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1. Introduction 

Scheduling competing jobs on multiprocessors has always been an important issue for 
parallel and distributed systems. The challenge is to ensure overall system efficiency while 
offering a level of fairness to user jobs. Although various degrees of successes have been 
achieved over the past decades, few existing schemes address both efficiency and fairness 
over a wide range of work loads. Moreover, in order to obtain analytical results, many 
known results [22, 24, 7, 8, 17, 20, 23, 25, 33] require prior information about jobs such as 
jobs' release time, amount of work, parallelism profile, etc, which may be difficult to obtain 
in real applications. This chapter describes a scheduling algorithm - GRAD, which offers 
provable efficiency in terms of makespan and mean response time by allotting each job a fair 
share of processor resources. Our algorithm is non-clairvoyant [10, 6, 18, 12], i.e. it assumes 
nothing about the release time, the execution time, and the parallelism profile of jobs. 
A parallel job can be classified as adaptive or non-adaptive. An adaptively parallel job [34] 

may change its parallelism, and it allows the number of the allotted processors to vary 

during its execution. A job is nonadaptive if it runs on a fixed number of processors over its 

lifetime. With adaptivity, new jobs can enter the system by simply recruiting processors 

from the already executing jobs. Moreover, in order to improve the system utilization, 

schedulers can shift processors from jobs that do not require many processors to the jobs in 

need. However, since the parallelism of adaptively parallel jobs can change during the 

execution and the future parallelism is usually unknown, how a scheduler decides the 

processor allotments for jobs is a challenging problem. We describe GRAD that effectively 

addresses such an adaptive scheduling problem. 

Scheduling parallel jobs on multiprocessors can be implemented in two levels [14]: a kernel-
level job scheduler which allots processors to jobs, and a user-level thread scheduler which 
maps the threads of a given job to the allotted processors. The processor reallocation occurs 
periodically between scheduling quanta. The thread scheduler provides parallelism feedback to 
the job scheduler. The feedback is an estimation of the number of processors that its job can 
effectively use during the next quantum. The job scheduler follows some processor 
allocation policy to determine the allotment to the job. It may implement a policy that is 
either space-sharing, where jobs occupy disjoint processor resources, or time-sharing, where O
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different jobs may share the same processor resources at different points in time. Once a job 
is allotted its processors, the allotment does not change within the quantum. 
GRAD is a two-level scheduling algorithm that uses simple, greedy-like rules. The thread-
level scheduler called A-GREEDY [1] provides feedback based on two simple indicators 
acquired from the past quantum, namely, whether its request was satisfied and whether the 
allotted processors are well utilized. Based on the feedbacks from all jobs, the OS allocator 
RAD [19] partitions processors as equally as possible. Once given the processors, A-
GREEDY greedily maps the ready threads of the job onto its allotted processors. If the 
number of ready threads is less than or equal to the number of allotted processors, all ready 
threads are scheduled to execute. Otherwise, each allotted processor is assigned with one 
ready thread. The thread mapping in greedy manner ensures that the allotted processors 
always make useful work unless there are insufficient number of ready threads to work on. 
Based on the “equalized allotment” scheme for processor allocation, and by using the 
history-based feedback, we show that GRAD is provably efficient. The performance is 
measured in terms of both makespan and mean response time. GRAD achieves O(1)-
competitiveness with respect to makespan for job sets with arbitrary release times, and O(1)-
competitiveness with respect to mean response time for batched job sets where all jobs are 
released simultaneously. Unlike many previous results, which either assume clairvoyance 
[29, 21, 31] or use instantaneous parallelism [10, 6], GRAD removes these restrictive 
assumptions. Moreover, because the quantum length can be adjusted to amortize the cost of 
context-switching during processor reallocation, GRAD provides effective control over the 
scheduling overhead and ensures efficient utilization of processors. 
Our simulation results also suggest that GRAD performs well in practice. For job sets with 
arbitrary release time, their makespan scheduled by GRAD is no more than 1.39 times of the 
optimal on average (geometric mean). For batched job sets, their mean response time 
scheduled by GRAD is no more than 2.37 times of the optimal on average. 
The remainder of this chapter is organized as follows. Section 2 describes the job model, 
scheduling model, and objective functions. Section 3 describes the GRAD algorithm. Section 
4 analyzes the competitiveness of GRAD with respect to makespan. Section 5 shows the 
competitiveness of GRAD with respect to mean response time for batched jobs, while its 
detailed analysis is presented in Appendix A. Section 6 presents the empirical results. 
Section 7 discusses the related work, and Section 8 gives some concluding remarks. 

