
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

22

Parallel Greedy Approximation on Large-Scale
Combinatorial Auctions

Naoki Fukuta1 and Takayuki Ito2,3
1Shizuoka University,

2Nagoya Institute of Technology
3Massachusetts Institute of Technology

1,2Japan
3United States

1. Introduction

Combinatorial auctions (Cramton et al., 2006) are auctions that allow bidders to place bids
for a set of items. Combinatorial auctions provide suitable mechanisms for efficient
allocation of resources to self-interested attendees (Cramton et al., 2006). Therefore, many
works have been done to utilize combinatorial auction mechanisms for efficient resource
allocation. For example, the FCC tried to employ combinatorial auction mechanisms for
assigning spectrums to companies (McMillan, 1994).
On the other hand, efficient resource allocation is also becoming crucial in many computer
systems that should manage resources efficiently, and combinatorial auction mechanisms
are suitable for this situation. For example, considering a ubiquitous computing scenario,
there is typically a limited amount of resources (sensors, devices, etc.) that may not cover all
needs for all users. Due to certain reasons (physical limitations, privacy, etc.), most of the
resources cannot be shared with other users. Furthermore, software agents will use two or
more resources at a time to achieve desirable services for users. Of course, each software
agent provides services to its own user, and the agent may be self-interested.
Tremendous research efforts have been done to improve many parts of combinatorial

auctions. An example is recent efforts for winner determination problem. In general, the

optimal winner determination problem of a combinatorial auction is NP-hard (Cramton et

al., 2006) for the number of bids. Thus, much work focuses on tackling the computational

costs for winner determination (Fujishima et al., 1999); (Cramton et al., 2006); (Sandholm et

al., 2005). Also many efforts have been done for generic problem solvers that can be applied

to solve winner determination problems.

However, in such ubiquitous computing scenarios, there is strong demand for completing

an auction within a fine-grained time period without loss of allocation efficiency. In a

ubiquitous computing scenario, the physical location of users may always be changing and

that could be handled by the system. Also, each user may have multiple goals with different

contexts, and those contexts are also dynamically changing. Therefore, resources should be

re-allocated in a certain fine-grained period to keep up with those changes in a timely

manner. For better usability, the time period of resource reallocation will be 0.1 to several O
pe

n
A

cc
es

s
D

at
ab

as
e

w
w

w
.in

te
ch

w
eb

.o
rg

Source: Advances in Greedy Algorithms, Book edited by: Witold Bednorz,
ISBN 978-953-7619-27-5, pp. 586, November 2008, I-Tech, Vienna, Austria

www.intechopen.com

 Advances in Greedy Algorithms

412

seconds depending on services provided there. Otherwise, resources will remain assigned to

users who no longer need them while other users are waiting for allocation.

Also, in the above scenarios, it is very important to handle a large number of bids in an
auction. Consider that if there are 256 resources and 100 agents, and each agent has 200 to
1000 bids, then there will be 20,000 to 100,000 bids for 256 items in an auction. However, it
has been difficult to complete such a large-scale combinatorial auction within a very short
time. Such hard time constraint even prevents algorithms to prepare a rich pre-processing to
reach optimal results in (not very) short time.
Since greedy algorithm is so simple, it can be applied to such situations. However, a pure
greedy algorithm typically provides lower optimality of results that are not satisfiable for
applications. When we solve this issue, parallel greedy approach can be a good solution for this
kind of problems. Furthermore, a simple greedy algorithm can be used to enforce results to
satisfy desirable properties that are very important for both theoretical and practical reasons.
In this chapter, we describe how greedy algorithms can be effectively used in mechanism
design, especially, on designing and implementing combinatorial auction mechanisms.

2. Combinatorial auctions and winner determination problem

2.1 Mechanism design and combinatorial auctions

An auction mechanism is an economic mechanism for efficient allocations of items to self-
interested buyers with agreeable prices. When the auction mechanism is truthful, i.e., it
guarantees incentive compatibility, the mechanism enforces the bidders to locate their bids
with true valuations. In such auctions, since we have an expectation of obtaining bids with
true valuations, we can allocate items to buyers efficiently even though some buyers may try
to cheat the mechanisms out of gaining sufficient incomes from them. For example, Vickrey
proposed an auction mechanism that has incentive compatibility (Vickrey, 1961). That is a
basic difference from ordinary resource allocation mechanisms that have implicit
assumptions of truth-telling attendees.
Combinatorial auction is an auction mechanism that allows bidders to locate bids for a
bundle of items rather than single item (Cramton et al., 2006). Combinatorial auction has
been applied for various resource allocation problems. For example, McMillan et al.
reported a trial on an FCC spectrum auction (McMillan, 1994). Rassenti et al. reported a
mechanism for an airport time slot allocation problem (Rassenti et al., 1982). Ball et al.
discussed applicability of combinatorial auctions to airspace system resource allocations
(Ball et al., 2006). Caplice et al. proposed a bidding language for optimization of procurement
on freight transportation services (Caplice et al., 2004). Estelle et al. proposed a formalization
on auctioning London Bus Routes (Cantillon & Pesendorfer, 2004). Hohner et al. presented an
experience on procurement auctions at a software company (Hohner et al., 2003).
However, on emerging applications with such resource allocation problems, their problem
spaces are larger, more complex, and much harder to solve compared to previously
proposed applications. For example, Orthogonal Frequency Division Multiple Access
(OFDMA) technology enables us to use a physically identical frequency bandwidth as
virtually multiplied channels at the same time, and this causes the channel allocation
problem to become more difficult (Yang & Manivannan, 2005). Also some recent wireless
technologies allow us to use multiple channels on the same, or different physical layers (i.e,
WiFi, WiMax, and Bluetooth at the same time) for attaining both peak speed and robust
connectivity (Salem et al., 2006); (Niyato and Hossain, 2008). Furthermore, such resource

www.intechopen.com

Parallel Greedy Approximation on Large-Scale Combinatorial Auctions

413

allocation should be done for many ordinary users rather than a fixed limited number of
flights or companies. Also the contexts of users, which are dynamically changing through
the time, should be considered in the allocation.
In this chapter, to maintain simplicity of discussion, we focus on utility-based resource
allocation problems such as (Thomadakis & Liu, 1999), rather than generic resource
allocation problems with numerous complex constraints. The utility-based resource
allocation problem is a problem that aims to maximize the sum of utilities of users for each
allocation period, but does not consider other factors and constraints (i.e., fair allocation
(Sabrina et al., 2007); (Andrew et al., 2008), security and privacy concerns (Xie & Qin, 2007),
uncertainty (Xiao et al., 2004), etc).
Also, throughout this chapter, we only consider auctions that are single-sided, with a single

seller and multiple buyers to maintain simplicity of discussion. It can be extended to the

reverse situation with a single buyer and multiple sellers, and the two-sided case. The two-

sided case is known as the combinatorial exchange. In the combinatorial exchange

mechanisms, multiple sellers and multiple buyers are trading on a single trading

mechanism. About this mechanism, the process of determining winners is almost the same

as single-sided combinatorial auctions. However, it is reported that the revenue division

among sellers can be a problem. There are a lot of interesting studies on combinatorial

exchange (Parkes et al, 2005).

