
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

23

Parallel Search Strategies for TSPs using a
Greedy Genetic Algorithm

Yingzi Wei1 and Kanfeng Gu2

1School of Information Science and Engineering, Shenyang Ligong University,
2Shenyang Institute of Automation, Chinese Academy of Science,

China

1. Introduction

The Genetic Algorithm (GA) is an optimizing algorithm modelled after the evolution of
natural organisms. GA was not originally intended for highly constrained optimization
problems but were soon adapted to order-based problems like the TSP (Goldberg, D.E. etc.
1985, 1989). It has also been applied to a variety of combinatorial optimization problems. GA
is an iterative procedure which maintains a population of candidate solutions. These
solutions (instances or chromosomes) are encoded into strings of symbols. The initial
population of instances, represented by their chromosomes, can be chosen heuristically or at
random. During each iteration step, called a generation, a number of individuals selected
from population solutions implement genetic operations. Some of the GA's merits are that it
can be easily developed. GA does not require detailed knowledge about the problem, can
search globally, and also adapt to the changing conditions in the problem. The traveling
salesman problem (TSP) is defined as a very difficult task that seeks a shortest tour of N
cities in such a way, that to visit all cities only once and return to the starting city. The TSP
was chosen for many reasons: (i) it can be used to model many practical problems, (ii) it is a
standard test-bed for new algorithmic ideas and a good performance on the TSP is often
taken as a proof of their usefulness or effectiveness, and (iii) it is easily understandable, so
that the algorithm behavior is not obscured by too many technicalities.
Despite of these merits, GA is often slower than conventional methods, such as heuristic
searches. This is because GA does not utilize explicitly the knowledge of how to search for
the solutions. Therefore, hybrid methods that combine GA with other techniques have been
attempted (G. Andal Jayalakshmi etc, 2001). The TSP solver we suggested is one of the
hybrid methods. It combines GA and greedy principles to construct the TSP solver. With the
TSP, we can study the effect of using information about distances of the cities in genetic
operators. We improved the genetic operator to guide the generation of new offspring
genotypes. Owing to heuristics of greed, it is much faster than other TSP solvers based on
GA alone.
This paper begins with a brief description of TSP and GA in general, followed by a review of
key to design the GA for permutation problems and analysis of the probable difficulties
therein. Then, the greedy selection principle is introduced. In the next a few sections, we
present the greedy genetic algorithm (GGA), how we modify a genetic algorithm to solve
TSP, our methodology, results, and conclusions. O

pe
n

A
cc

es
s

D
at

ab
as

e
w

w
w

.in
te

ch
w

eb
.o

rg

Source: Advances in Greedy Algorithms, Book edited by: Witold Bednorz,
ISBN 978-953-7619-27-5, pp. 586, November 2008, I-Tech, Vienna, Austria

www.intechopen.com

 Advances in Greedy Algorithms

432

2. Population initialization

2.1 Encoding scheme

We use a path representation where the cities are listed in the order in which they are
visited. In this technique, the N cities are represented by a permutation of the integers from
1 to N. For example, assuming there are 5 cities 1, 2, 3, 4 and 5, if a salesman goes from city
4, through city 1, city 2, city 5, city 3 and returns back to city 4, the chromosome will be {4 1 2
5 3}. For an N cities TSP, we initialize the population by randomly placing 1 to N into N
length chromosomes and guaranteeing that each city appears exactly once. Thus
chromosomes stand for legal tours.
When using the GA to solve TSPs, the absolute position of a city in a string is less important
than the relative position of a city with respect to a tour. So the important information in a
chromosome or city sequence is the relative positions of the cities, not the absolute position.
Changing the relative positions of the cities may increase or decrease the amount of building
blocks and thus result in greater or lesser fitness. For example, for a 5 cities tour, {4 1 2 5 3}
and {3 4 1 2 5} mean the same tour. However, pairs of cities are now important. Shortly,
highly fit subsets of strings (building blocks) play an important role in the action of genetic
algorithms because they combine to form better strings (Goldberg, D.E. etc. 1985, 1989).