2. Scheduling and analytical model 

Our scheduling input consists of a collection of independent jobs = {J1, J2, … , J } to be 

scheduled on a collection of P identical processors. Time is broken into a sequence of equal-
sized scheduling quanta 1, 2, …, each of length L, where each quantum q includes the interval 

[L ⋅ q,L ⋅ q +1, … ,L(q +1) - 1] of time steps. The quantum length L is a system configuration 
parameter chosen to be long enough to amortize scheduling overheads. In this section, we 
formalize the job model, define the scheduling model, and present the optimization criteria 
of makespan and mean response time. 
We model the execution of a multithreaded job Ji as a dynamically unfolding directed acyclic 
graph (DAG, for short). Each vertex of the DAG represents a unit-time instruction. The work 
T1 (Ji) of the job Ji corresponds to the total number of vertices in the dag. Each edge 
represents a dependency between the two vertices. The span T∞(Ji) corresponds to the 
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number of nodes on the longest chain of the precedence dependencies. The release time r(Ji) 
of the job Ji is the time at which Ji becomes first available for processing. Each job is handled 
by a dedicated thread scheduler, which operates in an online manner, oblivious to the future 
characteristics of the dynamically unfolding DAG. 
The job scheduler and the thread schedulers interact as follows. The job scheduler may 
reallocate processors between scheduling quanta. Between quantum q - 1 and quantum q, 
the thread scheduler of a given job Ji determines the job's desire d(Ji, q), which is the number 
of processors Ji wants for quantum q. Based on the desire of all running jobs, the job 
scheduler follows its processor-allocation policy to determine the allotment a (Ji, q) of the job 
with the constraint that a (Ji, q) ≤ d(Ji, q). Once a job is allotted its processors, the allotment 
does not change during the quantum. 

A schedule X = (ĸ, Ǒ) of a job set  is defined as two mappings ĸ : ∪  Vi → {1, 2, … ,1}, 

and Ǒ : ∪ Vi → {1, 2, … , P}, which map the vertices of the jobs in the job set  to the set 

of time steps, and the set of processors on the machine respectively. A valid mapping must 

preserve the precedence relationship of each job. For any two vertices u, v ∈ Vi of the job Ji, if 

u ≺ v, then ĸ (u) < ĸ (v), i.e. the vertex u must be executed before the vertex v. A valid 

mapping must also ensure that one processor can only be assigned to one job at any given 

time. For any two vertices u and v, both ĸ (u) = ĸ (v) and Ǒ(u) = Ǒ(v) are true iff u = v. 
Our scheduler uses makespan and mean response time as the performance measurement. 
Definition 1 The makespan of a given job set  is the time taken to complete all the jobs in 

, i.e. T( ) = max  T(Ji), where T(Ji) denotes the completion time of job Ji. 

Definition 2 The response time of a job Ji is T(Ji) - r(Ji), which is the duration between its 
release time r(Ji) and the completion time T(Ji). The total response time of a job set  is given 

by R( ) = Σ (T(Ji) - r(Ji)) and the mean response time is ( ) = R( )/ . 

The goal of the chapter is to show that our scheduler optimizes the makespan and mean 
response time, and we use competitive analysis as a tool to evaluate and compare the 
scheduling algorithm. The competitive analysis of an online scheduling algorithm is to 
compare the algorithm against an optimal clairvoyant algorithm. Let T*( ) denote the 
makespan of an arbitrary jobset  scheduled by an optimal scheduler, and T( ) denote the 
makespan produced by an algorithm A for the job set . A deterministic algorithm A is said 

to be c-competitive if there exists a constant b such that T( ) ≤ c ⋅ T*( ) + b holds for the 
schedule of any job set. We will show that our algorithm is c-competitive in terms of the 
makespan, where c is a small constant. Similarly, for the mean response time, we will show 
that our algorithm is also constant-competitive for any batched jobs. 

3. Algorithms 

This section presents the job scheduler - RAD, and overviews the thread scheduler - A-
GREEDY [1]. 
RAD Job Scheduler 
The job scheduler RAD unifies the space-sharing job scheduling algorithm DEQ [35, 27] 
with the time-sharing RR algorithm. When the number of jobs is greater than the number of 
processors, GRAD schedules the jobs in a batched, round-robin fashion, which allocates one 
processor to each job with an equal share of time. When the number of jobs is not more than 
the number of processors, GRAD uses DEQ as the job scheduler. DEQ gives each job an 
equal share of spatial allotments unless the job requests for less. 

www.intechopen.com



 Advances in Greedy Algorithms 

 

442 

When a batch of jobs are scheduled in the round-robin fashion, RAD maintains a queue of 
jobs. At the beginning of each quantum, if there are more than P jobs, it pops P jobs from the 
top of the queue, and allots one processor to each of them during the quantum. At the end of 
the quantum, RAD pushes the P jobs back to the bottom of the queue if they are 
uncompleted. The new jobs can be put into the queue once they are released. 
DEQ attempts to give each job a fair share of processors. If a job requires less than its fair 
share, however, DEQ distributes the extra processors to the other jobs. More precisely, upon 

receiving the desires {d(Ji, q)} from the thread schedulers of all jobs Ji ∈ , DEQ executes the 
following processor-allocation algorithm: 
1. Set n = . If n = 0, return. 

2. If the desire of every job Ji ∈  satisfies d(Ji, q) ≥ P/n, assign each job a (Ji, q) = P/n 
processors. 

3. Otherwise, let ’ = {Ji ∈ : d(Ji, q) < P/n}. Assign a (Ji, q) = d(Ji, q) processors to each Ji ∈ 

’. Update  =  - ’, and P = P - Σ ’ d(Ji, q). Go to Step 1. 

