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1. Introduction  

Combinatorial auctions (Cramton et al., 2006) are auctions that allow bidders to place bids 
for a set of items. Combinatorial auctions provide suitable mechanisms for efficient 
allocation of resources to self-interested attendees (Cramton et al., 2006). Therefore, many 
works have been done to utilize combinatorial auction mechanisms for efficient resource 
allocation. For example, the FCC tried to employ combinatorial auction mechanisms for 
assigning spectrums to companies (McMillan, 1994).  
On the other hand, efficient resource allocation is also becoming crucial in many computer 
systems that should manage resources efficiently, and combinatorial auction mechanisms 
are suitable for this situation. For example, considering a ubiquitous computing scenario, 
there is typically a limited amount of resources (sensors, devices, etc.) that may not cover all 
needs for all users. Due to certain reasons (physical limitations, privacy, etc.), most of the 
resources cannot be shared with other users. Furthermore, software agents will use two or 
more resources at a time to achieve desirable services for users. Of course, each software 
agent provides services to its own user, and the agent may be self-interested.  
Tremendous research efforts have been done to improve many parts of combinatorial 

auctions. An example is recent efforts for winner determination problem. In general, the 

optimal winner determination problem of a combinatorial auction is NP-hard (Cramton et 

al., 2006) for the number of bids. Thus, much work focuses on tackling the computational 

costs for winner determination (Fujishima et al., 1999); (Cramton et al., 2006); (Sandholm et 

al., 2005). Also many efforts have been done for generic problem solvers that can be applied 

to solve winner determination problems. 

However, in such ubiquitous computing scenarios, there is strong demand for completing 

an auction within a fine-grained time period without loss of allocation efficiency. In a 

ubiquitous computing scenario, the physical location of users may always be changing and 

that could be handled by the system. Also, each user may have multiple goals with different 

contexts, and those contexts are also dynamically changing. Therefore, resources should be 

re-allocated in a certain fine-grained period to keep up with those changes in a timely 

manner. For better usability, the time period of resource reallocation will be 0.1 to several O
pe
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seconds depending on services provided there. Otherwise, resources will remain assigned to 

users who no longer need them while other users are waiting for allocation.  

Also, in the above scenarios, it is very important to handle a large number of bids in an 
auction. Consider that if there are 256 resources and 100 agents, and each agent has 200 to 
1000 bids, then there will be 20,000 to 100,000 bids for 256 items in an auction. However, it 
has been difficult to complete such a large-scale combinatorial auction within a very short 
time. Such hard time constraint even prevents algorithms to prepare a rich pre-processing to 
reach optimal results in (not very) short time. 
Since greedy algorithm is so simple, it can be applied to such situations. However, a pure 
greedy algorithm typically provides lower optimality of results that are not satisfiable for 
applications. When we solve this issue, parallel greedy approach can be a good solution for this 
kind of problems. Furthermore, a simple greedy algorithm can be used to enforce results to 
satisfy desirable properties that are very important for both theoretical and practical reasons. 
In this chapter, we describe how greedy algorithms can be effectively used in mechanism 
design, especially, on designing and implementing combinatorial auction mechanisms. 

2. Combinatorial auctions and winner determination problem 

2.1 Mechanism design and combinatorial auctions 

An auction mechanism is an economic mechanism for efficient allocations of items to self-
interested buyers with agreeable prices. When the auction mechanism is truthful, i.e., it 
guarantees incentive compatibility, the mechanism enforces the bidders to locate their bids 
with true valuations. In such auctions, since we have an expectation of obtaining bids with 
true valuations, we can allocate items to buyers efficiently even though some buyers may try 
to cheat the mechanisms out of gaining sufficient incomes from them. For example, Vickrey 
proposed an auction mechanism that has incentive compatibility (Vickrey, 1961). That is a 
basic difference from ordinary resource allocation mechanisms that have implicit 
assumptions of truth-telling attendees. 
Combinatorial auction is an auction mechanism that allows bidders to locate bids for a 
bundle of items rather than single item (Cramton et al., 2006). Combinatorial auction has 
been applied for various resource allocation problems. For example, McMillan et al. 
reported a trial on an FCC spectrum auction (McMillan, 1994). Rassenti et al. reported a 
mechanism for an airport time slot allocation problem (Rassenti et al., 1982). Ball et al. 
discussed applicability of combinatorial auctions to airspace system resource allocations 
(Ball et al., 2006). Caplice et al. proposed a bidding language for optimization of procurement 
on freight transportation services (Caplice et al., 2004). Estelle et al. proposed a formalization 
on auctioning London Bus Routes (Cantillon & Pesendorfer, 2004). Hohner et al. presented an 
experience on procurement auctions at a software company (Hohner et al., 2003). 
However, on emerging applications with such resource allocation problems, their problem 
spaces are larger, more complex, and much harder to solve compared to previously 
proposed applications. For example, Orthogonal Frequency Division Multiple Access 
(OFDMA) technology enables us to use a physically identical frequency bandwidth as 
virtually multiplied channels at the same time, and this causes the channel allocation 
problem to become more difficult (Yang & Manivannan, 2005). Also some recent wireless 
technologies allow us to use multiple channels on the same, or different physical layers (i.e, 
WiFi, WiMax, and Bluetooth at the same time) for attaining both peak speed and robust 
connectivity (Salem et al., 2006); (Niyato and Hossain, 2008). Furthermore, such resource 
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allocation should be done for many ordinary users rather than a fixed limited number of 
flights or companies. Also the contexts of users, which are dynamically changing through 
the time, should be considered in the allocation. 
In this chapter, to maintain simplicity of discussion, we focus on utility-based resource 
allocation problems such as (Thomadakis & Liu, 1999), rather than generic resource 
allocation problems with numerous complex constraints. The utility-based resource 
allocation problem is a problem that aims to maximize the sum of utilities of users for each 
allocation period, but does not consider other factors and constraints (i.e., fair allocation 
(Sabrina et al., 2007); (Andrew et al., 2008), security and privacy concerns (Xie & Qin, 2007), 
uncertainty (Xiao et al., 2004), etc). 
Also, throughout this chapter, we only consider auctions that are single-sided, with a single 