2.2 Initial population generation from gene bank

The initial solution plays a critical role in determining the quality of final solution in any
local search. However, since the initial population has been produced randomly in most GA
researches, it not only requires longer search time to obtain an optimal solution but also
decreases the search possibility for an optimal solution. Evolution burden on the GA is
especially obvious for TSP when GA starting from an original population with poor quality.
For overcoming the difficulties forementioned, we use a gene bank to generate the initial
population with good and diverse individuals in this paper.
The N cities are permuted and assembled to build a gene bank. For a TSP of N cities, C cities
that are closer to the city i are encoded to construct a gene bank, where C is a number less

than N-1. For simplification, C equals 3 in GGA. Gene bank is a matrix AN×C whose size is

CN × . The element of A[i][j] is the jth closest city to city i. For example, A[i][1] and A[i][2]

are the first and second cities closest to city i, respectively. The C closest cities constitute the
whole ith row of gene bank for the city i.
When initializing the population, the first city code i is generated randomly. From the ith
row of gene bank, city code j is then generated where j is the closest one in the unselected
elements of the ith row. Then, city code h is selected from the jth row of gene bank. If all the
city codes of the jth row have been selected, GGA produce randomly a city code not
traveled before as the next traveling city. Following this method, city codes not traveled are
generated to form a complete chromosome. The algorithm repeats the forgoing procedures
multiple times. Many such chromosomes form the initial population of GGA.
Our algorithm always makes the choice that looks best when selecting a gene to assemble a
chromosome based on the gene bank. This strategy for generating initial population is of a
greedy method. The substring assembled based on gene bank is of above-average fitness
and short defining length. These schemata with above-average fitness, low-order and short
defining length tend to produce more offspring than others. For brevity, such schemata are
called building blocks. As we known, building block hypothesis is that a genetic algorithm
creates stepwise better solutions by recombining, crossing and mutating short, high-fitness

www.intechopen.com

Parallel Search Strategies for TSPs using a Greedy Genetic Algorithm

433

schemata(Goldberg, D.E. etc. 1985, 1989). So using these substrings is of great benefit to
GGA getting an effective solver.

3. Operators of greedy genetic algorithm

A simple class of GAs always guides the algorithm to the solution by preferring individuals
with high fitness over low-fitted ones. It can be deterministic, but in most implementation
that it has random components. Greedy algorithms are introduced to our genetic operations.
After genetic operation, such as crossover and mutation, only the better offspring will
replace the parents. This policy is mainly to maintain its respective evolution direction of an
individual and deduce the error of random operations.

3.1 Double-directional greedy crossover
Different crossover acts like the different environmental condition impacting on an
individual. A different crossover operation changes the domain and procedure of search in
order to enhance the possibility of finding a new solution. We adopt multiple crossover
operators in this algorithm.
Crossover is a very powerful tool for introducing new genetic material and maintaining
genetic diversity, but with the outstanding property that good parents also produce well-
performing children or even better ones. Traditionally, combination has been viewed as the
primary mechanism and advantage of crossover. However, there is no guarantee that
crossover combines the correct schemata.
For crossover operation after several tests and researching, we use the double-directional
greedy crossover which is similar to the greedy crossover invented. Greedy crossover selects
the first city of one parent, compares the cities leaving that city in both parents, and chooses
the closer one to extend the tour (Grefenstette 1985). If one city has already appeared in the
tour, we choose the other city. If both cities have already appeared, we randomly select a
non-selected city. Greedy crossover guides the searching direction by using local
information. The TSP, we chose, is symmetric and its tour is a Hamiltonian cycle. So we
propose an effective strategy to improve the greedy crossover operation aforementioned.
The gene crossing of a double-directional greedy crossover is applied twice to a
chromosome (e.g. to select from the first gene to the last and from the last gene to the first,
respectively). This double-directional greedy crossover provides equivalent chances for
gene segments located in different positions to reach a local optimum. The method is
developed to form a suboptimal cycle based on more effective local searches.