Note that, at any quantum where the number of jobs is equal to the number of processors, 
DEQ and RR give exactly the same processor allotment, and allocate each of P jobs with one 
processor. 
Adaptive Greedy Thread Scheduler 
A-GREEDY [1] is an adaptive greedy thread scheduler with parallelism feedback. Between 
quanta, it estimates its job's desire, and requests processors from the job scheduler. During 
the quantum, it schedules the ready threads of the job onto the allotted processors greedily 
[15, 5]. If there are more than a (Ji, q) ready threads, A-GREEDY schedules any a (Ji, q) of 
them. Otherwise, it schedules all of them. 
A- GREEDY's desire-estimation algorithm is parameterized in terms of a utilization parameter 
 > 0 and a responsiveness parameter ǒ > 1, both of which can be adjusted for different levels of 
guarantees for waste and completion time. 

Before each quantum, A- GREEDY y for a job Ji ∈  provides parallelism feedback to the job 
scheduler based on the Ji’s history of utilization in the previous quantum. A- GREEDY 
classifies quanta as “satisfied” versus “deprived” and “eficient” versus “inefficient.” A 
quantum q is satisfied if a (Ji, q) = d(Ji, q), in which case Ji’s allotment is equal to its desire. 
Otherwise, the quantum is deprived.1 The quantum q is efficient if A- GREEDY utilizes no less 
than a  fraction of the total allotted processor cycles during the quantum, where  is the 
utilization parameter. Otherwise, the quantum is inefficient. Under the four-way 
classification, however, A- GREEDY only uses three: inefficient, efficient-and-satisfied, and 
efficient-and-deprived. 
Using this three-way classification and the job's desire for the previous quantum, A- 
GREEDY computes the desire for the next quantum as follows: 

• If quantum q - 1 was inefficient, decrease the desire, setting d(Ji, q) = d(Ji, q - 1)=½, where 
ǒ is the responsiveness parameter. 

• If quantum q - 1 was efficient-and-satisfied, increase the desire, setting d(Ji, q) = ǒd(Ji, q - 1). 

• If quantum q - 1 was efficient-and-deprived, keep desire unchanged, setting d(Ji, q) = 
d(Ji, q - 1). 

                                                 
1 We can extend the classification of “satisfied” versus “deprived” from quanta to time 

steps. A job Ji is satisfied (or deprived) at step t ∈ [L ⋅ q,L ⋅ q + 1, .. ,L(q + 1) - 1] if Ji is satisfied 
(resp. deprived) at the quantum q. 
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4. Makespan 

This section shows that GRAD is c-competitive with respect to makespan, where c denotes a 
constant. The exact value of c is related to the choice of A-GREEDY's utilization and 
responsiveness parameter, as will be explained shortly. 
We first review the lower bounds of makespan. Given a job set  and P processors, lower 
bounds on the makespan of any job scheduler can be obtained based on release time, work, 

and span. Recall that, for a job Ji ∈ , the quantities r(Ji), T1 (Ji), and T∞(Ji) represent the 
release time, work, and span of Ji, respectively. Let T* ( ) denote the makespan produced 

by an optimal scheduler on a job set  on P processors. Let T1 ( ) = Σ T1 (Ji) denote the 

total work of the job set. The following two inequalities give two lower bounds on the 
makespan [6]: 

 
(1) 

 (2) 

To facilitate the analysis, we state a lemma from [1] that bounds the satisfied steps and the 
waste of a single job scheduled by A-GREEDY. Recall that, the parameter ρ > 1 denotes A- 
GREEDY's responsiveness parameter,  > 0 its utilization parameter, and L the quantum 
length. 
Lemma 1 [1] For a job Ji with work T1 (Ji) and span T∞(Ji) on a machine with P processors,  
A- GREEDY produces at most 2T∞(Ji)/(1 - )+Llogǒ P +L satisfied steps, and it wastes at most  
(1+ǒ - )T1 (Ji) / processor cycles in the course of the computation.                                                      □ 
The following theorem analyzes the makespan of a job set  scheduled by GRAD. 
Theorem 2 Let ǒ denote A-GREEDY's responsiveness parameter,  its utilization parameter, and L 
the quantum length. Then, GRAD completes a job set  on P processors in 

 
(3) 

time steps. 
Proof. Suppose job Jk is the last job completed among the jobs in . Let S(Jk) denote the set of 
satisfied steps for Jk, and D(Jk) denote its set of deprived steps. The job Jk is scheduled to start 
its execution at the beginning of the quantum q where Lq < r(Jk) ≤ L(q + 1), which is the 
quantum immediately after Jk's release. Therefore, we have T( ) ≤ r(Jk) + L + │S(Jk)│ + 
│D(Jk)│. We now bound │S(Jk)│ and │D(Jk)│ respectively. 
From Lemma 1, we know that the number of satisfied steps attributed to Jk is at most 
│S(Jk)│≤ 2T∞(Jk)/(1 - ) + Llogǒ P + L. 

