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Abstract

The purpose of this chapter is to provide an introduction to Bayesian approach within
a general framework and develop a Bayesian procedure for analyzing multivariate
longitudinal data within the hidden Markov factor analysis framework.

Keywords: hidden Markov factor analysis model, Markov chain Monte Carlo
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1. Introduction

The Bayesian approach is now well recognized in the statistics literature as an attractive

approach to analyzing a wide variety of models [1], and there is rich literature on this issue.

Here, we are not going to present a full coverage on the general Bayesian theory, and readers

may refer to excellent books, for example [2, 3], for more details for this general statistical

method. This chapter provides an introduction to the Bayesian approach within a general

framework and develops a specific Bayesian procedure for analyzing multivariate longitudinal

data within the hidden Markov factor analysis framework. We begin with the basic ideas of the

Bayesian approach and then describe the model under consideration in the second section. The

following section considers Bayesian inferences including parameter estimation, model selec-

tion, and posterior density estimates. The final section demonstrates the practical value of

proposed methodology to cocaine use data to get some Bayesian results. Some technical details

are given in the Appendix.

Consider a data set Y with the probability model p Yjθð Þwhere θ is a univariate or multivariate

population parameters vector, which quantifies the uncertainty of data. In the statistical literature,
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p Yjθð Þ is called likelihood or sampling distribution and often represented as L θð Þ. From the

frequency statistics point of view, statistical inferences are carried out based on L θð Þ. In this

case, θ, though unknown, is treated as fixed. Unlike the frequency statistical inferences, the

Bayesian approach for data analysis assumes that θ is random and has a distribution π θð Þ.

This distribution, which represents the knowledge about θ, is referred to as prior distribution

or prior. When data are available, the information on θ is summarized within the posterior

distribution or posterior, a conditional distribution θ given data, i.e.,

p θjYð Þ ¼
p Yjθð Þπ θð Þ

p Yð Þ
∝ p Yjθð Þp θð Þ (1)

where p Yð Þ ¼
Ð
p Yjθð Þπ θð Þdθ is the marginal distribution of Y. The right-hand-side term in (1)

omits the factor p Yð Þ since given Y it is a known constant. In Bayes literature, p Yjθð Þp θð Þ is also

termed the unnormalized posterior. Analogous to the role of likelihood in frequency statistical

inferences, posterior is the starting point of Bayesian inferences.

Selecting proper priors for parameters is fundamental to Bayesian analysis. Basically, there are

two kinds of prior distributions, namely, the noninformative prior distributions and the infor-

mative prior distributions. Noninformative prior distributions associate with situations when

the prior distributions have no population basis. They are used when we have little prior

information on θ and desire that the prior distributions play a minimal role in the posterior

distribution distribution. Informative prior distribution represents the distribution of possible

parameter values, from which the parameter θ has been drawn. We may have prior knowl-

edge about this distribution, either from closed related data or from the subjective knowledge

of experts. A commonly used informative prior distribution in the general Bayesian approach

to statistical problems is the conjugate prior distribution, a prior ensuring that the posterior

distribution follows the same parametric form as the prior distribution [1, 3].

A potential difficulty underlying Bayesian inferences is the statistical computation when pos-

terior distribution takes on the complicated form. This is particularly true in the situation

where latent variables or other unobservable quantities are involved in the model, as discussed

in this chapter. In such cases, statistical inferences usually recur to simulation-based methods.

Among various sampling methods, Markov chains Monte Carlo methods (MCMC) provide

powerful tools for simulating observations from posterior. The key to Markov chain simulation

is to create a Markov sequence whose stationary distribution is a specified posterior p θjYð Þ.

Posterior inferences are carried out based on these simulated observations. There are many

ways of constructing these Markov chains, but all of them, including the Gibbs sampler [4, 5],

are special cases of the general framework of Metropolis et al. [6] and Hastings [7]. However,

we do not intend to pursue this issue here, and details on simulation-based methods can be

referenced to [2, 3, 8, 9].

In what follows, as an illustration, we will develop a Bayesian analysis procedure for multi-

variate data under longitudinal setting. Multivariate longitudinal or clustered data occur when

multiple items are measured repeatedly over periods of time or across occasions. Under such

setting, the primary interest is inference about the dependence of the multiple measurements

and the temporal correlation resulting from the repeated measures on the same items. But

more often, particular interest also focuses on exploring the potential heterogeneity of data and
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investigating its transition pattern over time. In these cases, hidden Markov latent variable

model (HMLVM) [10–13] provides a feasible and unified framework to address these issues.

HMLVM assumes that the overall model constitutes the observed process and the underlying

hidden state process. The state process, as the convention in the classic HMM (see for example,

[14–17]), is an univariate discrete process, which follows a first-order Markov chain, while the

observed process, conditional on the state sequence, is an independent process with emission

distribution specified via LVMs [18]. Hence, in this regard, HMLVM provides a unified way of

describing the correlation of multiple items, temporal dependence, and heterogeneity among

the data simultaneously. However, the current existing developments cited beforehand focus

on the maximum likelihood analysis in which statistical inferences heavily depend on the

asymptotic properties. As an illustration of Bayesian inferences on practical problems, in this

chapter, we develop a Bayesian procedure to analyze cocaine use data within the hidden

Markov factor analysis model framework. Compared to ML, a basic nice feature of a Bayesian

approach is its flexibility to utilize useful prior information for achieving better results. Addi-

tionally, simulation-based Bayesian methods depend less on asymptotic theory and hence have

the potential to produce more reliable results even with small samples.