3.2 Greedy mutation

In a GA, the mutation is the random deformation of one or more genes that occurs
infrequently during the evolutionary process. The purpose of the mutation is to provide a
mechanism to increase coverage of the search space and help prevent premature
convergence into a local optimum. Given a permutation based individual of TSP, the
mutation operator modifies the related traveling sequence. There are a lot of manners for
doing sequence swapping operation. Easiest way is in using random swap. Unfortunately,
such strategy unable to achieve an optimum quickly but can prevent convergence into a
local optimum.
We use a new mutation operator, greedy-swap of two cities positions. The basic idea of
greedy-swap is to randomly select two adjacent cities from one chromosome and swap them

www.intechopen.com

 Advances in Greedy Algorithms

434

if the new (swapped) tour length is shorter than the elder. For the use of the gene bank
when initializing the population, the neighboring coding is often constituted of building
block. This strategy is mainly to decrease the possibility of breaking the building block.
GGA keep the new tour only when getting a shorter-length tour after not more than 3 trials
of swap. So the greedy mutation operation is a procedure of local adjustment and
improvement for the chromosome.

3.3 Immigration

The "goodness" of the genetic population depends both on the average fitness (that is
corresponding to the objective function value) of individuals and the diversity in the
population. Losing on either count tends to produce a poor GA. In the beginning, the
potentially good individuals sometimes fill the population so fast that can lead to premature
convergence into local maxima. Mutation means to increase diversity in the population by
introducing random variations in the members of the population. However, the mutation in
the end phase can be too slow to improve population since the individuals have similar
fitness values. These problems can be overcome by using the immigration in place of
mutation.
Immigration refers to the process of replacing poor members of the current population by

bringing in new individuals. For our implementation of the immigration, the population is

doped with immigrant individuals for a few of generations. After the midterm phase of

evolution, we use the same method to generate immigrants as the method we adopt to

generate the initial population. We found that these immigrants not only introduce new

genetic material into the population but also bring an open competition plaza for GGA and

hence force the algorithm to search newer regions of solution space. Immigrants can also

remedy the shortage of small population because the population size is limited for too

heavy computation. Figure 1 illustrates the transitional process between consecutive

generations of GGA.

Copy best

Current Population Next Population

Im m igrants

 Crossover

and M utation

Fig. 1. Transitional process between consecutive generations

4. Evolutionary dynamics of GGA

Genetic algorithms mimic nature evolution using the principles of survival of the fittest.
Reproduction operation, or called selection, is the impulsion of GA evolution. A simple GA
selects the better individuals from the population into the next generation based on the
roulette wheel selection. This always affects the diversities of population for that super-
individual(s) will take over most of the population in a few generations.

www.intechopen.com

Parallel Search Strategies for TSPs using a Greedy Genetic Algorithm

435

By comparing the qualities of parents to their offspring’s, the individuals of GGA realize the
population evolution. Only better offspring will replace its parent place. We abandon the
traditional selection operator in our GGA so that the population’s diversity is kept very well
all along. Each individual runs in its own evolution direction, respectively. Different
individuals search different domains. The greedy genetic algorithm takes on the
parallelization nature due to its parallel searches.
We haven’t employed special fitness function for TSP problems. The length of tour is
calculated and directly used for evaluating the fitness of each individual. We leave out the
transformation procedure between the objective function and fitness function so as to
deduce the computation amount.
The genetic operators of GGA make the most of the heuristic information to achieve local
optima. The evolution of whole population fulfils the distributed and parallelized search. So
the GGA search is a perfect combination of local and global search for optimal solution
keeping from the premature convergence.
By comparing the qualities of parents to their offspring’s, the individuals of GGA realize the
population evolution. Only better offspring will replace its parent place. We abandon the
traditional selection operator in our GGA so that the population’s diversity is kept very well
all along. Each individual runs in its own evolution direction, respectively. Different
individuals search different domains. The greedy genetic algorithm takes on the
parallelization nature due to its parallel searches.
We haven’t employed special fitness function for TSP problems. The length of tour is
calculated and directly used for evaluating the fitness of each individual. We leave out the
transformation procedure between the objective function and fitness function so as to
deduce the computation amount.
The genetic operators of GGA make the most of the heuristic information to achieve local
optima. The evolution of whole population fulfills the distributed and parallelized search.
So the GGA search is a perfect combination of local and global search for optimal solution
keeping from the premature convergence.