We now bound the total number of deprived steps D(Jk) of job Jk. For each step t ∈ D(Jk), 

GRAD applies either DEQ or RR as job scheduler. RR always allots all processors to jobs. By 

definition, DEQ must have allotted all processors to jobs whenever Jk is deprived.  

Thus, the total allotment on such a step t is always equal to the total number of  

processors P. Moreover, the total allotment of  over Jk's deprived steps D(Jk) is a  

( ,D(Jk)) = Σ Σ  a (Ji, t) = P│D(Jk)│. Since any allotted processor is either working 

productively or wasted, the total allotment for any job Ji is bounded by the sum of its total 
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work T1 (Ji) and total waste w(Ji). By Lemma 1, the waste for the job Ji is at most (ǒ -  + 1)/ 
times of its work. Thus, the total number of allotted processor cycles for job Ji is at most T1 (Ji) 

+ w(Ji) ≤ (ǒ + 1)T1 (Ji) /. The total number of allotted processor cycles for all jobs is at most 

Σ  (ǒ + 1)T1 (Ji) / = ((ǒ + 1)/)T1 ( ). Given a ( ,D(Jk)) ≤((ǒ + 1)/)T1 ( ) and a ( ,D(Jk)) = P 

│D(Jk)│, we have │D(Jk)│ ≤  . 
Therefore, we can get 

 

□ 
Since both T1 ( ) =P and max  {T∞(Ji) + r(Ji)} are lower bounds of T*( ), we obtain the 

following corollary. 
Corollary 3 GRAD completes a job set  in 

 

time steps, where T*( ) denotes the makespan of  produced by an optimal clairvoyant scheduler.  □ 
Since both the quantum length L and the processor number P are independent variables 
with respect to any job set , Corollary 3 shows that GRAD is O(1)-competitive with respect 
to makespan. 
To better interpret the bound, let's substitute ǒ = 1.2 and  = 0.6, we have T( ) ≤ 8.67T*( ) + 
Llg P/ lg 1.2 + 2L. Since both the quantum length L and the processor number P are 
independent variables with respect to any job set , GRAD is 8.67-competitive given ǒ = 1.2 
and  = 0.6. 

When  = 0.5 and ǒ approaches 1, the competitiveness ratio (ǒ + 1)= + 2=(1 - ) approaches 

its minimum value 8. Thus, GRAD is (8 + ε)-competitive with respect to makespan for any 

constant ε > 0. 

5. Mean response time 

Mean response time is an important measure for multiuser environments where we desire 
as many users as possible to get fast response from the system. In this section, we first 
introduce the lower bounds. Then, we show that GRAD is O(1)-competitive for batched jobs 
with respect to the mean response time. 
Lower Bounds and Preliminaries 
We first introduce some definitions. 

Definition 3 Given a finite list A =〈αi〉 of n =│A│integers, define f : {1, 2, … , n}→{1, 2, … , n} 

to be a permutation satisfying α f (1) ≤ α f (2) ≤ … ≤ α f (n). The squashed sum of A is defined as 
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The squashed work area of a job set  on a set of P processors is 

 

where T1 (Ji) is the work of job Ji ∈ . The aggregate span of  is 

 

where T∞(Ji) is the span of job Ji ∈ . 
The research in [36, 37, 10] establishes two lower bounds for the mean response time: 

 (4) 

 (5) 

where ( ) denotes the mean response time of  scheduled by an optimal clairvoyant 
scheduler. Both the aggregate span T∞( ) and the squashed work area swa ( ) are lower 
bounds of the total response time R*( ) under an optimal clairvoyant scheduler. 
Analysis 

The proof is divided into two parts. In the first part where  ≤ P, GRAD always uses DEQ 
as job scheduler. In this case, we apply the result in [18], and show that GRAD is O(1)-

competitive. In the second part where  > P, GRAD uses both RR and DEQ. Since we 
consider batched jobs, the number of incomplete jobs decreases monotonically. When the 
number of incomplete jobs drops to P, GRAD switches its job scheduler from RR to DEQ. 
Therefore, we prove the second case based on the properties of round robin scheduling and 
the results of the first case. The following theorem shows the total response time bound for 
the batched job sets scheduled by GRAD. Please refer to Appendix A for the complete proof. 
Theorem 4 Let ǒ be A-GREEDY's responsiveness parameter,  its utilization parameter, and L the 
quantum length. The total response time R( ) of a job set  produced by GRAD is at most 

 
(6) 

where swa ( ) denotes the squashed work area of , and T∞( ) denotes the aggregate span of .   □ 
Since both swa ( ) /  and T∞( )/  are lower bounds on R( ), we obtain the following 

corollary. It shows that GRAD is O(1)-competitive with respect to mean response time for 
batched jobs. 
Corollary 5 The mean response time ( ) of a batched job set  produced by GRAD satisfies 

 

where ( ) denotes the mean response time of  scheduled by an optimal clairvoyant scheduler.   □ 

6. Experimental results 

To evaluate the performance of GRAD, we conducted four sets of experiments, which are 
summarized below. 
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• The makespan experiments compares the makespan produced by GRAD against the 
theoretical lower bound for over 10000 runs of job sets. 

