of the FGM with crack on the alloy and

ceramic rich sides goes down by 6.03 and 36.15% respectively. The fatigue life of the equivalent

composite is reduced by 11.78%.

6.4. Example 2

A rectangular FGM plate of length (Lt) 100 mm. and height (Ht) 200 mm. with 100% copper

nickel alloy on left side and 100% ceramic (alumina) on right side is considered. Property

variation is taken in x-direction, where x varies from x = 0 to x = 100 mm. A uniform traction

of 100 MPa is applied on the top edge of the rectangular domain along y direction. Cyclic

loading is applied at top edge of the plate with a maximum value of σmax ¼ 100 MPa and

minimum value of σmin ¼ 0 MPa. A uniform mesh of size 117 � 235 nodes is used for the

analysis in each case. The values of SIFs are computed at the tip of the major crack. The

variation of SIF with crack length is plotted in each case. The material properties are taken

from Table 2 [43].

6.5. A major crack in FGM plate under elastic: Plastic loading condition

In this case, a major crack of length a ¼ 20 mm is taken at the edge of the domain

(100 � 200 mm) as shown in Figure 15. Cyclic loading is applied at the top edge of the FGM

plate, and a crack propagates due to this loading. The plots of SIF with crack length for an

crack configuration is shown in Figure 16. The failure crack length obtained for edge crack is

0.0402 m.

Material properties Values

Elastic modulus of copper nickel alloy Ealloy GPað Þ 160

Elastic modulus of alumina (ceramic) Eceramic GPað Þ 386

Elastic modulus of soft inclusion Einclusion GPað Þ 100

Elastic modulus of Hard inclusion Einclusion GPað Þ 400

Poisson’s ratio of copper nickel alloy νalloy 0.35

Poisson’s ratio of alumina (ceramic) νceramic 0.21

Poisson’s ratio of inclusion νinclusion 0.3

Poisson’s ratio of inclusion νFGM 0.23

Fracture toughness of copper nickel alloy K
alloy
IC MPa

ffiffiffiffi

m
pð Þ 79

Fracture toughness of alumina (ceramic) Kceramic
IC MPa

ffiffiffiffi

m
pð Þ 5

Paris constant C in m=cycle MPa
ffiffiffiffi

m
pð Þ�m 3 � 10�11

Paris exponent m 3

Table 2. Material property table.
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6.6. A major edge crack in FGM plate with holes, inclusions and minor cracks under

elastic-Plastic loading condition

In this case, a major crack of length a ¼ 20 mm is taken at the edge of the domain

(100 � 200 mm) is taken as shown in Figure 17. Minor cracks, holes and inclusions are

randomly distributed in the plate. All 36 minor cracks have varying length randomly from 3.5

to 4.5 mm, with varying orientation from 0 to 60�. In addition to these 15 inclusions are also

distributed in the domain randomly. The holes and inclusions have variation in their radii from

3 to 4.5 mm. A cyclic mode-I loading is applied due to which the major crack propagates. The

plots for SIF variation with crack length of edge crack is shown in Figures 18 and 19 for soft

and hard inclusions respectively. The failure crack length for edge crack is obtained 0.0384 and

0.0392 m. for soft and hard inclusions respectively.

Figure 15. FGM plate with an edge crack.
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Figure 16. Plot for variation of SIF with crack length.

Figure 17. FGM plate with an edge crack, 15 inclusions, 15 holes and 36 minor cracks.
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Figure 18. Plot for variation of SIF with crack length for soft inclusions.

Figure 19. Plot for variation of SIF with crack length for hard inclusions.
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7. Conclusions

In this chapter we have discussed the simulation of cracks in a FGM plate has been carried out in

the presence of multiple inhomogeneities by XFEM using both linear elastic as well as elastic-

plastic formulations. SIF has been calculated at the tip of the major crack using interaction integral

approach. The variation in the SIF at the tip of the major crack has been studied when multiple

inhomogeneities are present in the domain. From this study it is observed that minor cracks have

least effect in the FGM plate’s failure crack length, whereas soft inclusions have moderate effect

and holes have the most severe effect. It is found that the FGM plate’s life increases in each case

when soft inclusions are replaced by hard inclusions. Hence the presence of the hard inclusions in

the plate increases the failure crack length of the plate i.e. plate survives more.

Nomenclatures

~W : Strain energy

σ: Stress

ε: Strain

u: Deformation

C: Compliance matrix

E: Modulus of elasticity

γ: Coefficient of thermal expansion

KIC: Critical stress intensity factor (Fracture toughness)
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