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1. Introduction      

The Genetic Algorithm (GA) is an optimizing algorithm modelled after the evolution of 
natural organisms. GA was not originally intended for highly constrained optimization 
problems but were soon adapted to order-based problems like the TSP (Goldberg, D.E. etc. 
1985, 1989). It has also been applied to a variety of combinatorial optimization problems. GA 
is an iterative procedure which maintains a population of candidate solutions. These 
solutions (instances or chromosomes) are encoded into strings of symbols. The initial 
population of instances, represented by their chromosomes, can be chosen heuristically or at 
random. During each iteration step, called a generation, a number of individuals selected 
from population solutions implement genetic operations. Some of the GA's merits are that it 
can be easily developed. GA does not require detailed knowledge about the problem, can 
search globally, and also adapt to the changing conditions in the problem. The traveling 
salesman problem (TSP) is defined as a very difficult task that seeks a shortest tour of N 
cities in such a way, that to visit all cities only once and return to the starting city. The TSP 
was chosen for many reasons: (i) it can be used to model many practical problems, (ii) it is a 
standard test-bed for new algorithmic ideas and a good performance on the TSP is often 
taken as a proof of their usefulness or effectiveness, and (iii) it is easily understandable, so 
that the algorithm behavior is not obscured by too many technicalities. 
Despite of these merits, GA is often slower than conventional methods, such as heuristic 
searches. This is because GA does not utilize explicitly the knowledge of how to search for 
the solutions. Therefore, hybrid methods that combine GA with other techniques have been 
attempted (G. Andal Jayalakshmi etc, 2001). The TSP solver we suggested is one of the 
hybrid methods. It combines GA and greedy principles to construct the TSP solver. With the 
TSP, we can study the effect of using information about distances of the cities in genetic 
operators. We improved the genetic operator to guide the generation of new offspring 
genotypes. Owing to heuristics of greed, it is much faster than other TSP solvers based on 
GA alone.  
This paper begins with a brief description of TSP and GA in general, followed by a review of 
key to design the GA for permutation problems and analysis of the probable difficulties 
therein. Then, the greedy selection principle is introduced. In the next a few sections, we 
present the greedy genetic algorithm (GGA), how we modify a genetic algorithm to solve 
TSP, our methodology, results, and conclusions. O
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2. Population initialization  

2.1 Encoding scheme  

We use a path representation where the cities are listed in the order in which they are 
visited. In this technique, the N cities are represented by a permutation of the integers from 
1 to N. For example, assuming there are 5 cities  1, 2, 3, 4 and 5, if a salesman goes from city 
4, through city 1, city 2, city 5, city 3 and returns back to city 4, the chromosome will be {4 1 2 
5 3}. For an N cities TSP, we initialize the population by randomly placing 1 to N into N 
length chromosomes and guaranteeing that each city appears exactly once. Thus 
chromosomes stand for legal tours.  
When using the GA to solve TSPs, the absolute position of a city in a string is less important 
than the relative position of a city with respect to a tour. So the important information in a 
chromosome or city sequence is the relative positions of the cities, not the absolute position. 
Changing the relative positions of the cities may increase or decrease the amount of building 
blocks and thus result in greater or lesser fitness. For example, for a 5 cities tour, {4 1 2 5 3} 
and {3 4 1 2 5} mean the same tour. However, pairs of cities are now important. Shortly, 
highly fit subsets of strings (building blocks) play an important role in the action of genetic 
algorithms because they combine to form better strings (Goldberg, D.E. etc. 1985, 1989). 