2. Model description

2.1. Hidden Markov factor analysis model

Consider a set of multivariate longitudinal observations formed by p-dimensional observed

vectors yit ¼ yit1;…; yitp

� �

⊺

, which are recorded on p items over periods of length T: t ¼ 1,⋯, T

across N subjects: i ¼ 1,⋯, N. In the field of multivariate analysis, interest mainly focuses on

exploring item dependence since measurements may be highly correlated arising from the

multicollinearity problem. But more often, interest also concentrates on the heterogeneity

resulting from the situation where the population of yit constitutes more than one component.

This is particularly true in the situation where the data illustrate extreme behaviors such as

multimodal and/or skewed characteristics. In these cases, a finite mixture factor analysis model

(FMFAM) can provide a powerful tool to address these issues. Typically, FMFAM assumes that

conditioning on an univariate discrete value state variable zit and an m-dimensional (m < p)

continuous latent factor vector ωit, yit are independent and distributed with a p-dimensional

multivariate normal distribution, and meanwhile, given zit, ωit also follows an m-dimensional

normal distribution, that is,

yitjωit; zit ¼ r
� �

� N p μr þΛrωit; Ψεr

� �

ωitjzit ¼ rð Þ � N m 0;Φrð Þ

�

(2)

where μr ¼ μr1;…;μrp

� �

⊺

is a p-dimensional intercept vector, which represents the baseline

level of yit, Λr ¼ Λ
⊺

r1;…;Λ
⊺

rp

� �

⊺

is a p�m factor loading matrix, Ψer ¼ diag Ψ ekr1;⋯;Ψ ekrp

� �

is

a p� p diagonal matrix with the jth diagonal element Ψ ekrj > 0, and Φr is an m�m positive

definite matrix.
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Formulation given in (2) has two basic features: one is to characterize heterogeneity of popu-

lation of yit at the occasion level and the other is to establish the dependence among the

multiple measurements. The heterogeneous population is specified via state-specific parame-

ters contained in the model while the dependence between different measurements is identi-

fied via sharing the common factors in the manner of liner combinations. In particular, apart

from explaining the idiosyncratic part of measurements, latent factors also characterize the

association between any two measurements. As a matter of fact, one can show that the

correlation coefficient between yitj and yitk at state zit is given by

Corr yitj; yitkjzit ¼ r
� �

¼

P

m

ℓ¼1

P

m

h¼1

λrjℓλrkhΦrlh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

m

ℓ¼1

P

m

h¼1

λrjℓλrjhΦrℓh þ Ψ erj

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

m

ℓ¼1

P

m

h¼1

λrkℓλrkhΦrℓh þ Ψ erk

s (3)

in which λrjk is the j; kð Þth element of Λr and Φr,hk is the h; kð Þth element in Φ , respectively. The

strength of correlation is identified by the factor loadings and covariance of factors together. In

the case when ωit degenerates to zero (i.e., Φ ¼ 0 ) or Λ ¼ 0, the association among items

disappears and model (2) reduces to p-independent mean-variance models within cluster r.

Hence, latent factors play a dominant role in characterizing association of multiple items. Note

that, in actual applications, latent factors, though unobservable, often have their own physical

interpretations. In psychology, for example, latent factors are often used to identify concepts

such as treatment, temper, and anxiety, which are important within the framework of theoret-

ical models. The measurements are just proxies for these unobserved concepts of interest. We

will provide further interpretations in the real example.

The primary reason for collecting information on multiple occasions for each subject is that it

allows investigation of change and/or temporal dependence over time within the subject.

There exist various constructs for characterizing dynamic characteristics. A commonly used

method is to construct proper dynamic structures for latent factors and establish dynamic

factor models, see for example, [19–21]. An alternative choice we adopt here is specifying the

joint distribution for state sequences. Following the common routine (see, for example,

[22, 23]), we assume that each individual state sequence zi ¼ zi1;⋯; ziTð Þ satisfies the following

first-order hidden Markov model

p zið Þ ¼ p zi1ð Þ
Y

T

t¼2

p zitjzi, t�1ð Þ (4)

where p zi1ð Þ and p zitjzi, t�1ð Þ are, respectively, the initial distribution and transition probability

given by

P zi1 ¼ rjð Þ ¼ δr, P zit ¼ sjzi, t�1 ¼ rð Þ ¼ Qrs r; s ¼ 1;⋯; Sð Þ (5)

where S is a positive integer, δ ¼ δ1;⋯; δSð Þ is an S� 1 vector satisfying δr ≥ 0 and
PS

r¼1 δr ¼ 1:0,

and Q ¼ Qrsð Þ is an S� S transition matrix with the r; sð Þth entry being Qrs, that is, Qrs ≥ 0 and
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PS
s¼1 Qrs ¼ 1:0 for r ¼ 1,⋯, S. Modeling state sequences into (5) allows us to explore the

transition pattern of individuals across occasions exactly. For example, in the cocaine use data

analysis, zit is often identified with the latent state of patient i at time t, then Qrs specifies how

individual i being in state r transfers to state s on two successive occasions. Surely, we can relax

the time-homogeneous assumption of transition probabilities by including relevant covariates

to interpret the inhomogeneous transition behavior among observation data (see, for example,

[12, 13, 16]) but at the expense of computational burden.

The current model defined in (2)–(5) provides a comprehensive framework for modeling the

multivariate longitudinal data with the latent variables. It accommodates the dynamic behav-

ior of observed sequences, heterogeneity of observed data at the occasion level, and depen-

dence among the multiple items simultaneously. In particular, it makes sense to measure

effects of latent factors on the manifest variables quantitatively.