seller and multiple buyers to maintain simplicity of discussion. It can be extended to the 

reverse situation with a single buyer and multiple sellers, and the two-sided case. The two-

sided case is known as the combinatorial exchange. In the combinatorial exchange 

mechanisms, multiple sellers and multiple buyers are trading on a single trading 

mechanism. About this mechanism, the process of determining winners is almost the same 

as single-sided combinatorial auctions. However, it is reported that the revenue division 

among sellers can be a problem. There are a lot of interesting studies on combinatorial 

exchange (Parkes et al, 2005).  

2.2 Winner determination problem 

An important issue on combinatorial auction is representation of bids. In this chapter, we 
use OR bid representation(Lehmann et al., 2006), a simplest one in major formalisms. 
On OR bid representation, the winner determination problem on combinatorial auction 

WDPOR is defined as follows (Cramton et al., 2006): The set of bidders is denoted by 

N={1,...,n}, and the set of items by M={m1,...,mk}. |M|=k. Bundle S is a set of items:S ⊆ M . 

We denote by vi(S), bidder i's valuation of the combinatorial bid for bundle S. An allocation 

of the items is described by variables xi(S) ∈ {0, 1}, where xi(S)=1 if and only if bidder i wins 

bundle S. An allocation, xi(S), is feasible if it allocates no item more than once,  

∑

i∈N

∑

S∋j

xi(S) ≤ 1

 

for all j ∈ M . 
The winner determination problem is the problem to maximize total revenue 

max
X

∑

i∈N,S⊆M

vi(S)xi(S)

 

for feasible allocations X ∋ xi(S). 
Fig. 1 shows an example of WDPOR. Consider there are three items a, b, and c, and three 

bidders Alice, Bob, and Charles. Alice bids 10 for a. Bob bids 20 for {b, c}. Charles bids 18 for {a, 

b}. The problem is to choose winners of this auction from those three bids. Here, to choose 

Alice's and Charles's, or Bob's and Charles's are infeasible allocation, since both Alice's and 

Charles's include item a, and both Bob's and Charles's include item b. The optimal allocation is 

a for Alice, and b and c for Bob. 
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Fig. 1. Winner Determination Problem 

Since the winner determination problem WDPOR is a combinatorial optimization problem, it 
is generally NP-hard(Cramton et al., 2006). Furthermore, winner determination also plays 
important roles in other parts of combinatorial auction mechanism. For example, some 
combinatorial auction mechanisms (e.g., VCG, etc.) require many times of winner determination 
for slightly different bids for pricing mechanism. Therefore, it is strongly demanded to solve the 
problem in tractable way. In this chapter, we focus on solving this problem. 