2.2 Initial population generation from gene bank 

The initial solution plays a critical role in determining the quality of final solution in any 
local search. However, since the initial population has been produced randomly in most GA 
researches, it not only requires longer search time to obtain an optimal solution but also 
decreases the search possibility for an optimal solution. Evolution burden on the GA is 
especially obvious for TSP when GA starting from an original population with poor quality. 
For overcoming the difficulties forementioned, we use a gene bank to generate the initial 
population with good and diverse individuals in this paper.  
The N cities are permuted and assembled to build a gene bank. For a TSP of N cities, C cities 
that are closer to the city i are encoded to construct a gene bank, where C is a number less 

than N-1. For simplification, C equals 3 in GGA. Gene bank is a matrix AN×C whose size is 

CN × . The element of A[i][j] is the jth closest city to city i. For example, A[i][1] and A[i][2] 

are the first and second cities closest to city i, respectively. The C closest cities constitute the 
whole ith row of gene bank for the city i. 
When initializing the population, the first city code i is generated randomly. From the ith 
row of gene bank, city code j is then generated where j is the closest one in the unselected 
elements of the ith row. Then, city code h is selected from the jth row of gene bank. If all the 
city codes of the jth row have been selected, GGA produce randomly a city code not 
traveled before as the next traveling city. Following this method, city codes not traveled are 
generated to form a complete chromosome. The algorithm repeats the forgoing procedures 
multiple times. Many such chromosomes form the initial population of GGA. 
Our algorithm always makes the choice that looks best when selecting a gene to assemble a 
chromosome based on the gene bank. This strategy for generating initial population is of a 
greedy method. The substring assembled based on gene bank is of above-average fitness 
and short defining length. These schemata with above-average fitness, low-order and short 
defining length tend to produce more offspring than others. For brevity, such schemata are 
called building blocks. As we known, building block hypothesis is that a genetic algorithm 
creates stepwise better solutions by recombining, crossing and mutating short, high-fitness 
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schemata(Goldberg, D.E. etc. 1985, 1989). So using these substrings is of great benefit to 
GGA getting an effective solver. 

3. Operators of greedy genetic algorithm 

A simple class of GAs always guides the algorithm to the solution by preferring individuals 
with high fitness over low-fitted ones. It can be deterministic, but in most implementation 
that it has random components. Greedy algorithms are introduced to our genetic operations. 
After genetic operation, such as crossover and mutation, only the better offspring will 
replace the parents. This policy is mainly to maintain its respective evolution direction of an 
individual and deduce the error of random operations. 

3.1 Double-directional greedy crossover  
Different crossover acts like the different environmental condition impacting on an 
individual. A different crossover operation changes the domain and procedure of search in 
order to enhance the possibility of finding a new solution. We adopt multiple crossover 
operators in this algorithm.  
Crossover is a very powerful tool for introducing new genetic material and maintaining 
genetic diversity, but with the outstanding property that good parents also produce well-
performing children or even better ones. Traditionally, combination has been viewed as the 
primary mechanism and advantage of crossover. However, there is no guarantee that 
crossover combines the correct schemata.  
For crossover operation after several tests and researching, we use the double-directional 
greedy crossover which is similar to the greedy crossover invented. Greedy crossover selects 
the first city of one parent, compares the cities leaving that city in both parents, and chooses 
the closer one to extend the tour (Grefenstette 1985). If one city has already appeared in the 
tour, we choose the other city. If both cities have already appeared, we randomly select a 
non-selected city. Greedy crossover guides the searching direction by using local 
information. The TSP, we chose, is symmetric and its tour is a Hamiltonian cycle. So we 
propose an effective strategy to improve the greedy crossover operation aforementioned. 
The gene crossing of a double-directional greedy crossover is applied twice to a 
chromosome (e.g. to select from the first gene to the last and from the last gene to the first, 
respectively). This double-directional greedy crossover provides equivalent chances for 
gene segments located in different positions to reach a local optimum. The method is 
developed to form a suboptimal cycle based on more effective local searches. 