2.2 Winner determination problem

An important issue on combinatorial auction is representation of bids. In this chapter, we
use OR bid representation(Lehmann et al., 2006), a simplest one in major formalisms.
On OR bid representation, the winner determination problem on combinatorial auction

WDPOR is defined as follows (Cramton et al., 2006): The set of bidders is denoted by

N={1,...,n}, and the set of items by M={m1,...,mk}. |M|=k. Bundle S is a set of items:S ⊆ M .

We denote by vi(S), bidder i's valuation of the combinatorial bid for bundle S. An allocation

of the items is described by variables xi(S) ∈ {0, 1}, where xi(S)=1 if and only if bidder i wins

bundle S. An allocation, xi(S), is feasible if it allocates no item more than once,

∑

i∈N

∑

S∋j

xi(S) ≤ 1

for all j ∈ M .
The winner determination problem is the problem to maximize total revenue

max
X

∑

i∈N,S⊆M

vi(S)xi(S)

for feasible allocations X ∋ xi(S).
Fig. 1 shows an example of WDPOR. Consider there are three items a, b, and c, and three

bidders Alice, Bob, and Charles. Alice bids 10 for a. Bob bids 20 for {b, c}. Charles bids 18 for {a,

b}. The problem is to choose winners of this auction from those three bids. Here, to choose

Alice's and Charles's, or Bob's and Charles's are infeasible allocation, since both Alice's and

Charles's include item a, and both Bob's and Charles's include item b. The optimal allocation is

a for Alice, and b and c for Bob.

www.intechopen.com

 Advances in Greedy Algorithms

414

��

����

���

	��

���� �
�

��

��

��

��
��������

Fig. 1. Winner Determination Problem

Since the winner determination problem WDPOR is a combinatorial optimization problem, it
is generally NP-hard(Cramton et al., 2006). Furthermore, winner determination also plays
important roles in other parts of combinatorial auction mechanism. For example, some
combinatorial auction mechanisms (e.g., VCG, etc.) require many times of winner determination
for slightly different bids for pricing mechanism. Therefore, it is strongly demanded to solve the
problem in tractable way. In this chapter, we focus on solving this problem.

2.3 Lehmann’s greedy winner determination

Lehmann et al. proposed a combinatorial auction mechanism that preserves truthfulness, a
very important desirable property, while it uses a greedy approximation algorithm for its
winner determination(Lehmann et al., 2002).
Lehmann's greedy algorithm (Lehmann et al., 2002) is a very simple but powerful linear
algorithm for winner determination in combinatorial auctions. Here, we denote a bid
b=<s,a>, such that S ⊆ M and a ∈ R+. Two bids b=<s,a> and b'=<s',a'> conflict if and
only if s ∩ s′ �= ∅. The greedy algorithm can be described as follows. (1) The bids are sorted
by some criterion. In (Lehmann et al., 2002), Lehmann et al. proposed sorting list L by
descending average amount per item. More generally, they proposed sorting L by a criterion
of the form a/|s|c for some number c ≥ 0, possibly depending on the number of items, k. (2)
A greedy algorithm generates an allocation. L is the sorted list in the first phase. Walk down
the list L, allocates items to bids whose items are still unallocated.
Example: Assume there are three items a, b, and c, and three bidders Alice, Bob, and Charles.
Alice bids 10 for a. Bob bids 20 for {b,c}. Charles bids 18 for {a,b} (Fig. 2 Step1). We sort the bids
by the criterion of the form a/|s|0.5 (Fig. 2 Step2). Alice's bid is calculated as 10/10.5=10. Bob's
bid is calculated as 20/20.5=14 (approximately). Charles's bid is calculated as 18/20.5=13
(approximately). The sorted list is now Bob's bid <{b,c},20>, Charles's bid <{a,b},18>, and
Alice's bid <{a}, 10>. The algorithm walks down the list (Fig. 2 Step3). At first, Bob wins {b,c}
for 20. Then, Charles cannot get the item because his bid conflicts with Bob's bid. Finally,
Alice gets {a} for 10.
Lehmann's greedy algorithm provides a computationally tractable combinatorial auction.
However, it has two remaining issues: (1)efficiency of item assignment, and (2)adjustment of
good bid weighting parameter c. In the next section, we describe possible approaches for
these issues.

www.intechopen.com

Parallel Greedy Approximation on Large-Scale Combinatorial Auctions

415

��

����

���

���

���� ���

�����������������

�����������������

����������������

��������� �! ����������"�	#$���
"�

��

����

���

���

���� ���

�����������������

�����������������

����������������

��������#$����
"��%��������

����&��� #��������'"�
$��
� %�

��

����

���

���

���� ���

Fig. 2. Lehmann’s Greedy Allocation

3. Parallel greedy approximation

3.1 Incremental updating

In (Fukuta & Ito, 2006), we have shown that the hill-climbing approach performs well when

an auction has a massively large number of bids. In this section, we summarize our

proposed algorithms for incremental updating solutions.

Lehmann's greedy winner determination could succeed in specifying the lower bound of the

optimality in its allocation (Lehmann et al., 2002). A straightforward extension of the greedy

algorithm is to construct a local search algorithm that continuously updates the allocation so

that the optimality is increased. Intuitively, one allocation corresponds to one state of a local

search.

List 1 shows the algorithm. The inputs are Alloc and L. L is the bid list of an auction. Alloc is

the initial greedy allocation of items for the bid list.