• The mean response time experiments investigate how GRAD performs with respect to 
mean response time for over 8000 batched job sets. 

• The load experiments investigate how the system load affects the performance of 
GRAD. 

• The proactive RAD experiments compare the performance of RAD against its variation 
- proactive RAD. The proactive RAD always allots all processors to jobs even if the 
overall desire is less than the total number of processors. 

 

 

Fig. 1. The DAG of a fork-join job used in the simulation. This job has start-up length w0 = 1, 
serial phase length w1 = 3, parallel phase length w2 = 2, parallelism h = 7, and the number of 
iterations iter = 2. 

6.1 Simulation setup 
To study GRAD, we build a Java-based discrete-time simulator using DESMO-J [11]. Our 
simulator models four major entities - processors, jobs, thread schedulers, and job 
schedulers, and simulates their interactions in a two-level scheduling environment. As 
described in Section 2, we model the execution of a multithreaded job as a dag. When a job 
is submitted to the simulated multiprocessor system, an instance of a thread scheduler is 
created for the job. The job scheduler allots processors to the job, and the thread scheduler 
executes the job using A-GREEDY. The simulator operates in discrete time steps, and we 
ignore the overheads incurred in the reallocation of processors. 
Our benchmark application is the Fork-Join jobs, whose task graphs are typically as shown 
in Figure 1. Each job alternates between a serial phase of length w1 and a parallel phase (with h- 
way parallelism) of length w2, while the initial serial phase has length w0. The parallelism of 
job's parallel phase is the height h of the job, and the number of iterations is denoted as iter . 
Fork-Join jobs arise naturally in jobs that exhibit “data parallelism”, and apply the same 
computation to a number of different data points. Many computationally intensive 
applications can be expressed in a data-parallel fashion [30]. The repeated fork-join cycle in 
the job reflects the often iterative nature of these computations. The average parallelism of 
the job is approximately (w1 + hw2)=(w1 + w2). By varying the values of w0, w1, w2, h, and the 
number of iterations, we can generate jobs with different work, spans, and phase lengths. 
GRAD requires some parameters as input. We set the responsiveness parameter to be ǒ= 2.0, 

and the utilization parameter  = 0.8 unless otherwise specified. GRAD is designed for 

moderate-scale and large-scale multiprocessors, and we set the number of processors to be  

P = 128. The quantum length L represents the time between successive reallocations of 
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processors by the job scheduler, and is selected to amortize the overheads due to the 

communication between the job scheduler and the thread scheduler, and the reallocation of 

processors. In conventional computer systems, a scheduling quantum is typically between 

10 and 20 milliseconds. The execution time of a task is decided by the granularity of the job. 

If a task takes approximately 0.5 to 5 microseconds, then the quantum length L should be set 

to values between 103 and 105 time steps. Our theoretical bounds indicate that as long as 

T∞� Llog P, the length of L should have little effect on our results. In our experiments, we 

set L = 1000. 

6.2 Makespan experiments 
The competitive ratio of makespan derived in Section 4, though asymptotically strong, has a 

relatively large constant multiplier. The makespan experiments were designed to evaluate 

the constants that would occur in practice and compare GRAD to an optimal scheduler. The 

experiments are conducted on more than 10, 000 runs of job sets using many combinations 

of jobs and different loads. 

Figure 2 shows how GRAD performs compared to an optimal scheduler. The makespan of a 

job set  has two lower bounds max (r(Ji) + T∞(Ji)) and T1( ) =P. The makespan 

produced by an optimal scheduler is lower-bounded by the larger of these two values. The 

makespan ratio in Figure 2 is defined as the makespan of a job set scheduled by GRAD 

divided by the theoretical lower bounds. Its X-axis represents the range of the makespan 

ratio, while the histogram shows the percentage of the job sets whose makespan ratio falls 

into the range. Among more than 10, 000 runs, 76.19% of them use less than 1.5 times of the 

theoretical lower bound, 89.70% use less than 2.0 times, and none uses more than 4.5 times. 

The average makepsan ratio is 1.39, which suggests that, in practice, GRAD has a small 

competitive ratio with respect to the makespan. 

 

 

Fig. 2. Comparing the makespan of GRAD with the theoretical lower bound for job sets with 
arbitrary job release time. 
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We now interpret the relation between the theoretical bounds and experimental results as 
follows. When ǒ = 2 and  = 0.8, from Theorem 2, GRAD is 13.75-competitive in the worst 
case. However, we anticipate that GRAD's makespan ratio would be small in practical 
settings, especially when the jobs have total work much great than the span and with the 
machine moderately- or highly- loaded. In this case, the term on T1 ( )/P in Inequality (3) of 
Theorem 2 is much larger than the term max  {T∞(i) + r(i)}, i.e. the term T1( )/P 

generally dominates the makespan bound. The proof of Theorem 2 calculates the coefficient 
of T1 ( )/P as the ratio of the total allotment (total work plus total waste) versus the total 
work. When the job scheduler is RAD, which is not a true adversary, our simulation results 
indicate that the ratio of the waste versus the total work is only about 1/10 of the total work. 
Thus, the coefficient of T1 ( )/P in Inequality (3) is about 1.1. It explains why the makespan 
produced by GRAD is less than 2 times of the lower bound on average as shown in Figure 2. 