3.2 Greedy mutation 

In a GA, the mutation is the random deformation of one or more genes that occurs 
infrequently during the evolutionary process. The purpose of the mutation is to provide a 
mechanism to increase coverage of the search space and help prevent premature 
convergence into a local optimum. Given a permutation based individual of TSP, the 
mutation operator modifies the related traveling sequence. There are a lot of manners for 
doing sequence swapping operation. Easiest way is in using random swap. Unfortunately, 
such strategy unable to achieve an optimum quickly but can prevent convergence into a 
local optimum.  
We use a new mutation operator, greedy-swap of two cities positions. The basic idea of 
greedy-swap is to randomly select two adjacent cities from one chromosome and swap them 
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if the new (swapped) tour length is shorter than the elder. For the use of the gene bank 
when initializing the population, the neighboring coding is often constituted of building 
block. This strategy is mainly to decrease the possibility of breaking the building block. 
GGA keep the new tour only when getting a shorter-length tour after not more than 3 trials 
of swap. So the greedy mutation operation is a procedure of local adjustment and 
improvement for the chromosome. 

3.3 Immigration  

The "goodness" of the genetic population depends both on the average fitness (that is 
corresponding to the objective function value) of individuals and the diversity in the 
population. Losing on either count tends to produce a poor GA. In the beginning, the 
potentially good individuals sometimes fill the population so fast that can lead to premature 
convergence into local maxima. Mutation means to increase diversity in the population by 
introducing random variations in the members of the population. However, the mutation in 
the end phase can be too slow to improve population since the individuals have similar 
fitness values. These problems can be overcome by using the immigration in place of 
mutation.  
Immigration refers to the process of replacing poor members of the current population by 

bringing in new individuals. For our implementation of the immigration, the population is 

doped with immigrant individuals for a few of generations. After the midterm phase of 

evolution, we use the same method to generate immigrants as the method we adopt to 

generate the initial population. We found that these immigrants not only introduce new 

genetic material into the population but also bring an open competition plaza for GGA and 

hence force the algorithm to search newer regions of solution space. Immigrants can also 

remedy the shortage of small population because the population size is limited for too 

heavy computation. Figure 1 illustrates the transitional process between consecutive 

generations of  GGA. 
 

Copy best

Current Population Next Population

Im m igrants

 Crossover

and M utation

 
Fig. 1. Transitional process between consecutive generations 

4. Evolutionary dynamics of GGA 

Genetic algorithms mimic nature evolution using the principles of survival of the fittest. 
Reproduction operation, or called selection, is the impulsion of GA evolution. A simple GA 
selects the better individuals from the population into the next generation based on the 
roulette wheel selection. This always affects the diversities of population for that super-
individual(s) will take over most of the population in a few generations. 
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By comparing the qualities of parents to their offspring’s, the individuals of GGA realize the 
population evolution. Only better offspring will replace its parent place. We abandon the 
traditional selection operator in our GGA so that the population’s diversity is kept very well 
all along. Each individual runs in its own evolution direction, respectively. Different 
individuals search different domains. The greedy genetic algorithm takes on the 
parallelization nature due to its parallel searches.  
We haven’t employed special fitness function for TSP problems. The length of tour is 
calculated and directly used for evaluating the fitness of each individual. We leave out the 
transformation procedure between the objective function and fitness function so as to 
deduce the computation amount. 
The genetic operators of GGA make the most of the heuristic information to achieve local 
optima. The evolution of whole population fulfils the distributed and parallelized search. So 
the GGA search is a perfect combination of local and global search for optimal solution 
keeping from the premature convergence. 
By comparing the qualities of parents to their offspring’s, the individuals of GGA realize the 
population evolution. Only better offspring will replace its parent place. We abandon the 
traditional selection operator in our GGA so that the population’s diversity is kept very well 
all along. Each individual runs in its own evolution direction, respectively. Different 
individuals search different domains. The greedy genetic algorithm takes on the 
parallelization nature due to its parallel searches.  
We haven’t employed special fitness function for TSP problems. The length of tour is 
calculated and directly used for evaluating the fitness of each individual. We leave out the 
transformation procedure between the objective function and fitness function so as to 
deduce the computation amount. 
The genetic operators of GGA make the most of the heuristic information to achieve local 
optima. The evolution of whole population fulfills the distributed and parallelized search. 
So the GGA search is a perfect combination of local and global search for optimal solution 
keeping from the premature convergence. 