Let Y be the collection of all observations, and Ω be the set of corresponding factors. Denote

Z ¼ zit : 1 ≤ i ≤N; 1 ≤ t ≤Tf g be set of state variables. It follows from Eqs. (2), (4) and (5) that the

joint sampling distribution of Y,Ω , and Z is given by

p Y;Ω;Zjθ; δ;Qð Þ ¼
Y

N

i¼1

p yi1;ωitjzi1;θ
� �

p zi1jδð Þ
Y

T

t¼2

p yit;ωitjzit;θ
� �

p zitjzi, t�1;Qð Þ

∝
Y

N

i¼1

Y

T

t¼1

1

Ψezit













1=2
exp �

1

2
trΨezit yit � μzit �Λ

⊺
zit
ωit

� �⊗ 2
� �

 

�
1

Φzit













1=2
exp �

1

2
trΦ�1

zit
ω⊗ 2

it

� �

!

�
Y

N

i¼1

Y

T

t¼1

Y

S

r¼1

δ
I zi1¼rf g
r

Y

S

s¼1

Q
I zi, t�1¼r;zit¼sf g
rs

 !

(6)

where θ is formed by free parameters in μr,Λr,Ψr, and Φr. Here, we write a⊗ 2 ¼ aa⊺ and

denote I Að Þ the indicator function of a set A. The observed data likelihood is then achieved by

taking integration of p Y;Ω;Zjθ; δ;Qð Þ over Ω and Z, which involves high-dimensional inte-

grations.

3. Posterior inferences

3.1. Prior specifications

Let μ ¼ μr

� �

, Λ ¼ Λrf g, Ψe ¼ Ψerf g, and Φ ¼ Φkrf g. For the Bayesian analysis, we need to

assign priors to the unknown parameters involved for completing model specification. Since θ ,

δ, and Q are involved in different submodels, it is natural to assume that θ, δ , and Q are

mutually independent and the components contained in θ are alsomutually independent, that is,

p θ; δ;Qð Þ ¼ p μð Þp Λ;Ψeð Þp Φð Þp δð Þp Qð Þ: (7)
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For the convenience of conjugacy, we assume that the parameters are drawn from the follow-

ing commonly used conjugate types prior distributions (see for example [24]).

p μð Þ ¼
Y

S

r¼1

p μr

� �

¼
D
Y

S

r¼1

N p μ0r;Σ0r

� �

,Φ �
Y

S

r¼1

p Φrð Þ¼
D
Y

S

r¼1

W�1
m r0r;R

�1
0r

� �

,

p Λ;Ψeð Þ ¼
Y

S

r¼1

p ΛrjΨerð Þ � p Ψerð Þ ¼
D
Y

S

r¼1

Y

p

j¼1

N m Λ0rj;ψ
erjHe0rj

� �

� Ga�1 αe0rj; β
e0rj

� �

,

δ ∣δ0 � DirS γ0;…; γ0

� �

, p Qð Þ ¼
Y

S

r¼1

p Qrð Þ¼
D
Y

S

r¼1

DirS ν0;⋯; ν0ð Þ

(8)

where ‘Ga�1 a; bð Þ’ denotes the inverse Gamma distributions with shape a > 0 and scale b > 0

and ‘W�1
m2

r0r;R
�1
0r

� �

’ represents the q-dimensional inverse Wishart distribution with r0r degrees

of freedom and m2 �m2ð Þ scale matrix R0r; Qr is the rth row vector of Q. The scalars αe0rj, β
e0rj,

r0r, γ0, ν0, the vectors μ0r, Λ0rj, and the matrices R0r and He0rj are assumed to be known. Thus,

standard conjugate priors were specified for all parametric components in the model. The

conjugate type prior distributions are sufficiently flexible in most applications, and for situa-

tions with a reasonable amount of data available, the hyperparameters scarcely affect the

analysis. It should be noted that although Eq. (8) allows different hyperparameters for differ-

ent latent states, in practice, we choose identical priors for all s. Details of hyperparameter

choices are discussed later when we present the empirical results.

3.2. Gibbs sampling scheme and posterior analysis

Combining the sampling distribution for the observable yit’s and the prior distribution speci-

fied in (8) yields the joint posterior distribution of θ; δ;Qf g given by

p θ; δ;QjYð Þ∝ p Yjθ; δ;Qð Þp θð Þp δð Þp Qð Þ (9)

where we ignore the normalization constant p Yð Þ. However, due to the latent factors and state

variables present, the computation of p Yjθ; δ;Qð Þ is intractable since it involves high-dimen-

sional integrals. Consequently, no closed form can be available for the posterior p θ, δ,QjYð Þ.

This problem can be addressed via the data augmentation idea in Tanner and Wong [25]. Data

augmentation technique treats the latent quantities Ω;Zf g as the hypothetical missing data

and augments them with the observed data to form complete data. The posterior analysis is

now carried out based on the joint distribution p Ω;Z;θ; δ;QjYð Þ, which is proportional to

p Y;Ω;Zjθ; δ;Qð Þp θ; δ;Qð Þ, the product of likelihood of complete data and priors. Compared

to the intractable observed data likelihood, the complete data likelihood has nice hierarchical

structure based on conditional independent assumptions in (2) and (4) and hence is relatively

easy to analyze. However, p Ω;Z;θ; δ;QjYð Þ is still not in closed form and is thus difficult to

deal with analytically. In this regard, simulation-based methods can be used to generate

observations to carry out posterior analysis. In view of the multiple components involved, the

usual independent sampling methods are not feasible. Note that, on the basis of complete data,
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the full conditional distributions of Ω,Z,θ, δ, and Q have closed forms. This provides a solid

foundation for Markov chain Monte Carlo methods. Markov chain Monte Carlo sampling does

not draw observations from p Ω;Z;θ; δ;QjYð Þ directly. On the contrary, it generates observations

from the full conditionals of each component alternatively, thus forming the dependent sample,