2.3 Lehmann’s greedy winner determination 

Lehmann et al. proposed a combinatorial auction mechanism that preserves truthfulness, a 
very important desirable property, while it uses a greedy approximation algorithm for its 
winner determination(Lehmann et al., 2002). 
Lehmann's greedy algorithm (Lehmann et al., 2002) is a very simple but powerful linear 
algorithm for winner determination in combinatorial auctions. Here, we denote a bid 
b=<s,a>, such that S ⊆ M  and a ∈ R+. Two bids b=<s,a> and b'=<s',a'>  conflict if and 
only if s ∩ s′ �= ∅. The greedy algorithm can be described as follows. (1) The bids are sorted 
by some criterion. In (Lehmann et al., 2002), Lehmann et al. proposed sorting list L by 
descending average amount per item. More generally, they proposed sorting L by a criterion 
of the form a/|s|c for some number c ≥ 0, possibly depending on the number of items, k. (2) 
A greedy algorithm generates an allocation. L is the sorted list in the first phase. Walk down 
the list L, allocates items to bids whose items are still unallocated. 
Example: Assume there are three items a, b, and c, and three bidders Alice, Bob, and Charles. 
Alice bids 10 for a. Bob bids 20 for {b,c}. Charles bids 18 for {a,b} (Fig. 2 Step1). We sort the bids 
by the criterion of the form a/|s|0.5 (Fig. 2 Step2). Alice's bid is calculated as 10/10.5=10. Bob's 
bid is calculated as 20/20.5=14 (approximately). Charles's bid is calculated as 18/20.5=13 
(approximately). The sorted list is now Bob's bid <{b,c},20>, Charles's bid <{a,b},18>, and 
Alice's bid <{a}, 10>. The algorithm walks down the list (Fig. 2 Step3). At first, Bob wins {b,c} 
for 20. Then, Charles cannot get the item because his bid conflicts with Bob's bid. Finally, 
Alice gets {a} for 10.  
Lehmann's greedy algorithm provides a computationally tractable combinatorial auction. 
However, it has two remaining issues: (1)efficiency of item assignment, and (2)adjustment of 
good bid weighting parameter c. In the next section, we describe possible approaches for 
these issues. 
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Fig. 2.  Lehmann’s Greedy Allocation 

3. Parallel greedy approximation 

3.1 Incremental updating 

In (Fukuta & Ito, 2006), we have shown that the hill-climbing approach performs well when 

an auction has a massively large number of bids. In this section, we summarize our 

proposed algorithms for incremental updating solutions. 

Lehmann's greedy winner determination could succeed in specifying the lower bound of the 

optimality in its allocation (Lehmann et al., 2002). A straightforward extension of the greedy 

algorithm is to construct a local search algorithm that continuously updates the allocation so 

that the optimality is increased.  Intuitively, one allocation corresponds to one state of a local 

search.  

List 1 shows the algorithm. The inputs are Alloc and L. L is the bid list of an auction. Alloc is 

the initial greedy allocation of items for the bid list. 

The function consistentBids finds consistent bids for the set NewAlloc by walking down the 

list RemainBids. Here, a new inserted bid will wipe out some bids that conflict with the 

inserted bid. So there will be free items to allocate after the insertion. The function 

consistentBids tries to insert the other bids greedily for selling as many of the items as 

possible. When the total price for NewAlloc is higher than Alloc, current allocation is 

updated to NewAlloc and the function continues updating from NewAlloc. We call this as 

Greedy Hill Climbing(GHC) in this chapter. 
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1: function GreedyHillClimbingSearch(Alloc, L)

2: RemainBids:= L - Alloc;

3: for each b ∈ RemainBids as sorted order

4: if b conflicts Alloc then

5: Conflicted:=Alloc - consistentBids({b}, Alloc);

6: NewAlloc:= Alloc - Conflicted + {b};

7: ConsBids:=

8: consistentBids(NewAlloc, RemainBids);

9: NewAlloc:=NewAlloc+ConsBids;

10: if price(Alloc) < price(NewAlloc) then

11: return GreedyHillClimbingSearch(NewAlloc,L);

12: end for each

13: return Alloc
 

List. 1. Greedy Hill Climbing Algorithm 

������ ������
•� Initial State 

–� AL : Current allocation of items  
(The initial allocation is Lehmann’s allocation.) 

–� Remain : All bids that are not included in AL 

A&B&C 30 

D&E 15 

A 15 

C 13 

A&C 14 

B 8 
Total revenue =  45 

AL 

Remain 

–�Take the top of bid in Remain, 

then push it into AL 

A&B&C 30 

D&E 15 

A 15 
C 13 

A&C 14 

B 8 

PUSH IN 

PUSH 

OUT 

AL 

Remain 

������

–� (In this case,  

  item B and C are not allocated.)  

Lehmann’s algorithm is applied to the non-

allocated items. 
A&B&C 30 

D&E 15 

A 15 
C 13 

A&C 14 

B 8 

Apply Lehmann’s 

algorithm for not 
currently allocated 

items. AL 

Remain 

����	�

–� If the total revenue is larger than the last 

then the found allocation overwrites AL. 