The function consistentBids finds consistent bids for the set NewAlloc by walking down the

list RemainBids. Here, a new inserted bid will wipe out some bids that conflict with the

inserted bid. So there will be free items to allocate after the insertion. The function

consistentBids tries to insert the other bids greedily for selling as many of the items as

possible. When the total price for NewAlloc is higher than Alloc, current allocation is

updated to NewAlloc and the function continues updating from NewAlloc. We call this as

Greedy Hill Climbing(GHC) in this chapter.

www.intechopen.com

 Advances in Greedy Algorithms

416

1: function GreedyHillClimbingSearch(Alloc, L)

2: RemainBids:= L - Alloc;

3: for each b ∈ RemainBids as sorted order

4: if b conflicts Alloc then

5: Conflicted:=Alloc - consistentBids({b}, Alloc);

6: NewAlloc:= Alloc - Conflicted + {b};

7: ConsBids:=

8: consistentBids(NewAlloc, RemainBids);

9: NewAlloc:=NewAlloc+ConsBids;

10: if price(Alloc) < price(NewAlloc) then

11: return GreedyHillClimbingSearch(NewAlloc,L);

12: end for each

13: return Alloc

List. 1. Greedy Hill Climbing Algorithm

������ ������
•� Initial State

–� AL : Current allocation of items
(The initial allocation is Lehmann’s allocation.)

–� Remain : All bids that are not included in AL

A&B&C 30

D&E 15

A 15

C 13

A&C 14

B 8
Total revenue = 45

AL

Remain

–�Take the top of bid in Remain,

then push it into AL

A&B&C 30

D&E 15

A 15
C 13

A&C 14

B 8

PUSH IN

PUSH

OUT

AL

Remain

������

–� (In this case,

 item B and C are not allocated.)

Lehmann’s algorithm is applied to the non-

allocated items.
A&B&C 30

D&E 15

A 15
C 13

A&C 14

B 8

Apply Lehmann’s

algorithm for not
currently allocated

items. AL

Remain

����	�

–� If the total revenue is larger than the last

then the found allocation overwrites AL.

A&B&C 30

D&E 15

A 15

C 13
A&C 14

B 8

Put back to Remain

Total revenue = 51 (larger than the last revenue = 45)

AL

Remain

AAA

AAA

Fig. 3. Example of Greedy Hill Climbing

Example: Assume there are five items a, b, c, d, and e, and there are six bids, <{a,b,c},30>,
<{a},15>, <{c},13>, <{d,e},15>, <{a,c},14>, and <{b},8>. We can calculate the values of
Lehmann's criterion a/|s|0.5 as 17.6, 15, 13, 10.7, 10, and 8, respectively. In this case, the
initial allocation is Lehmann's greedy allocation <{a,b,c},30>, <{d,e},15> and the total revenue
is 45. Here, the remaining list contains <{a},15>, <{c},13>, <{a,c},14>, and <{b},8> (Fig. 3,

www.intechopen.com

Parallel Greedy Approximation on Large-Scale Combinatorial Auctions

417

Step1). In this algorithm, we pick <{a},15> since it is the top of the remaining list. Then we
insert <{a},15> into the allocation and remove <{a,b,c},30>. The allocation is now <{a},15>,
<{d,e},15> (Fig. 3, Step2). We then try to insert the other bids that do not conflict with the
allocation (Fig. 3, Step3). Then, the allocation becomes <{a},15>, <{b},8>, <{c},13>,<{d,e},15>.
The total revenue is 51, and is increased. Thus, the allocation is updated to it (Fig. 3, Step4).
Our local algorithm continues to update the allocation until there is no allocation that has
greater revenue. This could improve the revenue that Lehmann's greedy allocation can
achieve.
To show the advantages of greedy incremental updating, we also prepared an ordinary Hill-

Climbing local search algorithm. List.2. shows the algorithm. The difference to above is to

choose best alternatives in each climbing step, instead of choosing it greedily. We call this as

Best Hill Climbing(BHC) in this chapter.

1: function BestHillClimbingSearch(Alloc, L)

2: MaxAlloc := φ

3: RemainBids:= L - Alloc;

4: for each b ∈ RemainBids as sorted order

5: if b conflicts Alloc then

6: Conflicted:=Alloc - consistentBids({b}, Alloc);

7: NewAlloc:= Alloc - Conflicted + {b};

8: ConsBids:=

9: consistentBids(NewAlloc, RemainBids);

10: NewAlloc:=NewAlloc+ConsBids;

11: if price(MaxAlloc) < price(NewAlloc) then

12: MaxAlloc := NewAlloc;

13: end for each

14: if price(Alloc) < price(MaxAlloc) then

15: return BestHillClimbingSearch(MaxAlloc,L);

16: return Alloc

List. 2. Best Hill Climbing Algorithm

3.2 Parallel search for multiple weighting strategies

The optimality of allocations got by Lehmann's algorithm (and the following hill-climbing)
deeply depends on which value was set to c in the bid weighting function. Again, in
(Lehmann et al., 2002), Lehmann et al. argued that c=1/2 is the best parameter for
approximation when the norm of the worst case performance is considered. However,
optimal value for approximating an auction is varied from 0 to 1 depending on the auction
problem.
For example, when we choose c=1 in the example in section 3.1, we can get better results
directly at the time of initial Lehmann's greedy allocation (Fig. 4).
In (Fukuta & Ito, 2006), we presented an initial idea of an enhancement for our incremental
updating algorithm to parallel search for different bid weighting strategies (e.g, doing the
same algorithm for both c=0 and c=1).

www.intechopen.com

 Advances in Greedy Algorithms

418

�
�
�� ��� ��
���
���������

�� ��� ��
���
�������

�� ��� ��
���
�������

���� ��� ���������	��
���

���� �
� �
�������	�����

�� �� ���������	����

������ �
� �
�����	���
�

�� ��� �������	�����

�� ��� �������	�����

���� ��� �������	������

���� �
� �
�����	������

�� �� ��������	������

��	�������
�
��
�	�
��� ��	�����
�
��
�	�����

Fig. 4. Effects of Bid Weighting Strategy

3.3 Simulated annealing search

We also prepared a small extension of the shown algorithm to the simulated annealing local
search(Fukuta & Ito, 2006). The algorithm is a combination of the presented hill-climbing
approach and a random search based on the standard simulated annealing algorithm. We
use a parameter that represents the temperature. The temperature is set at a high value at
the beginning and continuously decreased until it reaches 0. For each cycle, a neighbour is
randomly selected and its value may be less than the current value in some cases. Even in
such a case, if a probability value based on the temperature is larger than 0, the state is
moved to the new allocation that has less value. This could make us get off the local
minimum.
We prepared this algorithm only for investigating how random search capability will
improve the performance. Note that the proposed SA search may not satisfy our proposed
features discussed later.