i.e., Markov chains. Specifically, as pointed out in the introduction, we use Gibbs sampler [4, 5] to

draw observations from this target distribution. Obviously, the sampling scheme in the Gibbs

sampler includes two types of moves: updating the components involved in the factor analysis

model and updating the components related to the hiddenMarkovmodel. We propose using the

following Gibbs sampler which iteratively simulates from the conditional distributions, where

variables are removed from the conditioning set either by explicit integration or by conditional

independence. The steps involved in the Gibbs sampler are

Step a: Generate Z from p Zjθ; δ;Q;Ω;Yð Þ

Step b: Generate Ω from p Ω jZ;θ;Yð Þ

Step c: Generate μ;Λ;Ψef g from p μ;Λ;ΨejZ;Ω;Yð Þ

Step d: Generate Φ from p Φ jZ;Ωð Þ

Step e: Generate δ from p δ jZð Þ

Step f: Generate Q from p QjZð Þ

Under mild conditions and similar to [4] (see also, for example, [26]), one can show that for

sufficiently large b, say B0, the joint distribution of Ω
bð Þ

;Z bð Þ
;θ bð Þ

; δ bð Þ
;Q bð Þ

n o
converges at an

exponential rate to the desired posterior distribution p Ω;Z;θ; δ;QjYð Þ. Hence, p Ω;Z;θ; δ;QjYð Þ

can be approximated by the empirical distribution of Ω
bð Þ

;Z bð Þ
;θ bð Þ

; δ bð Þ
;Q bð Þ

n o
: b ¼ B0þ

1,⋯, B0 þ Bg where B is chosen to give sufficient precision to the empirical distribution. The

convergence of the Gibbs sampler can be monitored by the ‘estimated potential scale reduction

(EPSR)’ values as suggested by Gelman and Rubin [27] or by plotting the traces of estimates

against iterations under different starting values.

Simulated observations obtained from the posterior can be used for statistical inferences via

straightforward analysis procedures. For brevity, let θ bð Þ
; δ bð Þ

;Q bð Þ
;Ω

bð Þ
;Z bð Þ

n o
be the random

observations generated by the Gibbs sampler from p θ; δ;Q;Ω;ZjYð Þ. The joint Bayesian esti-

mate of θ and Ω can be obtained easily via the corresponding sample means of the generated

observations as follows:

bθ ¼ B� 1ð Þ�1
XB

b¼1

θ bð Þ,cΩ ¼ B� 1ð Þ�1
XB

b¼1

Ω
bð Þ, bZ ¼ B� 1ð Þ�1

XB

b¼1

Z bð Þ
: (10)

Clearly, these Bayesian estimates are consistent estimates of the corresponding posterior

means, see [26]. The consistent estimates of covariance matrix of estimates can be obtained as

follows:
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dCovðθ ∣YÞ ¼ B� 1ð Þ�1
XB

b¼1

θ
bð Þ � bθ

� �
θ

bð Þ � bθ
� �⊺

(11)

C dovðΩ ∣YÞ ¼ B� 1ð Þ�1
XB

b¼1

Ω
bð Þ � bΩ

� �
Ω

bð Þ �cΩ
� �⊺

(12)

Hence, the standard error estimates can be obtained conveniently by the Gibbs sampler

algorithm. Other statistical inferences about θ and Ω such as deriving the confidence intervals

and statistics for hypothesis testing can be achieved based on the simulative observations as

well (see, for example, [28, 29]).

One important statistical inference beyond estimation is on testing of various hypotheses about

the model. In the field of hidden Markov modeling, determining the proper number of states

may be the first step towards data analysis. Too many states may overfit the observations,

meaning that it can fit the training data accurately but may not be a good model for underlying

data-generating process. On the other hand, too few states may not be flexible enough to

approximate the underlying model. In the context of Bayesian model selection, Bayes factor

(BF, [30]) is a popular choice for model comparison. BF is defined as the ratio of the marginal

likelihoods of data under two competing models. However, the computation of BF is difficult

since it often involves the high-dimensional integrations. It has also been shown that BF is

sensitive to the choice of priors and will become infeasible when improper priors are used. A

simple and more convenient alternative is the Lν-measures [31–34] which is based on the

posterior predictive density. It has been shown [34] that this approach is conceptually and

computationally simple and is useful in model checking for wide varieties of complicated

situations. Moreover, the required computation is a by-product of the common Bayesian

simulation procedures such as the Gibbs sampler or its related algorithms. Specifically, let

Yrep denotes future values of Y in a replicate experiment, that is, Yrep has the same sampling

density as that of Y. The posterior predictive distribution p YrepjYð Þ is defined as

p YrepjYð Þ ¼

ð
p Yrepjθ; δ;Qð Þp θ; δ;QjYð ÞdθdδdQ (13)

Naturally, if the posited model under consideration is the true model in the sense that from

which the data are generated, then Yrep would behave like data Y and its squared biases and

covariances should be small. With this notion in mind, Ibrahim, Chen, and Sinha [34] proposed

an L statistics to assess the fitness of posited models to the data by weighting the squared

biases and covariance, which can be interpreted as a trade-off between them. Here, we extend

it to the multivariate longitudinal setting. Let Yrep ¼ y
rep⊺
1 ;⋯; y

rep⊺
N

� �⊺
be a collection set of

future responses in our proposal. For some 0 ≤ ν < 1, we consider the following multivariate

version of Lν-measure:

Lν Yð Þ ¼
XN

i¼1

tr Cov y
rep
i jY

� �� 

þ ν

XN

i¼1

tr E y
rep
i jY

� �
� yi

� �
E y

rep
i jY

� �
� yi

� �⊺� 

(14)
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where the expectation is taken with respect to the posterior predictive distribution. Clearly,

small values of the Lν-measure indicate that the model gives predictions close to the observed

values, and the variability in the predictions is low as well. Hence, the model with the smallest

Lν-measure is selected from a collection of competing models. It has been shown that Lν-

measure with ν ¼ 0:5 has nice theoretical properties [34]. Thus, this value of ν will be used in

our empirical illustrations.