6.3 Mean response time experiments 
This set of experiments is designed to evaluate the mean response time of the batch job sets 
scheduled by GRAD. Figure 3 shows the distribution of the mean response time normalized 
w.r.t. the larger of the two lower bounds { the squashed work bound swa ( ) /  and the 

aggregated critical path bound T∞( )/ . The histogram in Figure 3 shows that, among 

more than 8, 000 runs, 94.65% of them use less than 3 times of the theoretical lower bound, 
and none of them uses more than 5:5 times. The average mean response time ratio is 2.37. 
 

 

Fig. 3. Comparing the mean response time of GRAD with the theoretical lower bound for 
batched job sets. 

Similar to the discussion in Section 6.2, we can relate the theoretical bounds for mean 
response time to the experimental results. When ǒ = 2 and ǒ = 0.8, from Theorem 4, GRAD is 
27.60-competitive. However, we expect that GRAD should perform closer to optimal in 
practice. In particular, when the job set J exhibits reasonably large total parallelism, we have 

swa ( ) � T∞( ), and thus, the term involving swa ( ) in Theorem 4 dominates the total 

response time. More importantly, RAD is not an adversary of A-GREEDY, as mentioned 
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before, the waste of a job is only about 1/10 of the total work in average for over 100, 000 job 
runs we tested. Based on this waste, the squashed area bound swa ( ) in Inequality (6) of 
Theorem 4 has a coefficient to be around 2.2. It explains that the mean response time 
produced by GRAD is less than 3 times of the lower bound as shown in Figure 3. 

6.4 Load experiments 
This set of experiments is designed to investigate how the load affects the performance of 
GRAD. The load of a job set J on a machine with P processors indicates how heavily the jobs 
compete for processors on the machine, which is calculated as follows 

 

For a batched job set, the load is just the average parallelism of the set divided by the total 
number of processors. 
Figure 4 shows how GRAD performs against the theoretical lower bound with respect to 
makespan by varying system load. The makespan ratio in this figure is defined as the 
makespan of a job set scheduled by GRAD divided by the larger of the two lower bounds. 
Each data point represents the makespan ratio of a job set. The testing results suggest that 
the makespan ratio becomes smaller when the load gets heavier. Specifically, the makespan 
generated by GRAD is very close to the lower bound when the load is greater than 4; it 
never exceeds 1.5 times of the makespan produced when the system load is greater than 3. 
However, when the load is less than 2, the makespan ratio spreads in the range from 1 to 4. 
 

 

Fig. 4. Comparing GRAD against the theoretical lower bound for makespan with varying 
load. 

Figure 5 shows the performance of GRAD with respect to mean response time for batched 
jobs by varying system load. It compares the mean response time incurred by GRAD with 
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the theoretical lower bound. Under heavy load, the mean response time produced by GRAD 
concentrates on about 2 times of the lower bound, while under light load, the ratio spreads 
in the range from 1 to 4.  
 

 

Fig. 5. Comparing GRAD against the theoretical lower bound for mean response time with 
varying load for batched jobs. 

The load experiments bring up a question of how to improve the performance of GRAD 
under light load. The job scheduler RAD makes conservative decision on the allocation of 
processors to jobs. When the system is lightly loaded where the total demand is less than the 
total number of processors, RAD keeps some processors idle without allocating them to any 
jobs. Since a greedy thread scheduler executes a job faster with more processors allotted, a 
job scheduler that always allots all processors to jobs should perform better under light load. 
We will explore such a variation of the job scheduler RAD in the next set of the experiments. 

6.5 Proactive RAD experiments 
Proactive RAD always allocates all processors to jobs even if the total requests are less than 

the total number of processors. At a quantum q, when the total requests d( , q) = Σ  
 d(Ji, q) are greater than or equal to the total number P of processors, the proactive RAD 
works exactly the same as the original one. However, if d( , q) < P, the proactive RAD 
evenly allots the remaining P - d( , q) processors to all the jobs. 
Figure 6 shows the makespan ratio of proactive RAD against its original algorithm by 
varying system load. Each data point in the figure represents a job set's makespan ratio, 
defined as the makespan produced by the proactive RAD divided by that of the original. We 
can see that the makespan ratio is less than 1 for most of the runs, indicating that the 
proactive RAD out-performs the original one in most of these job sets. Moreover, the 
difference between them becomes more pronounced under light load, and diminishes with 
the increase of the system load. The reason is that the proactive RAD generally allocates 
more processors to jobs, especially when the load is light. The increased allotment allows 
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faster execution of jobs which shortens the makespan of the job set. Figure 6 gives evidences 
that the proactive RAD improves the performance of our scheduling algorithm under light 
load. 
 

 

Fig. 6. Comparing the proactive RAD against the original for makespan with varying load. 
The X-axis represents the load of the system. The Y- axis represents the makespan ratio 
between the proactive and original RAD. 