5. Experimental results

We used standard TSP benchmarks (G. Reinelt, 1996) whose optimal solutions (or the current
best solutions) are compiled, too. For all the problems, we use the same double-directional
greedy crossover and greedy mutation possibilities of 0.8 and 0.02, respectively, but use
different population sizes, immigrant possibilities and various number of generations for
different problems, as Table 1 shows. Because the template based crossover operation is of the
random operation, low possibility of template based crossover is adopted.
We run the GGA 10 times with 10 different random seeds contrast with GA so as to compare the
average performance between GGA and GA. For comparison, we also experiment on the
different effects between the greedy crossover operator (G. Andal Jayalakshmi, 2001) known and
our double-directional greedy crossover operator. We list real number solutions, not the integral
ones. From figure 2 to figure 7, we illustrate the best tour routes provided and the best solution
that we calculate out with GGA for problem eil51, eil76, eil101, respectively. For problem eil51,
we get a new better solution, shown in figure 3, than the provided one (G. Reinelt, 1996). We try
to use a higher immigration possibility and less population size for problem eil101 in order to
decrease the computation amount, where we get a solution shown in figure 6.
As illustrated in figure 8, for problem eil76, the average tour length of initial population
generated from gene bank is 1012 in GGA. However, the average tour length of initial

www.intechopen.com

 Advances in Greedy Algorithms

436

population generated randomly is 2561 in GA. From figure 8, the curve of average tour
length declines straightly with the increase of evolution generation, especially in the start
phase. But we notice the occurrence that the curve of GGA fluctuates slightly after the
midterm phase of evolution. That is because, after evolving half of the whole generation
number, the population is mixed with immigrants that lead the average population fitness
to decrease. With sacrificing the high fitness a little, the population retrieves its diversities to
some extent. However, the curve of GGA is still in the decline tendency generally. The
immigration operation manifests its effect of inhibiting from premature convergence.

Control parameter of GGA Solutions of GGA and solutions provided
Problem
instance

Population
size

Immigrant
possibilities

Number of
generations

Average tour
length

Best tour
length

Best tour
length (G.

Reinelt, 1996)

Quality
of tour

eil51 150 0.15 2000 433.05 428.98 429.98 0.9977
eil76 200 0.15 2000 562.93 553.70 545.39 1.0152
eil101 105 0.2 5000 689.67 665.50 642.30 1.0353

Table 1. Empirical results

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

x

y

Tour Length=429.98

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

x

y

Tour Length=428.98

Fig. 2. Best solution of problem eil51 Fig. 3. Our best solution of problem eil51.
(G. Reinelt, 1996). Tour Length=429.98 Tour Length=428.98

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

x

y

Tour Length=545.39

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

x

y

Tour Length=553.70

Fig. 4. Best solution of problem eil76 Fig. 5. Our best solution of problem eil76.
(G. Reinelt, 1996). Tour Length=545.39 Tour Length=553.70

www.intechopen.com

Parallel Search Strategies for TSPs using a Greedy Genetic Algorithm

437

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

x

y

Tour Length=642.31

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

x
y

Tour Length=665.51

Fig. 6. Best solution of problem eil101 Fig. 7. Our best solution of problem eil101.
(G. Reinelt, 1996). Tour Length=642.31 Tour Length=665.51