4. Cocaine use data analysis

In this section, a small portion of cocaine use data is analyzed to illustrate the practical value of

the proposed methodology. The original data are collected from 321 cocaine use patients who

were admitted in 1988–1989 to the West Los Angeles Veterans Affairs Medical Center. The

whole data constitute 68 measurements of 17 items, which were recorded at four time points:

at baseline, 1 year after the treatment, 2 years after the treatment, and 12 years after the

treatment in 2002–2003. These measurements cover the information on the cocaine use, treat-

ment received, psychological problems, social status, employments, and so on. As an illustra-

tion, three variables are selected to conduct data analysis: ‘y1 : days of cocaine use per month at

intake (CC)’, ‘y2 : times per month in formal treatment (FT)’, and ‘y3 : months in formal

treatment (MFT)’, which, respectively, represent the severity of cocaine use and the levels of

treatment received by a patient. Since these variables were measured in 0–120 points scale, to

unify the scales, we take logarithms and standardize them. Among them, some measurements

are missing. The missing proportion is about 8:4%. For brevity, we assume that the missing is

missing at random [35]. A distinct characteristic underlying data are nonnormal and heavy

tailed. Figure 1 gives the plots of histograms and the posterior predictive density estimates (see

below) of logarithms of CC, FT, and MFT (with missing data removed) on four occasions. The

histograms illustrate that the distributions of selected variables are deviated from normality in

terms of multimodality and skewness. The skewness and kurtosis of CC on four occasions are

�1:631; 5:031f g, �0:847; 3:354f g, 0:328; 1:476f g, and �0:473; 2:467f g, respectively. Data set also

demonstrates dynamic characteristics. The distribution of CC, for instance, is skewed to the left

at baseline and moves to the right gradually on the following two occasions and becomes

right-skewed eventually. This implies that a single factor analysis model may not be appropri-

ate to fit the data at each time point.

In this analysis, one of the objectives is to explore the effects of latent factors on the observed

variables and assess the dependence among latent factors. Based on the nature of the problem

under consideration, it is natural to group the single variable ‘CC’ to reflect one latent factor

‘cocaine use’ (η) and to group ‘FT’ and ‘MFT’ to represent another latent factor ‘treatment’ (ξ).

Let yit ¼ yit1; yit2; yit3
� �

⊺
and ωit ¼ ηit; ξit

� �

⊺
. To be convenient for interpretation and computa-

tion, Φr and Λr are restricted to be invariant across states but leave the baseline level μr

varying with r. Further, the following non-overlapped structure for factor loading matrix is

considered
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Λ
⊺
¼

1∗ 0∗ 0∗

0∗ 1∗ Λ32

� �

(15)

where parameters with an asterisk are treated as fixed for identification. Note that fixing

Λ11 ¼ 1 indicates that η is identified with CC. This is similar to that in Λ22. Hence, in this case,

Φ12 in Φ measures the magnitude of dependence of ξ on η.

Data set is fitted to the proposed models with 10 different transition models: S ¼ 1,⋯, 10.

Although these state spaces are in nested forms, the corresponding models are not, since one

cannot be reduced to another by constraining parameters in the interior of parameter space.

This indicates that chi-square distribution may not be suitable for the classic likelihood ratio

test statistic. We use L-measure to implement model selection. Obviously, if S1 is taken, then

the proposed model reduces to common factor analysis model (CFA, [18]).

The following inputs are taken for the super-parameters involved in the prior distributions (8):

for r ¼ 1,⋯, S, μ0rj ¼ min yitj

n o

þ r=S, Σ0r ¼ Syy=S, where Syy is the sample covariance matrix

of data. The entries in Λ0 are set to be zeros, r0 ¼ 10:0, R�1
0 ¼ 7:0� I2, which leads to the mean

of Φ equal to I2, He0 ¼ I3, αe0j ¼ 9:0, β
e0j ¼ 8:0, ν0 ¼ γ0 ¼ 0:1. Note that these values are the

standard inputs in the latent variable analysis (see [24]). We also took other values for these

inputs and found that the resulting estimates are scarcely affected.

Figure 1. Plots of histograms and posterior predictive density estimates of ‘CC’, ‘FT’ and ‘MFT’ under FA model and

hidden Markov CFA model with seven states in the cocaine use data analysis: the dashed lines denote CFA and the solid

lines represent the hidden Markov FA.
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We implement the proposed algorithm given in Section 3 to conduct Bayesian analysis. Let Yobs

be the collection of observed data and Ymis be the set of missing data. Due to the missing data,

we need to draw Ymis from p YmisjΩ;Z;θ;Yobsð Þ in MCMC sampling. This can be implemented

easily since conditioning on Ω, Z, and θ, p YmisjΩ;Z;θ;Yobsð Þ, independent of Yobs, has the

normal distribution. Hence, drawing Ymis is rather straightforward and fast. To obtain some

idea about the number of the Gibbs sampler iterations in getting convergence, we conducted a

few test runs as a pilot study and found that in all these runs, the Gibbs sampler converged in

about 1000–2000 iterations, where the EPSR values [27] are less than 1.2. So, for all cases under

consideration, we collect 3000 random observations after initial 2000 iterations being removed

for posterior analysis.