A&B&C 30 

D&E 15 

A 15 

C 13 
A&C 14 

B 8 

Put back to Remain 

Total revenue =  51   ( larger than the last revenue = 45) 

AL 

Remain 

AAA

AAA

 
 

Fig. 3. Example of Greedy Hill Climbing 

Example: Assume there are five items a, b, c, d, and e, and there are six bids, <{a,b,c},30>, 
<{a},15>, <{c},13>, <{d,e},15>, <{a,c},14>, and <{b},8>. We can calculate the values of 
Lehmann's criterion a/|s|0.5 as 17.6, 15, 13, 10.7, 10, and 8, respectively.  In this case, the 
initial allocation is Lehmann's greedy allocation <{a,b,c},30>, <{d,e},15> and the total revenue 
is 45. Here, the remaining list contains  <{a},15>, <{c},13>, <{a,c},14>, and <{b},8> (Fig. 3, 
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Step1). In this algorithm, we pick <{a},15> since it is the top of the remaining list. Then we 
insert <{a},15> into the allocation and remove <{a,b,c},30>. The allocation is now <{a},15>, 
<{d,e},15> (Fig. 3, Step2). We then try to insert the other bids that do not conflict with the 
allocation (Fig. 3, Step3). Then, the allocation becomes <{a},15>, <{b},8>, <{c},13>,<{d,e},15>. 
The total revenue is 51, and is increased. Thus, the allocation is updated to it (Fig. 3, Step4). 
Our local algorithm continues to update the allocation until there is no allocation that has 
greater revenue. This could improve the revenue that Lehmann's greedy allocation can 
achieve. 
To show the advantages of greedy incremental updating, we also prepared an ordinary Hill-

Climbing local search algorithm. List.2. shows the algorithm. The difference to above is to 

choose best alternatives in each climbing step, instead of choosing it greedily. We call this as 

Best Hill Climbing(BHC) in this chapter. 
 

1: function BestHillClimbingSearch(Alloc, L)

2: MaxAlloc := φ

3: RemainBids:= L - Alloc;

4: for each b ∈ RemainBids as sorted order

5: if b conflicts Alloc then

6: Conflicted:=Alloc - consistentBids({b}, Alloc);

7: NewAlloc:= Alloc - Conflicted + {b};

8: ConsBids:=

9: consistentBids(NewAlloc, RemainBids);

10: NewAlloc:=NewAlloc+ConsBids;

11: if price(MaxAlloc) < price(NewAlloc) then

12: MaxAlloc := NewAlloc;

13: end for each

14: if price(Alloc) < price(MaxAlloc) then

15: return BestHillClimbingSearch(MaxAlloc,L);

16: return Alloc
 

List. 2. Best Hill Climbing Algorithm 

3.2 Parallel search for multiple weighting strategies 

The optimality of allocations got by Lehmann's algorithm (and the following hill-climbing) 
deeply depends on which value was set to c in the bid weighting function. Again, in 
(Lehmann et al., 2002), Lehmann et al. argued that c=1/2 is the best parameter for 
approximation when the norm of the worst case performance is considered. However, 
optimal value for approximating an auction is varied from 0 to 1 depending on the auction 
problem. 
For example, when we choose c=1 in the example in section 3.1, we can get better results 
directly at the time of initial Lehmann's greedy allocation (Fig. 4). 
In (Fukuta & Ito, 2006), we presented an initial idea of an enhancement for our incremental 
updating algorithm to parallel search for different bid weighting strategies (e.g, doing the 
same algorithm for both c=0 and c=1). 
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Fig. 4. Effects of Bid Weighting Strategy 

3.3 Simulated annealing search 

We also prepared a small extension of the shown algorithm to the simulated annealing local 
search(Fukuta & Ito, 2006). The algorithm is a combination of the presented hill-climbing 
approach and a random search based on the standard simulated annealing algorithm. We 
use a parameter that represents the temperature. The temperature is set at a high value at 
the beginning and continuously decreased until it reaches 0. For each cycle, a neighbour is 
randomly selected and its value may be less than the current value in some cases. Even in 
such a case, if a probability value based on the temperature is larger than 0, the state is 
moved to the new allocation that has less value. This could make us get off the local 
minimum. 
We prepared this algorithm only for investigating how random search capability will 
improve the performance. Note that the proposed SA search may not satisfy our proposed 
features discussed later. 