4. Experimental analysis

4.1 Experiment settings

In this section, we compare our algorithms to other approaches in various datasets. Details
about other approaches are presented in section 5.
We implemented our algorithms in a C program for the following experiments. We also
implemented the Casanova algorithm(Hoos & Boutilier, 2000) in a C program. However, for
the following experiments, for Zurel's algorithm we used Zurel's C++ based implementation
that is shown in (Zurel & Nisan, 2001). Also we used CPLEX Interactive Optimizer 11.0.0
(32bit) in our experiments.
The experiments were done with the above implementations to examine the performance
differences among algorithms. The programs were employed on a Mac with Mac OS X 10.4,
CoreDuo 2.0GHz CPU, and 2GBytes of memory. Thus, actual computation time will be
much smaller when we employ parallel processor systems in a distributed execution
environment.

www.intechopen.com

Parallel Greedy Approximation on Large-Scale Combinatorial Auctions

419

We conducted several experiments. In each experiment, we compared the following search
algorithms. greedy(c=0.5) uses Lehmann's greedy allocation algorithm with parameter
(c=0.5). greedy-N uses the best results of Lehmann's greedy allocation algorithm for N
different weighting parameters (0 ≤ c ≤ 1). *HC(c=0.5) uses a local search in which the
initial allocation is Lehmann's allocation with c=0.5 and conducts one of hill-climbing
searchs (e.g., GHC or BHC) shown in the previous section. Similarly, *HC-N uses the best
results of a hill-climbing search (e.g., GHC or BHC) for N different weighting parameters
(0 ≤ c ≤ 1). For example, GHC-11 means the best result of greedy hill-climbing(GHC) with
parameter c = {0, 0.1,...,0.9, 1}. SA uses the simulated annealing algorithm presented in
(Fukuta & Ito, 2006). Also, we denote the Casanova algorithm as casanova and Zurel's
algorithm as Zurel.
In the following experiments, we used 0.2 for the epsilon value of Zurel's algorithm in our
experiments. This value appears in (Zurel & Nisan, 2001). Also, we used 0.5 for np and 0.15
for wp on Casanova, which appear in (Hoos & Boutilier, 2000). Note that we set maxTrial to 1
but maxSteps to ten times the number of bids in the auction.

4.2 Evaluation on basic auction dataset

In (Zurel & Nisan, 2001), Zurel et al. evaluated the performance of their presented algorithm
with the data set presented in (de Vries & Vohra, 2003), compared with CPLEX and other
existing implementations.
In (Fukuta & Ito, 2007a), we presented comparison of our algorithms, Casanova, and Zurel's
algorithm with the dataset provided in (de Vries & Vohra, 2003). This dataset contains 2240
auctions with optimal values, ranging from 25 to 40 items and from 50 to 2000 bids. Since
the data set is small, we omit details in this chapter.
We conducted detailed comparisons with common datasets from CATS benchmark(Leyton-
Brown et al., 2000). Compared to deVries' dataset shown in (de Vries & Vohra, 2003), the
CATS benchmark is very common and it contains more complex and larger datasets.
Fig. 5 shows the comparison of our algorithms, Casanova, and Zurel's algorithm with a
dataset provided in the CATS benchmark (Leyton-Brown et al., 2000). The dataset has
numerous auctions with optimal values in several distributions. Here we used varsize
which contains a total of 7452 auctions with reliable optimal values in 9 different
distributions1. Numbers of items range from 40 to 400 and numbers of bids range from 50 to
2000.
Since problems in the dataset have relatively small size of bids and items, we omitted the
execution time since all algorithms run in very short time. Here, we can see that the
performances of GHC-11 and SA are better than Zurel's on average optimality.
Note that those differences come from the differences of the termination condition on each
algorithm. In particular, Casanova spent much more time compared with the other two
algorithms. However, we do not show the time performance here since the total execution
time is relatively too small to be compared.

1 Since some of the original data seems corrupted or failed to obtain optimal values, we
excluded such auction problems from our dataset. Also, we excluded a whole dataset of a
specific bid distribution when the number of valid optimal values is smaller than the other
half of the data. The original dataset provides optimal values of auction problems by two
independent methods, CASS and CPLEX. Therefore, it is easy to find out such corrupted
data from the dataset.

www.intechopen.com

 Advances in Greedy Algorithms

420

�������

�������

�������

�������

����(��

����(��

���(���

�������

������

�������

�������

�������

����� ����� ���� ����� ����� ����� ����� ��

����������	
��

�
�����	
��

�
�����	
��

�������(�

�
��(�

�
��(�

����������

�
�����

�
�����

���

������

���������

Fig. 5. Optimality on CATS-VARSIZE dataset

Here, we can see the performance of both greedy, GHC, and BHC increases when we use
more threads to parallel search for multiple weightings. For example, the result of GHC-3 is
better than GHC(c=0.5) and GHC-11 is slightly better in the average. It shows that our
parallel approximation approach will increase the performance effectively even when the
number of parallel executions is small.
Also we compared the performance on our greedy local updating approach (GHC) with
ordinary best updating approach (BHC). Surprisingly, the average performances of GHC are
slightly better than BHC, regardless of using parallel search. This is because the BHC
approach is still heuristic one so it does not guarantee the choice is best for global
optimization. Also we think we found a very good heuristic bid weighting function for our
greedy updating.

4.3 Evaluation on large auction dataset

The CATS common datasets we used in Section 4.2 have a relatively smaller number of bids
than we expected. We conducted additional experiments with much greater numbers of
bids. We prepared additional datasets having 20,000 non-dominated bids in an auction. The
datasets were produced by CATS (Leyton-Brown et al., 2000) with default parameters in 5
different distributions. In the datasets, we prepared 100 trials for each distribution. Each trial
is an auction problem with 256 items and 20,000 bids2.

2 Due to the difficulty of preparing the dataset, we only prepared 5 distributions. For more
details about the bid generation problem, see (Leyton-Brown et al., 2000). A preliminary
result of this experiment was shown in (Fukuta & Ito, 2007b).

www.intechopen.com

Parallel Greedy Approximation on Large-Scale Combinatorial Auctions

421

Fig. 6 (6a and 6b) shows the experimental result on the datasets with 20,000 bids in an
auction focused on execution time of approximation. Due to the difficulty of attaining
optimal values, we normalized all values as Zurel's results equaling 1 as follows.
Let A be a set of algorithms, z ∈ A be the Zurel's approximation algorithm, L be a dataset
generated for this experiment, and revenuea(p) such that a ∈ A be the revenue obtained by
algorithm a for a problem p such that p ∈ L, the average revenue ratio ratioAa(L) for
algorithm a ∈ A for dataset L is defined as follows:

()
()

()

L

L

p
L

p

∈

∈

= ∑
∑

p a

p z

a

revenue
ratioA

revenue

Here, we use ratioAa(L) for our comparison of algorithms.