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

500

1000

1500

2000

2500

3000

Evolution Generation

A
v
er

ag
e

L
en

g
th

 o
f

T
o
u
r

GA for eil 76

GA for eil 51

GGA for eil 76

GGA for eil 51

Fig. 8. Performance comparison of different algorithms

6. Conclusion

GA is unable to guarantee to achieve the optimal solution of problems. Compared to the
GA, the greedy genetic algorithm with improved genetic operations has been presented for
the global optimization of TSPs. The GGA is a parallel-searching algorithm based on TSP-
oriented methodologies. Powerful heuristics developed in the corresponding field of TSPs
can significantly increase the performance of the genetic algorithm. It is vital for GGA
application to engineering practice that GGA works very efficiently in the start phase. A suit
of benchmark test has been used to illustrate the merits of the modified genetic operations in
GGA. Both the solution quality and stability are improved. GGA demonstrates its promising
performance.

7. References

Andrzej Jaszkiewicz, (2002) Genetic local search for multi-objective combinatorial
optimization, European Journal of Operational Research, Vol. 137, No. 1, pp. 50-71.

www.intechopen.com

 Advances in Greedy Algorithms

438

Bryan A. Norman & James C. Bean, (1999) A genetic algorithm methodology for complex
scheduling problems, Naval Research Logistics, Vol. 46, No. 2, pp. 199-211.

Chatterjee S., Carrera C. & Lynch L., (1996) “Genetic algorithms and traveling salesman
problems,” European Journal of Operational Research vol. 93, No. 3, pp. 490-510.

Forbes J. Burkowski, (2004) “Proximity and priority: applying a gene expression algorithm
to the Traveling Salesperson Problem,” Parallel Computing, Vol. 30, No. 5-6, pp. 803-
816.

G. Andal Jayalakshmi & S. Sathiamoorthy. (2001) “A Hybrid Genetic Algorithm: A New
Approach to Solve Traveling Salesman Problem,” International Journal of
Computational Engineering Science Vol. 2, No. 2, pp. 339-355.

G. Reinelt, (1996) TSPLIB, University of Heidelberg, http://www. iwr. uni-
heidelberg.de/iwr/comopt/soft/ TSPLIB95/TSPLIB.html.

Goldberg, D.E. & Lingle, R.J. (1985) Alleles, loci, and the traveling salesman problem,
Proceedings of the International Conference on Genetic Algorithms, London, pp. 154-159.

Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley, Reading, MA.

J. Grefenstette, R. Gopal, R. Rosmaita, & D. Gucht, (1985) Genetic algorithms for the
traveling salesman problem, Proceedings of the Second International Conference on
Genetic Algorithms. Lawrence Eribaum Associates, Mahwah, NJ.

Paul K. Bergey & Cliff Ragsdale, (2005) “Modified differential evolution: a greedy random
strategy for genetic recombination,” Omega, Vol. 33, No. 3, pp. 255-265.

Whitley D., Starkweather, T. & Fuquay, D., (1989) “Scheduling problems and traveling
salesmen: the genetic edge recombination operator,” Proceedings of the Third
International Conference on Genetic Algorithms, Los Altos, CA, pp. 133-140.

www.intechopen.com

Greedy Algorithms

Edited by Witold Bednorz

ISBN 978-953-7619-27-5

Hard cover, 586 pages

Publisher InTech

Published online 01, November, 2008

Published in print edition November, 2008

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Each chapter comprises a separate study on some optimization problem giving both an introductory look into

the theory the problem comes from and some new developments invented by author(s). Usually some

elementary knowledge is assumed, yet all the required facts are quoted mostly in examples, remarks or

theorems.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Yingzi Wei and Kanfeng Gu (2008). Parallel Search Strategies for TSPs Using a Greedy Genetic Algorithm,

Greedy Algorithms, Witold Bednorz (Ed.), ISBN: 978-953-7619-27-5, InTech, Available from:

http://www.intechopen.com/books/greedy_algorithms/parallel_search_strategies_for_tsps_using_a_greedy_ge

netic_algorithm

© 2008 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