We calculate the values of L0:5 under each fitting. For computation, we use simulation-based

method by drawing predictive values Y
rep
obs from p Y

rep
obsjYobs

� �

, where Y
rep
obs is the hypothetical

replication of Yobs. Note that p Y
rep
obsjYobs

� �

¼
Ð

p Y
rep
obsjΩ;Z;θ

� �

p Ω;Z;θ jYobsð Þ dΩdZdθ . Hence,

drawing Y
rep
obs is rather easy when Ω,Z, and θ are available. Given that we haveM simulations

from the posterior of Ω,Z,θ via MCMC sampling discussed before, we just draw one Y
rep
obs

from p Y
rep
obsjΩ;Z;θ

� �

for each Ω,Z, and θ and obtain M simulations in the end for Y
rep
obs. Based

on these simulated observations, Lν measures can be estimated consistently via sample means.

We draw 3000 observations after convergence of MCMC algorithm for calculating L0:5 and the

results are reported in Table 1.

Examination of Table 1 indicates that the proposed model with six to eight latent states seems

to give better fits to the data. Furthermore, we calculate the posterior predictive density

estimates of ytj t ¼ 1;⋯; 4; j ¼ 1;⋯; 3ð Þ under one state and seven states, respectively (see

Figure 1). It can be seen clearly that our proposed method is successful in capturing the

skewness and modes of data while factor analysis model fails. For the computation details,

we choose 60–100 equally spaced grids in the interval min yobs, itj

n o

� 1:0;max yobs, itj

n o

þ 1:0
h i

and collect 3000 simulated observations from the Gibbs sampler at each point after removing

initial 2000 iteration as burn-ins.

Table 2 presents the summary of Bayesian estimates of unknown parameters and their stan-

dard errors using the formula given in (11) with S ¼ 1 (denoted by FA) and S ¼ 7 (denoted by

HMFA). For comparison, maximum likelihood estimates of unknown parameters with their

standard deviations under HMFA are also presented in Table 2. The maximum likelihood

Model L0:5 Model L0:5

S ¼ 1 2322.447 S ¼ 6 590.448

S ¼ 2 2107.514 S ¼ 7 572.172

S ¼ 3 1030.264 S ¼ 8 597.843

S ¼ 4 941.230 S ¼ 9 932.763

S ¼ 5 839.726 S ¼ 10 1030.264

Table 1. Summary of L0:5 under competing models in the analysis of cocaine use data.
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analysis is conducted via MCECM algorithm [36] and the standard error estimates are calcu-

lated via Louis formula [37].

Based on Table 2, we can find the following facts: First, three estimates of Λ32 give the positive

effects of latent factor ξ on the ‘MFT’. This is not surprising since ξ is related to the treatment

level of a patient received. But there are obvious differences in magnitudes among the three

methods. For FA and HMFA, the former gives bΛ32 ¼ 0:001 associated with standard deviation

0.014, while the latter gives bΛ32 ¼ 0:752 with standard deviation 0.045. This reflects that the

heterogeneity of data affects the estimates bΛ32 seriously. Compared to the previous two

methods, ML method produces that bΛ32 ¼ 0:196 with SD = 0.029, which are in between them.

Second, the estimates of variance parameters Ψej under S ¼ 1 are larger than those under

S ¼ 7. This indicates that factor analysis model accommodates heavy tails of data at the

expense of variance inflation. Further investigations on the estimates of Φjj under FA and

HMFA also reveal the same phenomenon as that of Ψej. However, we observe that the ML

estimate of Ψe3, the unique variance corresponding to the third item, is equal to 0.008 with

SD = NAN, an illogical number, which is very close to an improper Heywood case. As pointed

out by Lee [18], Heywood cases in the ML estimation can be avoided by imposing an inequal-

ity constraint on Ψe3 with a penalty function. In the Bayesian approach, the conjugate prior

distribution ofΨ�1
e3 specifiedΨe3 in a region of positive values and hence has a similar effect as

adding a penalty function. Hence, no Heywood cases are found in the Bayesian solution

because of the penalty function induced by the prior distribution on Ψ
�1
e3 . Third, three esti-

mates give the negative correlation between η and ξ, which is consistent with the fact that the

improvement of treatment will decrease the intensity of cocaine use, thus leading to a decrease

of cocaine use in days. ML estimates for Φjk are very close to those under HMFA. However, the

estimate of Φ12 under S ¼ 1 is �0.018, which is quite different from �0:182 for S ¼ 7. Further-

more, the coefficients of correlation of ξ and η under S ¼ 1 and S ¼ 7 are �0.0204 and �0.6612,

respectively. The former suggests that ξ and η are approximately independent while the latter

implies stronger dependence between them.

FA ML HMFA

Para. Est. SD Est. SD Est. SD

Λ32 0.001 0.014 0.196 0.029 0.752 0.045

Ψε1 1.443 0.315 0.559 0.297 0.432 0.049

Ψε2 0.439 0.056 0.204 0.039 0.339 0.034

Ψε3 0.305 0.030 0.008 NAN 0.025 0.001

Φ11 0.770 0.315 0.510 0.132 0.346 0.049

Φ12 �0.018 0.018 �0.053 0.041 �0.182 0.052

Φ22 1.007 0.080 0.312 0.053 0.219 0.033

Table 2. Summary statistics for Bayesian and ML estimates in the cocaine use data analysis.
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Moreover, we computed the posterior probabilities P zt ¼ rjYobsð Þ for r ¼ 1,⋯, 7 and t ¼ 1,⋯, 4

under S ¼ 7 based on 10,000 simulated observations drawn from p ZjYobsð Þ and found that the

transition path corresponding to the maximum posterior probability is 7 ! 1 ! 1 ! 1. This

implies that latent state of the patient being in is extremely serious at baseline and becomes

moderate in the subsequent treatments. This also reflects a positive effect of intervention on the

patient’s latent state. Note that unlike the common Viterbi algorithm in exploring the optimal

transition path of states in ML analysis, calculating posterior probability P zt ¼ rjYobsð Þ within

Bayesian framework is a by-product of the estimation procedure. This voids the complex

computation of marginal likelihood of the observed data and hence is very fast.