5. Experimental results  

We used standard TSP benchmarks (G. Reinelt, 1996) whose optimal solutions (or the current 
best solutions) are compiled, too. For all the problems, we use the same double-directional 
greedy crossover and greedy mutation possibilities of 0.8 and 0.02, respectively, but use 
different population sizes, immigrant possibilities and various number of generations for 
different problems, as Table 1 shows. Because the template based crossover operation is of the 
random operation, low possibility of template based crossover is adopted.  
We run the GGA 10 times with 10 different random seeds contrast with GA so as to compare the 
average performance between GGA and GA. For comparison, we also experiment on the 
different effects between the greedy crossover operator (G. Andal Jayalakshmi, 2001) known and 
our double-directional greedy crossover operator. We list real number solutions, not the integral 
ones. From figure 2 to figure 7, we illustrate the best tour routes provided and the best solution 
that we calculate out with GGA for problem eil51, eil76, eil101, respectively. For problem eil51, 
we get a new better solution, shown in figure 3, than the provided one (G. Reinelt, 1996). We try 
to use a higher immigration possibility and less population size for problem eil101 in order to 
decrease the computation amount, where we get a solution shown in figure 6.  
As illustrated in figure 8, for problem eil76, the average tour length of initial population 
generated from gene bank is 1012 in GGA. However, the average tour length of initial 
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population generated randomly is 2561 in GA. From figure 8, the curve of average tour 
length declines straightly with the increase of evolution generation, especially in the start 
phase. But we notice the occurrence that the curve of GGA fluctuates slightly after the 
midterm phase of evolution. That is because, after evolving half of the whole generation 
number, the population is mixed with immigrants that lead the average population fitness 
to decrease. With sacrificing the high fitness a little, the population retrieves its diversities to 
some extent. However, the curve of GGA is still in the decline tendency generally. The 
immigration operation manifests its effect of inhibiting from premature convergence. 
 

Control parameter of GGA Solutions of GGA and solutions provided 
Problem 
instance 

Population
size 

Immigrant 
possibilities

Number of 
generations

Average tour 
length 

Best tour 
length 

Best tour 
length ( G. 

Reinelt, 1996) 

Quality 
of tour 

eil51 150 0.15 2000 433.05 428.98 429.98 0.9977 
eil76 200 0.15 2000 562.93 553.70 545.39 1.0152 
eil101 105 0.2 5000 689.67 665.50 642.30 1.0353 

Table 1. Empirical results 
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Fig. 2. Best solution of problem eil51                          Fig. 3. Our best solution of problem eil51.  
(G. Reinelt, 1996). Tour Length=429.98                       Tour Length=428.98  
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Fig. 4. Best solution of problem eil76                          Fig. 5. Our best solution of problem eil76. 
(G. Reinelt, 1996). Tour Length=545.39                       Tour Length=553.70 
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Fig. 6. Best solution of problem eil101                      Fig. 7. Our best solution of problem eil101. 
(G. Reinelt, 1996).  Tour Length=642.31                    Tour Length=665.51 
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Fig. 8. Performance comparison of different algorithms 

6. Conclusion 

GA is unable to guarantee to achieve the optimal solution of problems. Compared to the 
GA, the greedy genetic algorithm with improved genetic operations has been presented for 
the global optimization of TSPs. The GGA is a parallel-searching algorithm based on TSP-
oriented methodologies. Powerful heuristics developed in the corresponding field of TSPs 
can significantly increase the performance of the genetic algorithm. It is vital for GGA 
application to engineering practice that GGA works very efficiently in the start phase. A suit 
of benchmark test has been used to illustrate the merits of the modified genetic operations in 
GGA. Both the solution quality and stability are improved. GGA demonstrates its promising 
performance. 
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