��)�*���

��)��)��

��)��)��

��)�*���

��)��)��

��)��)��

��)�����

��))���

��)+�+��

��)�*���

��)��)��

��)��)��

��)++*��

��))* ��

�����)��

��)*+���

��+� ��

��������

��� ����

�����*��

����� ��

���� ���

���)� ��

���)� ��

�� +����

�������� �������� �������� �� ����� ��+����� �������� ��������

�����%��,�����

�	

�%�
��
��

�	

�%�
���	��

�����,�����������

����
��
��������

����
���	��������

�����,�����������

����
��
��������

����
���	��������

�����,������������

����
��
���������

����
���	���������

�����,������������

����
��
���������

����
���	���������

����������

��	
������

��	
��

��������������

���������������

����������������

���
��������

���
��

���

���
���������

���
��
������

Fig. 6a. Time Performance on 20,000 bids- 256 items (Optimality Ratio)

www.intechopen.com

 Advances in Greedy Algorithms

422

�����

 *���

���!�

����

����

����

����

����

����

�����

�����

�����

�����

�����

�����

�����

!

�

�!*��

���

����

�����

��+�

!!!�

�!���

!
+ �

�� ����� �����
���� !���� ����� ����

�	

�%��"�����

�	

�%�
��
��

�	

�%�
���	��

�����"�����������

����
��
��������

����
���	��������

�����"�����������

����
��
��������

����
���	��������

�����"������������

����
��
���������

����
���	���������

�����"������������

����
��
���������

����
���	���������

����������

��	
������

��	
��

��������������

���������������

����������������

���
��������

���
��

���

���
���������

���
��
������

Fig. 6b. Time Performance on 20,000 bids - 256 items (Elapsed Time[msec])

We prepared cut-off results for Casanova and HC. For example, casanova-10ms denotes the
result of Casanova within 10 milliseconds. Here, for faster approximation, we used greedy-

3, GHC-3, and BHC-3 but did not use greedy-11, GHC-11, and BHC-11. Here, greedy-3 uses
the best results of Lehmann's greedy allocation algorithm with parameter (0 ≤ c ≤ 1 in 0.5
steps). GHC-3 and BHC-3 use the best results of the local updating with parameter
(0 ≤ c ≤ 1 in 0.5 steps). Also, we prepared a variant of our algorithm that has a suffix of
-seq or -para. The suffix -seq denotes the algorithm is completely executed in a sequence
that is equal to one that can be executed on a single CPU computer. For example, greedy-3-

seq denotes that the execution time is just the sum of execution times of three threads. The
suffix -para denotes the algorithm is completely executed in a parallel manner, and the three
independent threads are completely executed in parallel. Here, we used the ideal value for
-para since our computer has only two cores in the CPU. The actual execution performance

www.intechopen.com

Parallel Greedy Approximation on Large-Scale Combinatorial Auctions

423

will be between -seq and -para. Also, we denote the initial performance of Zurel's algorithm
as Zurel-1st. Here, Zurel-1st is the result at the end of its first phase and no winners will be
approximately assigned before it. cplex is the result of CPLEX with the specified time limit.
On most distributions in Fig. 6, Zurel-1st takes more than 1 second but the obtained ratioA is
lower than greedy-3-seq. Furthermore, the average ratioA of GHC-3-para-1000ms is higher
than Zurel while its computation time is less than both Zurel and Zurel-1st.
In Fig. 6, BHC could not get any update within the time limit so there is no update from
greedy. Here, although SA performs better than greedy(C=0.5), it could not outperform
GHC(C=0.5) in any case. Therefore, we can see that both best-updating and random-updating
approaches are not sufficient enough for extremely short time approximation, although the
greedy-updating approach makes a good performance in the same situation.
In many settings of CPLEX, the values are 0. This is because CPLEX could not generate
initial approximation result within the provided time limit. Only datasets for two bid
distributions have non-zero results for CPLEX. However, CPLEX spends around 400 msec
for the computation but the results are still lower than greedy-3. On a dataset for another
bid distribution, CPLEX could prepare results in 3.8 sec of computation, however, the result
is still lower than greedy-3. This is because the condition we set up gave extremely short
time limit so therefore CPLEX could not generate sufficient approximation results in such
hard time constraint.
Fig. 7 shows the experimental result on the dataset with 100,000 bids in an auction focused
on the early anytime performance. While GHC-3 and Zurel's algorithm are competitive in
Fig. 6, it is clear that our proposed GHC-3 outperforms Zurel's algorithm in any time
performance in Fig. 7. Note that, for Zurel's algorithm, the time needed to attain initial
allocations increased approx. six times when the number of bids becomes five times larger
than that of Fig. 6. However, while our GHC-3-para-1000ms only takes the same execution
time (i.e, 1000 msec) for larger dataset, its average ratioA is higher than Zurel. Note that the
GHC-3-para-333ms has still higher ratioA value than Zurel while its average computation
time is 100 times less. We argue that our algorithm has an advantage when the number of
bids increases.

5. Related work

5.1 Approaches for optimization problems

There are really many approaches to optimization problems. Linear programming is one of
the well-known approaches in this area. The winner determination problem on
combinatorial auctions can be transformed into a linear programming problem. Therefore, it
is possible to use a linear programming solver for the winner determination problem.
CPLEX is a well-known, very fast linear programming solver system. In (Zurel & Nisan,
2001), Zurel et al. evaluated the performance of their presented algorithm with many data
sets, compared with CPLEX and other existing implementations. While the version of
CPLEX used in (Zurel & Nisan, 2001) is not up-to-date, the shown performance of Zurel's
algorithm is approximately 10 to 100 times faster than CPLEX. In this chapter, we showed
direct comparisons to the latest version of CPLEX we could prepare. Our approach is far
better than latest version of CPLEX for large-scale winner determination problems.
Therefore, the performance of our approach is competitive enough with CPLEX or other
similar solver systems. This is natural since Zurel's and our approaches are specialized for
combinatorial auctions, and also focus only on faster approximation but do not seek optimal

www.intechopen.com

 Advances in Greedy Algorithms

424

��������

��������

��������

��	��
��

��������

���
�
��

��������

��������

��������

��������

���		���

�������� �������� ��
����� �������� �������� �������� ��������

�
�������

��������
��������

��������
���������

��
�������

��
���

������ ��������

������ ���������

����!�������

����!�������

����!��������

����!��������

Optimality Ratio

#
���

����

�����

�"����

��"���

����

�����

����

"���

��#��

��
"�

�� #���� ������ �#���� ������ �#���� ������ �#����
�����

�
�������

��������
��������

��������
���������

��
�������

��
���

������ ��������

������ ���������

����!�������

����!�������

����!��������

����!��������

Elapsed Time[msec]