4. Experimental analysis 

4.1 Experiment settings 

In this section, we compare our algorithms to other approaches in various datasets. Details 
about other approaches are presented in section 5. 
We implemented our algorithms in a C program for the following experiments. We also 
implemented the Casanova algorithm(Hoos & Boutilier, 2000) in a C program. However, for 
the following experiments, for Zurel's algorithm we used Zurel's C++ based implementation 
that is shown in (Zurel & Nisan, 2001). Also we used CPLEX Interactive Optimizer 11.0.0 
(32bit) in our experiments. 
The experiments were done with the above implementations to examine the performance 
differences among algorithms.  The programs were employed on a Mac with Mac OS X 10.4, 
CoreDuo 2.0GHz CPU, and 2GBytes of memory. Thus, actual computation time will be 
much smaller when we employ parallel processor systems in a distributed execution 
environment. 
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We conducted several experiments. In each experiment, we compared the following search 
algorithms. greedy(c=0.5) uses Lehmann's greedy allocation algorithm with parameter 
(c=0.5). greedy-N uses the best results of Lehmann's greedy allocation algorithm for N 
different weighting parameters (0 ≤ c ≤ 1).  *HC(c=0.5) uses a local search in which the 
initial allocation is Lehmann's allocation with c=0.5 and conducts one of hill-climbing 
searchs (e.g., GHC or BHC) shown in the previous section. Similarly, *HC-N uses the best 
results of a hill-climbing search (e.g., GHC or BHC) for N different weighting parameters 
(0 ≤ c ≤ 1). For example, GHC-11 means the best result of greedy hill-climbing(GHC) with 
parameter c = {0, 0.1,...,0.9, 1}. SA uses the simulated annealing algorithm presented in 
(Fukuta & Ito, 2006). Also, we denote the Casanova algorithm as casanova and Zurel's 
algorithm as Zurel. 
In the following experiments, we used 0.2 for the epsilon value of Zurel's algorithm in our 
experiments. This value appears in (Zurel & Nisan, 2001). Also, we used 0.5 for np and 0.15 
for wp on Casanova, which appear in (Hoos & Boutilier, 2000). Note that we set maxTrial to 1 
but maxSteps to ten times the number of bids in the auction. 

4.2 Evaluation on basic auction dataset 

In (Zurel & Nisan, 2001), Zurel et al. evaluated the performance of their presented algorithm 
with the data set presented in (de Vries & Vohra, 2003), compared with CPLEX and other 
existing implementations.  
In (Fukuta & Ito, 2007a), we presented comparison of our algorithms, Casanova, and Zurel's 
algorithm with the dataset provided in (de Vries & Vohra, 2003). This dataset contains 2240 
auctions with optimal values, ranging from 25 to 40 items and from 50 to 2000 bids. Since 
the data set is small, we omit details in this chapter. 
We conducted detailed comparisons with common datasets from CATS benchmark(Leyton-
Brown et al., 2000). Compared to deVries' dataset shown in (de Vries & Vohra, 2003), the 
CATS benchmark is very common and it contains more complex and larger datasets. 
Fig. 5 shows the comparison of our algorithms, Casanova, and Zurel's algorithm with a 
dataset provided in the CATS benchmark (Leyton-Brown et al., 2000). The dataset has 
numerous auctions with optimal values in several distributions. Here we used varsize 
which contains a total of 7452 auctions with reliable optimal values in 9 different 
distributions1. Numbers of items range from 40 to 400 and numbers of bids range from 50 to 
2000.  
Since problems in the dataset have relatively small size of bids and items, we omitted the 
execution time since all algorithms run in very short time. Here, we can see that the 
performances of GHC-11 and SA are better than Zurel's on average optimality. 
Note that those differences come from the differences of the termination condition on each 
algorithm. In particular, Casanova spent much more time compared with the other two 
algorithms. However, we do not show the time performance here since the total execution 
time is relatively too small to be compared. 

                                                 
1 Since some of the original data seems corrupted or failed to obtain optimal values, we 
excluded such auction problems from our dataset. Also, we excluded a whole dataset of a 
specific bid distribution when the number of valid optimal values is smaller than the other 
half of the data. The original dataset provides optimal values of auction problems by two 
independent methods, CASS and CPLEX. Therefore, it is easy to find out such corrupted 
data from the dataset. 
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Fig. 5.  Optimality on CATS-VARSIZE dataset 

Here, we can see the performance of both greedy, GHC, and BHC increases when we use 
more threads to parallel search for multiple weightings. For example, the result of GHC-3 is 
better than GHC(c=0.5) and GHC-11 is slightly better in the average. It shows that our 
parallel approximation approach will increase the performance effectively even when the 
number of parallel executions is small. 
Also we compared the performance on our greedy local updating approach (GHC) with 
ordinary best updating approach (BHC). Surprisingly, the average performances of GHC are 
slightly better than BHC, regardless of using parallel search. This is because the BHC 
approach is still heuristic one so it does not guarantee the choice is best for global 
optimization. Also we think we found a very good heuristic bid weighting function for our 
greedy updating. 

4.3 Evaluation on large auction dataset 

The CATS common datasets we used in Section 4.2 have a relatively smaller number of bids 
than we expected. We conducted additional experiments with much greater numbers of 
bids. We prepared additional datasets having 20,000 non-dominated bids in an auction. The 
datasets were produced by CATS (Leyton-Brown et al., 2000) with default parameters in 5 
different distributions. In the datasets, we prepared 100 trials for each distribution. Each trial 
is an auction problem with 256 items and 20,000 bids2.  