 

 

Fig. 7. Comparing the proactive RAD against the original for mean response time with 
varying load . The X-axis represents the load of the system. The Y-axis represents the mean 
response time ratio between the proactive and original RAD. 
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7. Related work 

Adaptive parallel job scheduling has been studied both empirically [27, 38, 35, 26] and 
theoretically [16, 9, 28, 12, 13, 4]. McCann, Vaswani, and Zahorjan [27] introduce the notion 
of dynamic equipartitioning (DEQ), which gives each job a fair allotment of processors 
based on the job's request, while allowing processors that cannot be used by a job to be 
reallocated to the other jobs. Brecht, Deng, and Gu [6] prove that DEQ with instantaneous 
parallelism as feedback is 2-competitive with respect to the makespan. Later, Deng and 
Dymond [10] prove that DEQ with instantaneous parallelism is also 4-competitive for 
batched jobs with respect to the mean response time. 
Even though using instantaneous parallelism as feedback is intuitive, it can either cause 
gross misallocation of processor resources [32] or introduce significant scheduling overhead. 
For example, the parallelism of a job may change substantially during a scheduling 
quantum, alternating between parallel and serial phases. Depending on which phase is 
currently active, the sampling of instantaneous parallelism may lead the task scheduler to 
request either too many or too few processors. Consequently, the job may either waste 
processor cycles or take too long to complete. On the other hand, if the quantum length is set 
to be small enough to capture frequent changes in instantaneous parallelism, the proportion 
of time spent reallotting processors among the jobs increases, resulting in a high scheduling 
overhead. 
Our previous work in [18] presents a two-level adaptive scheduler AGDEQ, which uses 
DEQ as the job scheduler, and A-GREEDY as the thread scheduler. Instead of using 
instantaneous parallelism, AGDEQ uses the job's utilization in the past as feedback. AGDEQ 
is O(1)-competitive for makespan, and in a batched setting, O(1)-competitive for mean 
response time. However, as with other prior work [6, 10] that uses DEQ as the job scheduler, 
AGDEQ can only be applied to the case where the total number of jobs in the job set is less 
than or equal to the number of processors. 

8. Conclusions 

We have presented a non-clairvoyant adaptive scheduling algorithm GRAD that ensures 
provable efficiency, fairness and minimal overhead. 
The history-based feedback mechanism of GRAD can be applied to not only greedy-based 
thread schedulers, but many other thread schedulers. For example, GRAD using greedy 
rules to map ready threads to allotted processors is suitable for scheduling jobs in more 
centralized setting such as data parallel applications. In the centralized setting, the scheduler 
has the information of all ready threads at any moment such that it can apply greedy rules 
to make effective assignment of ready threads. However, for applications using many 
processors and executed with more distributed setting, it can be costly for a scheduler to 
collect the ready threads information before making each scheduling decision. In this case, 
other than using a greedy thread scheduler, it is more practical to apply a distributed thread 
scheduler such as A-STEAL [2, 3] that uses randomized work stealing. A-STEAL performs 
as well as A-GREEDY asymptotically [3] in terms of both job completion time and waste, 
however, A-STEAL has slightly larger coefficients because it does not have the complete 
information on ready threads to make full utilization of the allotted processors. Therefore, a 
greedy scheduler like A-GREEDY could be a good choice in the centralized setting, while A-
STEAL can be applied in the distributed setting where a greedy thread scheduler is no 
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longer applicable. Analogously, one can develop a two-level scheduler by applying the 
feedback mechanism in GRAD, and application-specific thread schedulers. Such a two-level 
scheduler can be developed to provide both system-wide performance guarantees such as 
minimal makespan and mean response time, and optimization of individual applications. 
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Appendix A. Proof of Theorem 4 

The proof is divided into two cases - when  ≤ P and when  > P. 

Case 1: when  ≤ P 

For the first case where  ≤ P, GRAD always use DEQ as job scheduler. In our previous 

work [18], we show that AGDEQ (the combination of DEQ and A-GREEDY) is O(1)-
competitive with respect to mean response time for batched jobs when  ≤ P. The 

following lemma from [18] bounds the mean response time of a batched job set with  ≤ P. 

Lemma 7 [18] A job set is scheduled by GRAD on P processors where  ≤ P. The total response 

time R( ) of the schedule is at most 

 

where c = 2 - 2/  + 1). 

Case 2: when jJ j > P 
We now derive the mean response time of GRAD for batched jobs for the second case where 

 >P. Since all jobs in the job set J arrive at time step 0, the number of uncompleted jobs 
decreases monotonically. When the number of uncompleted jobs drops down to P or below, 
GRAD switches its job scheduler from RR to DEQ. We divide the analysis into three parts. 
In Part (a), we prove two technical lemmas (Lemmas 8 and 9) which show the properties of 
round robin as the job scheduler. In Part (b), we analyze the completion time of the jobs 
which are scheduled by RR during their entire execution. In Part (c), we combine results and 
give response time of GRAD in general. 
A batched job set  can be divided into two subsets - RR set and DEQ set. The RR set, 

denoted as RR, includes all the jobs in  which are entirely scheduled by RR for their 

execution. The DEQ set, denoted as DEQ, includes all the jobs in  which are scheduled by 