Fig. 7. Time Performance on 100,000bids - 256items

solutions. In case we need optimal solutions, it is good choice to solve the same problem by
both our approach and CPLEX in parallel. This could improve anytime performance but
guarantee obtaining optimal solutions. Even in such case, our approach should spend very
small computation overhead.
Random-walk search is also a strong approach for approximating combinatorial
optimization problems. There have been many algorithms proposed based on random-walk
search mechanisms. In (Hoos & Boutilier, 2000), Casanova was proposed, which applies a

www.intechopen.com

Parallel Greedy Approximation on Large-Scale Combinatorial Auctions

425

random walk SAT approach for approximating the winner determination problem in
combinatorial auctions. In this chapter, we showed that our approach outperforms
Casanova when the time constraint is very hard but the problem space is really large.
Simulated Annealing (SA) is another similar approach. We prepared an SA-based extension
for our approach and we confirmed it increases the performance when the problem size is
relatively small. However, SA needs random-walk in the early stage of its search and it
decreases performance on short-time approximation.
Genetic Algorithm is another similar approach. In (Avasarala et al., 2006), Avasarala et al.
proposed an approach for the winner determination problem on combinatorial auctions.
However, in (Avasarala et al., 2006), they noticed that their algorithm is not effective for
approximation in short time but is effective for obtaining higher optimal solutions with
enough computation time. Random-walk searching is really effective approximation
approach for combinatorial optimization problems. However, it is not effective when there
are such hard time constraints. We focused on solving problems that are hard for such
random-walk search approaches.

5.2 Approaches to obtain optimal solutions

There have been a lot of works on obtaining optimal solutions for winner determination in
combinatorial auctions (de Vries & Vohra, 2003). For example, CABOB (Sandholm et al.,
2005) and CASS (Fujishima et al., 1999) have been proposed by aiming to get the optimal
allocations.
In (Hoos & Boutilier, 2000), it is shown that the Casanova algorithm outperforms
approximation performance of CASS on winner determination. In this chapter, we showed
that our approach outperforms Casanova in settings of a very large number of bids in an
auction. Therefore, our approach should also outperform CASS in the same settings.
In (Sandholm et al., 2005), Sandholm et al. showed that CABOB outperforms CPLEX in
several settings. However, according to our comparison, our algorithm should outperform
CABOB in our settings. We argue that our approach is rather complementary to those
algorithms that are seeking exact optimal solutions. It is not fair to compare their
approximation performances when one guarantees obtaining optimal solutions but the
other does not. Our approximation approach only covers large size problem settings that
can only be handled by specialized approximation algorithms. Our approach does not
contribute to advances in developing algorithms to obtain optimal solutions directly.

5.3 Other greedy approaches

Some researchers have noticed the better performance of simple greedy and incremental
approaches for very large-scale problems. For example, (Sandholm, 2002) noticed the ease of
approximation on very large auction problems. In (Lehmann et al., 2002), Lehmann et al.
mentioned that a simple greedy approach obtains very high results when the auction
problem is rather huge.
Also in (Kastner et al., 2002), Kastner et al. mentioned a potential capability of a simple
incremental search approach to apply to very large auction problems and discussed the
sensitivity for the number of bids in an auction. However, there is little mentioned about a
detailed comparison of actual performances for several different types of datasets. In
(Kastner et al., 2002), they only presented their preliminary experimental results on a dataset
that is based on a single bid distribution.

www.intechopen.com

 Advances in Greedy Algorithms

426

Guo et al. (Guo et al., 2005) proposed similar local-search based algorithms and they argued
that their approach is good for the settings of a large number of bids in a combinatorial
auction problem. However, in (Guo et al., 2005), they presented very limited experimental
results and little analysis or comparison to other high performance algorithms. Also in (Guo
et al., 2005), they did not propose an idea that is similar to our multiple bid-weighting
search. We argue that this multiple weighting search approach is very effective and that it
distinguishes our approach from others. Also, we showed a detailed analysis of our
experiments based on datasets generated by possible different bid distributions. We also
showed direct comparisons to Zurel's approach presented in (Zurel & Nisan, 2001).

5.4 Other approaches
When we have some assumptions about models for valuation of bids, we can utilize those
assumptions for better approximation. Dobzinski et al. proposed improved approximation
algorithms for auctions with submodular bidders (Dobzinski & Schapira, 2006). Lavi et al,
reported an LP-based algorithm that can be extended to support the classic VCG (Lavi &
Swamy, 2005). Those studies mainly focused on theoretical aspects. In contrast to those
papers, we rather focus on experimental analysis and implementation issues. Those papers
did not present experimental analysis of the settings with a large number of bids as we
presented in this chapter.
Using sequential auctions (Boutiler et al., 1999) is another approach to overcome the
communication cost problem. Koenig et al. proposed a multiple-round auction mechanism
that guarantees the upper bound of communication cost as fixed size k, that is independent
from the number of agents or items in the auction (Koenig et al., 2007). Although our
algorithm itself can approximate winners within a very short time with a huge number of
updated bids, the communication cost problem remains.

6. Discussion

Lehmann's mechanism preserves truthfulness of the auction. However, since greedy
incremental updating approach breaks monotonicity, an important property to provide
truthfulness of auctions, the resulting auction will not be truthful. Detailed discussions and
a counter example for monotonicity is presented in (Fukuta & Ito, 2007c). Therefore, another
monotonicity has been proposed to approach this issue.
In real world auctions, often we open the winners and their bidding prices after the auction
is finished. When we employ an approximated algorithm for winner determination, a loser
who might be a winner in the optimal allocation could know the winner's bidding price in
an approximate allocation after the auction finishes. In some cases, this loser had placed a
higher price than the winner's for the same or a subset of the bundle. This would result in
unacceptable allocations for bidders.
We believe that the above issue should be considered to make our mechanism acceptable by
participants in the real world. Therefore, Winner-Price-Monotonicity and Weak-Winner-
Price-Monotonicity are proposed to avoid unacceptable allocations(Fukuta & Ito, 2007a).