                                                 
2 Due to the difficulty of preparing the dataset, we only prepared 5 distributions. For more 
details about the bid generation problem, see (Leyton-Brown et al., 2000). A preliminary 
result of this experiment was shown in (Fukuta & Ito, 2007b). 
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Fig. 6 (6a and 6b) shows the experimental result on the datasets with 20,000 bids in an 
auction focused on execution time of approximation. Due to the difficulty of attaining 
optimal values, we normalized all values as Zurel's results equaling 1 as follows. 
Let A be a set of algorithms, z ∈ A be the Zurel's approximation algorithm, L be a dataset 
generated for this experiment, and revenuea(p) such that a ∈ A be the revenue obtained by 
algorithm a for a problem p such that p ∈ L, the average revenue ratio ratioAa(L) for 
algorithm a ∈ A for dataset L is defined as follows: 

( )
( )

( )

L

L

p
L

p

∈

∈

= ∑
∑

p a

p z

a

revenue
ratioA

revenue
 

Here, we use ratioAa(L) for our comparison of algorithms. 
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Fig. 6a.  Time Performance on 20,000 bids- 256 items (Optimality Ratio) 
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Fig. 6b. Time Performance on 20,000 bids - 256 items (Elapsed Time[msec]) 

We prepared cut-off results for Casanova and HC. For example, casanova-10ms denotes the 
result of Casanova within 10 milliseconds. Here, for faster approximation, we used greedy-

3, GHC-3, and BHC-3 but did not use greedy-11, GHC-11, and BHC-11. Here, greedy-3 uses 
the best results of Lehmann's greedy allocation algorithm with parameter (0 ≤ c ≤ 1  in 0.5 
steps). GHC-3 and BHC-3 use the best results of the local updating with parameter 
(0 ≤ c ≤ 1  in 0.5 steps). Also, we prepared a variant of our algorithm that has a suffix of  
-seq or -para. The suffix -seq denotes the algorithm is completely executed in a sequence 
that is equal to one that can be executed on a single CPU computer. For example, greedy-3-

seq denotes that the execution time is just the sum of execution times of three threads. The 
suffix -para denotes the algorithm is completely executed in a parallel manner, and the three 
independent threads are completely executed in parallel. Here, we used the ideal value for  
-para since our computer has only two cores in the CPU. The actual execution performance 
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will be between -seq and -para. Also, we denote the initial performance of Zurel's algorithm 
as Zurel-1st. Here, Zurel-1st is the result at the end of its first phase and no winners will be 
approximately assigned before it. cplex is the result of CPLEX with the specified time limit.  
On most distributions in Fig. 6, Zurel-1st takes more than 1 second but the obtained ratioA is 
lower than greedy-3-seq. Furthermore, the average ratioA of GHC-3-para-1000ms is higher 
than Zurel while its computation time is less than both Zurel and Zurel-1st.  
In Fig. 6, BHC could not get any update within the time limit so there is no update from 
greedy. Here, although SA performs better than greedy(C=0.5), it could not outperform 
GHC(C=0.5) in any case. Therefore, we can see that both best-updating and random-updating 
approaches are not sufficient enough for extremely short time approximation, although the 
greedy-updating approach makes a good performance in the same situation. 
In many settings of CPLEX, the values are 0. This is because CPLEX could not generate 
initial approximation result within the provided time limit. Only datasets for two bid 
distributions have non-zero results for CPLEX. However, CPLEX spends around 400 msec 
for the computation but the results are still lower than greedy-3. On a dataset for another 
bid distribution, CPLEX could prepare results in 3.8 sec of computation, however, the result 
is still lower than greedy-3. This is because the condition we set up gave extremely short 
time limit so therefore CPLEX could not generate sufficient approximation results in such 
hard time constraint. 
Fig. 7 shows the experimental result on the dataset with 100,000 bids in an auction focused 
on the early anytime performance. While GHC-3 and Zurel's algorithm are competitive in 
Fig. 6, it is clear that our proposed GHC-3 outperforms Zurel's algorithm in any time 
performance in Fig. 7. Note that, for Zurel's algorithm, the time needed to attain initial 
allocations increased approx. six times when the number of bids becomes five times larger 
than that of Fig. 6. However, while our GHC-3-para-1000ms only takes the same execution 
time (i.e, 1000 msec) for larger dataset, its average ratioA is higher than Zurel. Note that the 
GHC-3-para-333ms has still higher ratioA value than Zurel while its average computation 
time is 100 times less. We argue that our algorithm has an advantage when the number of 
bids increases. 