5. Discussion

This chapter reviews Bayesian inferences within a general framework and proposes a Bayesian

procedure for analyzing hidden Markov factor analysis model under multivariate longitudinal

setting. Compared to ML method, the pragmatic advantage of Bayesian framework is its

flexibility and generality for coping with very complex problems. When good prior informa-

tion can be available, results obtained from Bayesian method are more reliable and accurate

than that under ML. With increased access to computation advances in simulation-based

approaches, in particular the MCMC methodology, Bayesian inferences provide enormous

scope for realistic statistical modeling.

Although we concentrate our attention on applications of the hidden Markov factor analysis

model, the methodology developed in this chapter can be extended to the case where the LVM

is nonlinear. Another possible extension is to consider a dynamic LVM, wherein model param-

eters vary over time. These extensions will raise theoretical and computational challenges and

certainly require further investigation.
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A. Appendix. Full conditionals

(a) p Zjθ; δ;Q;Ω;Yð Þ

Let ωi denote the sequence of latent factors across T occasions for individual i. To draw state

variables Z from p Zjδ;Q;θ;Ω;Yð Þ, we first notice that
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p Zjθ;Ω;Yð Þ ¼
Y

N

i¼1

p zijωi; δ;Q;θ; yi
� �

(16)

Hence, drawing Z can be accomplished via single-component method by drawing zi indepen-

dently from p zijωi; δ;Q;θ; yi
� �

. Furthermore, notice that the sequences yi;ωi; zi
� �

are still the

one-order Markov sequences. Hence, we can simulate zi through a well-known forward

filtering-backward sampling algorithm (see, for example, [38]). For notation clarity, we sup-

press θ , δ , and Q in the following derivations.

Forward filtering-backward sampling (FFBS) consists of first forward filtering (FF) and then

backward sampling (BS). The forward filtering step recursively updates

αi, t∣t ¼ p zitjωi,1:t; yi,1:t

� �

, t ¼ 1,…, T: (17)

Here yi,1:t represents the set of observations of subject i up to time t and so are ωi,1:t and zi,1:t.

The backward sampling is to draw zi from the joint distribution of the states given the data

using

p zi,1:T jωi,1:T ; yi,1:T

� �

¼ p ziT jωi,1:T ; yi,1:T

� �

… p zi1jzi,2:T ;ωi,1:T ; yi,1:T

� �

: (18)

That is, we first draw the last state given all the data and then work backwards in time

drawing each state conditional on all the subsequent ones.

To implement forward filtering, let

αit rð Þ ¼ P yi,1:t;ωi,1:t; zit ¼ r
� �

, t ¼ 1,⋯, T (19)

Obviously, αi1 rð Þ ¼ δrp yi1;ωi1jzi1 ¼ r
� �

. Moreover, it can be shown that

αit rð Þ ¼
X

S

s¼1

αit�1 sð Þqsr

 !

p yit;ωitjzit ¼ r
� �

, t ¼ 2,⋯, T (20)

The outputs αitf gTt¼1 from recursive Eq. (20) can be used to calculate the posterior probability

αi, t∣t rð Þ ¼ P zit ¼ rjωi,1:t; yi,1:t

� �

¼
αit rð Þ

P

S

s¼1

αit sð Þ

(21)

which leads to the forward filtering (FF) iteration.

The backward sampling step depends on the observation that
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p zitjzi, tþ1:T ;ωi,1:T ; yi,1:T

� �
∝ p zit; zi, tþ1:T ;ωi,1:T ; yi,1:T

� �

¼ p zit;ωi,1:t; yi,1:t

� �
p zi, tþ1:T ;ωi, tþ1:T ; yi, tþ1:T jzit;ωi,1:t; yi,1:t

� �

¼ p zit;ωi,1:t; yi,1:t

� �
p zi, tþ1:T jzit;ωi,1:t; yi,1:t

� �
p ωi, tþ1:T ; yi, tþ1:T jzi, tþ1:T ; zit;ωi,1:t; yi,1:t

� �

¼ p zit;ωi,1:t; yi,1:t

� �
p zi, tþ1:T jzit;ð Þp ωi, tþ1:T ; yi, tþ1:T jzi, tþ1:T

� �

(22)

The last equation holds since given zit, yi, t:T ;ωi, t:T ; zi, tþ1:T

n o
does not depend on the previous

values due to the Markov Chain characteristics of yit;ωit; zit
� �

. This leads to

P zit ¼ rjzi, tþ1:T ; yi,1:T ;ωi,1:T ;

� �
¼

αi, t∣t rð Þqrzi, tþ1

PS

s¼1

αi, t∣t sð Þqszi, tþ1

t ¼ T � 1,⋯, 1: (23)

Hence, FFBS algorithm for drawing zi is implemented by

Algorithm:

i. running the recursion αit and stored the conditional probabilities αi, t∣t for t ¼ 1,…, T;

ii. sampling ziT from the filtered conditional probability αi,T∣T ;

iii. for t ¼ T � 1,⋯, 1, sampling zit from the conditional probability

P zit ¼ rjωi,1:T ; yi,1:T ; zi, tþ1:T

� �
: (24)