Definition 1. (Winner-Price-Monotonicity: WPM) For two non-empty
bundles B and B′, if B ⊆ B′and vi(B) > vj(B

′), then j must not win bun-
dle B′.

Definition 2. (Weak-Winner-Price-Monotonicity: Weak-WPM) For non-
empty bundle B, if vi(B) > vj(B), then j must not win bundle B.

www.intechopen.com

Parallel Greedy Approximation on Large-Scale Combinatorial Auctions

427

Here, proofs for following propositions are shown in (Fukuta & Ito, 2007a).

Proposition 1. Our proposed winner determination algorithms, except for the
simulated annealing-based algorithm, produce allocation Wfin that satisfies WPM
when the algorithm reaches an end.

Proposition 2. In terms of any allocations that are achieved during computa-
tion (as an anytime algorithm), our proposed winner determination algorithms,
except for the simulated annealing-based algorithm, satisfy Weak-WPM.

It is a big merit to guarantee WPM and/or Weak-WPM at the algorithm level when we

use it where slightly different combinatorial auctions are conducted iteratively. It seems

easy to satisfy WPM and/or Weak-WPM by using any approximated winner

determination algorithms by adding a pre-processing that removes all dominated bids

from the bidset before starting the approximation. However, we should consider its

computational overhead. For simplicity, consider a case B = B' instead of B ⊆ B′ . Let n be

the number of items and m be the number of items in an auction. When m is very small, it

is easy to look up the highest bids of each bundle by using a hash algorithm. In this case,

the computational order is O(n). However, it consumes a great deal of memory (of course

it can be smaller than 2m but at least additional O(n) of working space), and it is actually

very difficult to determine good hash functions for a smaller hash table size without loss

of computational speed. It is a serious problem when the memory is almost completely

used up for storing the data of a large number of bids. Sometimes its computational order

might reach O(n2), which is greater than that of typical good approximation algorithms.

For example, the computational order of Lehmann's greedy algorithm is O(n log n) when

we use one of the O(n log n) sorting algorithms on it. Furthermore, when we consider the

deletion of a bid, we have to determine the highest price bid that has been made obsolete

by the deleted bid, or recalculate such pre-processing for all bids again. Considering a

case B ⊆ B′ will make the problem more difficult. Since our algorithms guarantee Weak-

WPM and WPM for the produced results, there is no need to prepare such additional pre-

processing.

7. Conclusions

In this chapter, we presented how greedy approach can be used in combinatorial auctions.

When we have hard time constraint and a large scale problem, greedy approach works very

well compared to other approaches. Two different greedy approaches can be combined to

improve performance. Also it is good idea to combine parallel search approach for greedy

approximation algorithm. Furthermore, greedy-based approach is also helpful to keep the

result of algorithm a certain desirable property, while other random search algorithms could

not.

For further reading about combinatorial auctions, (Cramton et al., 2006) is a best book for

both researchers and practitioners. For further reading about the shown approach, see

(Fukuta & Ito, 2007a); (Fukuta & Ito, 2007b) for detailed performance analysis, and see

(Fukuta & Ito, 2006); (Fukuta & Ito, 2007c); (Fukuta & Ito, 2007a) for theoretical issues and

further discussions.

www.intechopen.com

 Advances in Greedy Algorithms

428

8. References

Andrew, L. L.H.; Hanly, S. V. & Mukhtar, R. G. (2008). Active queue management for fair
resource allocation in wireless networks. IEEE Transactions on Mobile Computing,
pages 231-246, Feb. 2008.

Avasarala, V.; Polavarapu, H.; & Mullen, T. (2006). An approximate algorithm for resource
allocation using combinatorial auctions. In Proc. of The 2006 WIC/IEEE/ACM
International Conference on Intelligent AgentTechnology (IAT2006), pages 571-578,
2006.

Ball, M. O.; Donohue, G. L. & Hoffman, K. (2006). Auctions for allocation of airspace system
resources. In Peter Cramton, Yoav Shoham, and Richard Steinberg, editors,
Combinatorial Auctions, chapter 20, pages 507-538. The MIT Press, 2006.

Boutiler, C.; Goldszmidt, M.; & Sabata, B. (1999). Sequential auctions for the allocation of
resources with complementarities. In Proc. of International Joint Conference on
Artificial Intelligence(IJCAI1999), pages 527-534, 1999.

Cantillon, E. & Pesendorfer, M. (2004). Combination bidding in multi-unit auctions. Working
Paper of Harvard Business School and London School of Economics, 2004.

Caplice, C.; Plummer, C. & Sheffi, Y. (2004). Bidder behavior in combinatorial auctions for
transportation services. Working Paper of Massachusetts Institute of Technology Center
for Transportation and Logistics, 2004.

Cramton, P.; Shoham, Y. & Steinberg, R. (2006). Combinatorial Auctions. The MIT Press, 2006.
de Vries, S. & Vohra, R. V. (2003). Combinatorial auctions: A survey. International

Transactions in Operational Research, 15(3):284-309, 2003.
Dobzinski, S. & Schapira, M. (2006). An improved approximation algorithm for

combinatorial auctions with submodular bidders. In SODA ’06: Proceedings of the
seventeenth annual ACM-SIAM symposium on Discrete algorithm, pages 1064-1073.
ACM Press, 2006.

Fujishima, Y.; Leyton-Brown, K. & Shoham, Y. (1999). Taming the computational complexity
of combinatorial auctions: Optimal and approximate approarches. In Proc. of the
16th International Joint Conference on Artificial Intelligence (IJCAI99), pages 548-553,
1999.

Fukuta, N. & Ito, T. (2007a). Periodical resource allocation using approximated
combinatorial auctions. In Proc. of The 2007 WIC/IEEE/ACM International Conference
on Intelligent Agent Technology (IAT2007), pages 434-441, 2007.

Fukuta, N. & Ito, T. (2007b). Short-time approximation on combinatorial auctions – a
comparison on approximated winner determination algorithms. In Proc. of The 3rd
International Workshop on Data Engineering Issues in E-Commerce and Services
(DEECS2007), pages 42-55, 2007.

Fukuta, N. & Ito, T. (2007c). Toward a large scale e-market: A greedy and local search based
winner determination. In Proc. of The 20th International Conference on Industrial,
Engineering and Other Applications of Applied Intelligent Systems (IEA/AIE2007), pages
354-363, 2007.