5. Related work    

5.1 Approaches for optimization problems 

There are really many approaches to optimization problems. Linear programming is one of 
the well-known approaches in this area. The winner determination problem on 
combinatorial auctions can be transformed into a linear programming problem. Therefore, it 
is possible to use a linear programming solver for the winner determination problem.  
CPLEX is a well-known, very fast linear programming solver system. In (Zurel & Nisan, 
2001), Zurel et al. evaluated the performance of their presented algorithm with many data 
sets, compared with CPLEX and other existing implementations. While the version of 
CPLEX used in (Zurel & Nisan, 2001) is not up-to-date, the shown performance of Zurel's 
algorithm is approximately 10 to 100 times faster than CPLEX. In this chapter, we showed 
direct comparisons to the latest version of CPLEX we could prepare. Our approach is far 
better than latest version of CPLEX for large-scale winner determination problems. 
Therefore, the performance of our approach is competitive enough with CPLEX or other 
similar solver systems. This is natural since Zurel's and our approaches are specialized for 
combinatorial auctions, and also focus only on faster approximation but do not seek optimal  
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Fig. 7. Time Performance on 100,000bids - 256items 

solutions. In case we need optimal solutions, it is good choice to solve the same problem by 
both our approach and CPLEX in parallel. This could improve anytime performance but 
guarantee obtaining optimal solutions. Even in such case, our approach should spend very 
small computation overhead. 
Random-walk search is also a strong approach for approximating combinatorial 
optimization problems. There have been many algorithms proposed based on random-walk 
search mechanisms. In (Hoos & Boutilier, 2000), Casanova was proposed, which applies a 
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random walk SAT approach for approximating the winner determination problem in 
combinatorial auctions. In this chapter, we showed that our approach outperforms 
Casanova when the time constraint is very hard but the problem space is really large.  
Simulated Annealing (SA) is another similar approach. We prepared an SA-based extension 
for our approach and we confirmed it increases the performance when the problem size is 
relatively small. However, SA needs random-walk in the early stage of its search and it 
decreases performance on short-time approximation.  
Genetic Algorithm is another similar approach. In (Avasarala et al., 2006), Avasarala et al. 
proposed an approach for the winner determination problem on combinatorial auctions. 
However, in (Avasarala et al., 2006), they noticed that their algorithm is not effective for 
approximation in short time but is effective for obtaining higher optimal solutions with 
enough computation time. Random-walk searching is really effective approximation 
approach for combinatorial optimization problems. However, it is not effective when there 
are such hard time constraints. We focused on solving problems that are hard for such 
random-walk search approaches. 

5.2 Approaches to obtain optimal solutions 

There have been a lot of works on obtaining optimal solutions for winner determination in 
combinatorial auctions (de Vries & Vohra, 2003). For example, CABOB (Sandholm et al., 
2005) and CASS (Fujishima et al., 1999) have been proposed by aiming to get the optimal 
allocations.  
In (Hoos & Boutilier, 2000), it is shown that the Casanova algorithm outperforms 
approximation performance of CASS on winner determination. In this chapter, we showed 
that our approach outperforms Casanova in settings of a very large number of bids in an 
auction. Therefore, our approach should also outperform CASS in the same settings.  
In (Sandholm et al., 2005), Sandholm et al. showed that CABOB outperforms CPLEX in 
several settings. However, according to our comparison, our algorithm should outperform 
CABOB in our settings. We argue that our approach is rather complementary to those 
algorithms that are seeking exact optimal solutions. It is not fair to compare their 
approximation performances when one guarantees obtaining optimal solutions but the 
other does not. Our approximation approach only covers large size problem settings that 
can only be handled by specialized approximation algorithms. Our approach does not 
contribute to advances in developing algorithms to obtain optimal solutions directly. 

5.3 Other greedy approaches 

Some researchers have noticed the better performance of simple greedy and incremental 
approaches for very large-scale problems. For example, (Sandholm, 2002) noticed the ease of 
approximation on very large auction problems. In (Lehmann et al., 2002), Lehmann et al. 
mentioned that a simple greedy approach obtains very high results when the auction 
problem is rather huge.  
Also in (Kastner et al., 2002), Kastner et al. mentioned a potential capability of a simple 
incremental search approach to apply to very large auction problems and discussed the 
sensitivity for the number of bids in an auction. However, there is little mentioned about a 
detailed comparison of actual performances for several different types of datasets. In 
(Kastner et al., 2002), they only presented their preliminary experimental results on a dataset 
that is based on a single bid distribution.  
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Guo et al. (Guo et al., 2005) proposed similar local-search based algorithms and they argued 
that their approach is good for the settings of a large number of bids in a combinatorial 
auction problem. However, in (Guo et al., 2005), they presented very limited experimental 
results and little analysis or comparison to other high performance algorithms. Also in (Guo 
et al., 2005), they did not propose an idea that is similar to our multiple bid-weighting 
search. We argue that this multiple weighting search approach is very effective and that it 
distinguishes our approach from others. Also, we showed a detailed analysis of our 
experiments based on datasets generated by possible different bid distributions. We also 
showed direct comparisons to Zurel's approach presented in (Zurel & Nisan, 2001). 