(b) p Ω jZ;θ;Yð Þ

To draw Ω, we first note that

p Ω jZ;θ;Yð Þ ¼
YN

i¼1

YT

t¼1

p ωitjzit;θ; yit
� �

(25)

in which

p ωitjzit;θ; yit
� �

∝ exp �
1

2
yit � μr �Λrωit

� �⊺
Ψ

�1
er yit � μkr �Λrωit

� �
�
1

2
ω

⊺

itΦ
�1
r ωit

��
(26)

with r ¼ zit. Hence, similar to that in drawing Z, updating Ω can be achieved by drawing ωit

independently from p ωitjzit;θ; yit
� �

for i ¼ 1,⋯, N and t ¼ 1,⋯, T. It can be shown that

p ωitjzit ¼ r;θ; yit
� �

¼
D
N m bm it;

bΣ r

� �
: (27)
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in which

bm it ¼ bΣ rΛ
⊺

rΨ
�1
er yit � μr

� �
, bΣ r ¼ Λ

⊺

rΨ
�1
er Λr þΦ

�1
r

� ��1
: (28)

(c) p μ;Λ;ΨejZ;Ω;Yð Þ

To draw μ;Λ;Ψef g, we can first draw μ from p μ jΛ;Ψe;Z;Ω;Yð Þ and then draw Λ;Ψef g from

p Λ;Ψejμ;Z;Ω;Yð Þ. For this end, let bn rð Þ ¼ # zit ¼ rf g be the size of cluster zit, and let

witr ¼ I zit ¼ rf g. Denote

Y
rð Þ
¼

XN

i¼1

XT

t¼1

witryit=bn
rð Þ
, Ω

rð Þ
¼

XN

i¼1

XT

t¼1

witrωit=bn rð Þ,

S rð Þ
yy ¼

XN

i¼1

XT

t¼1

witryity
⊺

it=bn
rð Þ, S rð Þ

ωy ¼
XN

i¼1

XT

t¼1

witrωity
⊺

it=bn
rð Þ,

(29)

be the sample means and covariance matrices of Y and Ω within the rth cluster, respectively.

By some algebra calculations, it can be shown that

p μ jΛ;Ψe;K;Z;Ω;Yð Þ ¼
YS

r¼1

p μrjΛr;Ψer;Z;Ω;Y
� �

, and

p Λ;Ψejμ;K;Z;Ω;Yð Þ ¼
YS

r¼1

p Λr;Ψerjμr;Ω;Z;Y
� �

,

(30)

where

p μrjΛr;Ψer;Z;Ω;Y
� �

¼ N p baμr; bΣ μr

� �
,

p Λr;Ψerjμr;Z;Ω;Y
� �

¼
Yp

j¼1

p Ψ erjjμr;Z;Ω;Y
� �

p ΛrjjΨ erjjμr;Z;Ω;Y
� �

¼
D
Yp

j¼1

Ga�1 bαerj;bβ
erj

� �
N m

bΛ rj;Ψ erj
bHrj

� �
,

(31)

with

baμr ¼ bΣ
μr

Σ
�1
0r μ0r þ bn rð Þ

Ψ
�1
er Y

rð Þ
�ΛrΩ

rð Þ
� �h i

, bΣ
μr

¼ Σ
�1
0r þ bn rð Þ

Ψ
�1
er

� ��1

,

bΛ rj ¼ bH
rj
H�1

e0rjΛ0rj þ bn rð Þ
S

rð Þ
ωy jð Þ � μrjΩ

rð Þ
� �h i

, bH
�1

rj
¼ H�1

0rj þ bn
rð Þ

S rð Þ
ωω,

bαerj ¼ αe0rj þ bn rð Þ
=2,

bβ
erj ¼ β

e0rj þ Λ
⊺

0rjH
�1
0rjΛ0rj þ bn rð Þ

S
rð Þ
yy j;jð Þ � 2μrjy

rð Þ
j þ μ2

rj

� �
�cΛ

⊺

rj
bH

�1

rj
bΛ rj

n o
=2,

(32)

New Insights into Bayesian Inference36



in which y
rð Þ
jð Þ is the jth element in Y

rð Þ
, S

rð Þ
yy j;jð Þ is the jth main diagonal element of S rð Þ

yy , and S
rð Þ
ωy jð Þ is

the jth column vector of S rð Þ
ωy.

(d) p Φ jΩ;Zð Þ

From the prior distribution of Φ�1
r and the distribution of Ω , it can be shown that

p ΦrjΩ;Zð Þ∝ Φrj j
bn rð Þ

þr0rþmþ1

� �
=2
exp �

1

2
trΦ�1 bn rð Þ

S rð Þ
ωω

þ R�1
0

� o�
(33)

where bn rð Þ and Sωω are given in (c). Hence, p ΦrjΩ;Zð Þ is the m-dimensional inverse Wishart

distribution W
�1
m bn rð Þ þ r0r; bn

rð Þ
S rð Þ
ωω

þ R�1
0

� �
. It can be shown from exactly the same reasoning

as before that drawing Φ can be achieved by drawing Φr from p ΦrjΩ;Zð Þ independently.

(e) p δ jZð Þ and (f) p QjZð Þ

It can be verified directly that

p δ jZð Þ ¼ p δkjZð Þ and

p δ jZð Þ¼
D
DirS γ0 þ bn11;…;γ0 þ bn1S

� � (34)

in which bn1r ¼
PN

i¼1

I zi1 ¼ rf g. Similarly, it can be shown that

p QjZð Þ ¼
YS

r¼1

p QrjZð Þ,

p QrjZð Þ¼
D
YS

r¼1

DirS ν0 þ bnr1;…; ν0 þ bnrSð Þ:

(35)

in which bnrs ¼
PN

i¼1

PT

t¼2

I zit�1 ¼ r; zit ¼ sf g.
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