Fukuta, N. & Ito, T. (2006). Towards better approximation of winner determination for
combinatorial auctions with large number of bids. In Proc. of The 2006
WIC/IEEE/ACM International Conference on Intelligent Agent Technology (IAT2006),
pages 618-621, 2006.

www.intechopen.com

Parallel Greedy Approximation on Large-Scale Combinatorial Auctions

429

Guo, Y. ; Lim, A. ; Rodrigues, B. & Zhu, Y. (2005). A non-exact approach and experiment
studies on the combinatorial auction problem. In Proc. of HICSS2005, page 82.1,
2005.

Hohner, G.; Rich, J.; Ng, E.; Reid, G.; Davenport, A.; Kalagnanam, J.; Lee, H. S. & An, C.
(2003). Combinatorial and quantity discount procurement auctions with mutual
benefits at mars, incorporated. Interfaces, 33:23-35, 2003.

Hoos, H. H. & Boutilier, C. (2000). Solving combinatorial auctions using stochastic local
search. In Proc. of the AAAI2000, pages 22-29, 2000.

Kastner, R.; Hsieh, C.; Potkonjak, M. & Sarrafzadeh, M. (2002). On the sensitivity of
incremental algorithms for combinatorial auctions. In Proc. International Workshop
on Advanced Issues of E-Commerce and Web-Based Information Systems (WECWIS2002),
pages 81-88, 2002.

Koenig, S.; Tovey, C.; Zheng, X. & Sungur, I. (2007). Sequential bundle-bid single-sale
auction algorithms for decentralized control. In Proc. of International Joint Conference
on Artificial Intelligence(IJCAI2007), pages 1359-1365, 2007.

Lavi, R. & Swamy, C. (2005). Truthful and near-optimal mechanism design via linear
programming. In 46th Annual IEEE Symposium on Foundations of Computer Science
(FOCS’05), pages 595-604, 2005.

Lehmann, D.; Mu¨ller, R. & Sandholm T. (2006). The winner determination problem. In Peter
Cramton, Yoav Shoham, and Richard Steinberg, editors, Combinatorial Auctions,
chapter 20, pages 507-538. The MIT Press, 2006.

Lehmann, D.; O’Callaghan, L. I. & Shoham, Y. (2002). Truth revelation in rapid,
approximately efficient combinatorial auctions. Journal of the ACM, 49:577-602, 2002.

Leyton-Brown, K.; Pearson, M. & Shoham, Y. (2000). Towards a universal test suite for
combinatorial auction algorithms. In Proc. of EC 2000, pages 66-76, 2000.

McMillan, J. (1994). Selling spectrum rights. The Journal of Economic Perspectives, 1994.
Niyato, D. & Hossain, E. (2008). A noncooperative gametheoretic framework for radio

resource management in 4g heterogeneous wireless access networks. IEEE
Transactions on Mobile Computing, pages 332-345, March 2008.

Parkes, D. C.; Cavallo, R.; Elprin, N. ; Juda, A.; Lahaie, S.; Lubin, B.; Michael, L.; Shneidman,
J. & Sultan, H. (2005). Ice: An iterative combinatorial exchange. In The Proc. 6th
ACM Conf. on Electronic Commerce (EC’05), 2005.

Rassenti, S. J.; Smith, V. L. & Bulfin, R. L. (1982). A combinatorial auction mechanism for
airport time slot allocation. Bell Journal of Economics, 13:402-417, 1982.

Sabrina, F.; Kanhere, S. S. & Jha, S. K. (2007). Design, analysis, and implementation of a
novel low complexity scheduler for joint resource allocation. IEEE Transactions on
Parallel and Distributed Systems, pages 749-762, June 2007.

Salem, N. B.; Buttyan, L.; Hubaux, J.-P. & Jakobsson, M. (2006). Node cooperation in hybrid
ad hoc networks. IEEE Transactions on Mobile Computing, pages 365-376, April 2006.

Sandholm, T. (2002). Algorithm for optimal winner determination in combinatorial auctions.
Artificial Intelligence, 135:1-54, 2002.

Sandholm, T.; Suri, S.; Gilpin, A.; & Levine, D. (2005). Cabob: A fast optimal algorithm for
winner determination in combinatorial auctions. Management Science, 51(3):374-390,
March 2005.

www.intechopen.com

 Advances in Greedy Algorithms

430

Thomadakis, M. E. & Liu, J.-C. (1999). On the efficient scheduling of non-periodic tasks in
hard real-time systems. In Proc. of IEEE Real-Time Systems Symp., pages 148-151,
1999.

Vickrey, W. (1961). Counterspeculation, auctions, and competitive sealed tenders. Journal of
Finance, XVI:8-37, 1961.

Xiao, L.; Chen, S.; & Zhang, X. (2004). Adaptive memory allocations in clusters to handle
unexpectedly large data-intensive jobs. IEEE Transactions on Parallel and Distributed
Systems, pages 577-592, July 2004.

Xie, T. & Qin, X. (2007). Security-aware resource allocation for real-time parallel jobs on
homogeneous and heterogeneous clusters. IEEE Transactions on Parallel and
Distributed Systems, Sep. 2007.

Yang, J. & Manivannan, D. (2005). An efficient fault-tolerant distributed channel allocation
algorithm for cellular networks. IEEE Transactions on Mobile Computing, pages 578-
587, Nov. 2005.

Zurel, E. & Nisan, N. (2001). An efficient approximate allocation algorithm for combinatorial
auctions. In Proc. of the Third ACM Conference on Electronic Commerce (EC2001),
pages 125-136, 2001.

www.intechopen.com

Greedy Algorithms

Edited by Witold Bednorz

ISBN 978-953-7619-27-5

Hard cover, 586 pages

Publisher InTech

Published online 01, November, 2008

Published in print edition November, 2008

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Each chapter comprises a separate study on some optimization problem giving both an introductory look into

the theory the problem comes from and some new developments invented by author(s). Usually some

elementary knowledge is assumed, yet all the required facts are quoted mostly in examples, remarks or

theorems.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Naoki Fukuta and Takayuki Ito (2008). Parallel Greedy Approximation on Large-Scale Combinatorial Auctions,

Greedy Algorithms, Witold Bednorz (Ed.), ISBN: 978-953-7619-27-5, InTech, Available from:

http://www.intechopen.com/books/greedy_algorithms/parallel_greedy_approximation_on_large-

scale_combinatorial_auctions

© 2008 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