5.4 Other approaches 
When we have some assumptions about models for valuation of bids, we can utilize those 
assumptions for better approximation. Dobzinski et al. proposed improved approximation 
algorithms for auctions with submodular bidders (Dobzinski & Schapira, 2006). Lavi et al, 
reported an LP-based algorithm that can be extended to support the classic VCG (Lavi & 
Swamy, 2005). Those studies mainly focused on theoretical aspects. In contrast to those 
papers, we rather focus on experimental analysis and implementation issues. Those papers 
did not present experimental analysis of the settings with a large number of bids as we 
presented in this chapter. 
Using sequential auctions (Boutiler et al., 1999) is another approach to overcome the 
communication cost problem. Koenig et al. proposed a multiple-round auction mechanism 
that guarantees the upper bound of communication cost as fixed size k, that is independent 
from the number of agents or items in the auction (Koenig et al., 2007). Although our 
algorithm itself can approximate winners within a very short time with a huge number of 
updated bids, the communication cost problem remains. 

6. Discussion    

Lehmann's mechanism preserves truthfulness of the auction. However, since greedy 
incremental updating approach breaks monotonicity, an important property to provide 
truthfulness of auctions, the resulting auction will not be truthful. Detailed discussions and 
a counter example for monotonicity is presented in (Fukuta & Ito, 2007c). Therefore, another 
monotonicity has been proposed to approach this issue. 
In real world auctions, often we open the winners and their bidding prices after the auction 
is finished. When we employ an approximated algorithm for winner determination, a loser 
who might be a winner in the optimal allocation could know the winner's bidding price in 
an approximate allocation after the auction finishes. In some cases, this loser had placed a 
higher price than the winner's for the same or a subset of the bundle. This would result in 
unacceptable allocations for bidders.  
We believe that the above issue should be considered to make our mechanism acceptable by 
participants in the real world. Therefore, Winner-Price-Monotonicity and Weak-Winner-
Price-Monotonicity are proposed to avoid unacceptable allocations(Fukuta & Ito, 2007a).  

Definition 1. (Winner-Price-Monotonicity: WPM) For two non-empty
bundles B and B′, if B ⊆ B′and vi(B) > vj(B

′), then j must not win bun-
dle B′.

Definition 2. (Weak-Winner-Price-Monotonicity: Weak-WPM) For non-
empty bundle B, if vi(B) > vj(B), then j must not win bundle B.
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Here, proofs for following propositions are shown in (Fukuta & Ito, 2007a).  

Proposition 1. Our proposed winner determination algorithms, except for the
simulated annealing-based algorithm, produce allocation Wfin that satisfies WPM
when the algorithm reaches an end.

Proposition 2. In terms of any allocations that are achieved during computa-
tion (as an anytime algorithm), our proposed winner determination algorithms,
except for the simulated annealing-based algorithm, satisfy Weak-WPM.  

 

It is a big merit to guarantee WPM and/or Weak-WPM at the algorithm level when we 

use it where slightly different combinatorial auctions are conducted iteratively. It seems 

easy to satisfy WPM and/or Weak-WPM by using any approximated winner 

determination algorithms by adding a pre-processing that removes all dominated bids 

from the bidset before starting the approximation. However, we should consider its 

computational overhead. For simplicity, consider a case B = B' instead of B ⊆ B′ . Let n be 

the number of items and m be the number of items in an auction. When m is very small, it 

is easy to look up the highest bids of each bundle by using a hash algorithm. In this case, 

the computational order is O(n). However, it consumes a great deal of memory (of course 

it can be smaller than 2m but at least additional O(n) of working space), and it is actually 

very difficult to determine good hash functions for a smaller hash table size without loss 

of computational speed. It is a serious problem when the memory is almost completely 

used up for storing the data of a large number of bids. Sometimes its computational order 

might reach O(n2), which is greater than that of typical good approximation algorithms. 

For example, the computational order of Lehmann's greedy algorithm is O(n log n) when 

we use one of the O(n log n) sorting algorithms on it. Furthermore, when we consider the 

deletion of a bid, we have to determine the highest price bid that has been made obsolete 

by the deleted bid, or recalculate such pre-processing for all bids again. Considering a 

case B ⊆ B′  will make the problem more difficult. Since our algorithms guarantee Weak-

WPM and WPM for the produced results, there is no need to prepare such additional pre-

processing. 

7. Conclusions    

In this chapter, we presented how greedy approach can be used in combinatorial auctions. 

When we have hard time constraint and a large scale problem, greedy approach works very 

well compared to other approaches. Two different greedy approaches can be combined to 

improve performance. Also it is good idea to combine parallel search approach for greedy 

approximation algorithm. Furthermore, greedy-based approach is also helpful to keep the 

result of algorithm a certain desirable property, while other random search algorithms could 

not. 

For further reading about combinatorial auctions, (Cramton et al., 2006) is a best book for 

both researchers and practitioners. For further reading about the shown approach, see 

(Fukuta & Ito, 2007a); (Fukuta & Ito, 2007b) for detailed performance analysis, and see 

(Fukuta & Ito, 2006); (Fukuta & Ito, 2007c); (Fukuta & Ito, 2007a) for theoretical issues and 

further discussions. 
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