RR at the beginning, and by DEQ eventually. There exists a unique quantum q called the 
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final RR quantum such that q is the last quantum scheduled by RR, and from quanta q+1 

onwards are all scheduled by DEQ. According to RAD, there must be greater than P 

uncompleted jobs at the beginning of q, and less than or equal to P uncompleted jobs 

immediately after the execution of q. Let ķ denote the total number of uncompleted jobs 

immediately after the execution of the final RR quantum. We know that ķ =│ DEQ│, and ķ ≤ 

P. Let Ǒ denote a permutation that lists the jobs according to the ascending order of their 

completion time, i.e. T(JǑ(1)) ≤ T( Ǒ(2)) ≤ … ≤ T( Ǒ( )). We have RR = { Ǒ(i) │ 1 ≤ i ≤  - ķ} 

and DEQ = { Ǒ(i)│i >  - ķ}, i.e. DEQ includes the ķ jobs that are completed last, and RR 

includes the other  - ķ jobs. 

We define two notations - t-suffix and t-preffix, and use them to simplify the notations. For 

any time step t, t-suffix denoted as  represents the set of time steps from t to the 

completion of  by  = {t, t + 1, … , T( )}, while t-preffix denoted as  represents set of 

time steps from 1 to t by  = {1, 2, … , t}. We shall be interested in the suffixes of jobs. 

Define the t-suffix of a job Ji ∈  to be the job Ji( ), which is the portion of job Ji that remains 

after t - 1 number of time steps have been executed. The t-suffix of the job set  is 

 
 

Thus, we have  = (  ), and the number of uncompleted jobs at time step t is the 

number│ ( )│ of nonempty jobs in  ( ). Similarly, we can define the t-prefix of a job Ji 

as Ji ( ), and the t-prefix of a job set  as  ( ). 

Case 2 - Part (a) 
The following two technical lemmas present the properties of round robin as a job 

scheduler. The first lemma shows that jobs make almost the same progress on the execution 

of their work when they are scheduled by RR. The second lemma relates the work of jobs to 

their completion time. 

Lemma 8 A batched job set  is scheduled by GRAD on a machine with P processors where  
 > P. At any time step t scheduled by RR, for any two uncompleted jobs Ji and Jj , we have  

│T1 (Ji ( )) - T1 (Jj ( ))│≤ L, where L is the length of the scheduling quantum. 
Proof. Since RR gives an equal share of processors to all uncompleted jobs, for any two jobs 

that arrive at the same time, their allotments differ by at most L at any time. When a job's 

allotment is 1, its allotted processor is always making useful work. Then the work done for 

any two uncompleted jobs differs by at most L at any time before their completion.              □ 

Lemma 9 A batched job set  is scheduled by GRAD on a machine with P processors where  
 > P. The following two statements are true: 

1. If Ji ∈ RR, Jj ∈ RR, and T1 (Ji) < T1 (Jj), then T(Ji) ≤ T(Jj). 

2. If Ji ∈ RR, and Jj ∈ DEQ, then T1 (Ji) ≤ T1 (Jj). 
Proof. We now prove the first statement. Let t = T(Ji). At time step t, job Ji completes work T1 

(Ji). From Lemma 8, we know that T1 (Jj ( )) ≥ T1 (Ji ( )) - L = T1 (Ji) - L. Since job Jj completes 

after job Ji, job Jj takes at least one more scheduling quantum than Ji to complete its 

execution. Thus the work done for Jj during the period from t to T(Jj) is at least L. Therefore, 

we have T1 (Jj) = T1 (Ji ( )) ≥ T1 (Ji ( ))+ L ≥ T1 (Ji). 

For any two jobs Ji ∈ RR, and Jj ∈ DEQ, we have T(Ji) < T(Jj ). By using a similar analysis, we 
can prove the second statement. 
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Lemma 9 relates the work of jobs to their completion time. Its second statement tells us that 

only the ķ jobs with largest work are scheduled by DEQ eventually, and the other  - ķ 

jobs are scheduled by RR for their overall execution. Moreover, according to its first 

statement, under the schedule of RR, the jobs with less work are completed more quickly 

than those with more work. Consider the jobs according to their work such that  

T1 (J1) ≤ T1 (J2) ≤ … ≤ T1 ( ). From Lemma 9, we have RR = {Ji│1 ≤ i ≤  - ķ} and  

DEQ = {Ji│i >  - ķ}. 

Case 2 - Part (b) 
The following lemma bounds the completion time of the jobs in RR where T1 (Ji) denotes the 
work of a job Ji. 
Lemma 10 GRAD schedules a batched job set  on a machine with P processors where  > P. 

Consider the jobs according to their work such that T1 (J1) ≤ T1 (J2) ≤ … ≤ T1 ( ). For  

1 ≤ i ≤  - ķ, the completion time T(Ji) of a job Ji is T(Ji) ≤ ((  - i + 1) T1 (Ji) +Σ1 ≤ j < i T1 (Jj))=P+L. 

Proof. Since we consider the jobs according to their work, from Lemma 9, we have Ji ∈ JRR 

where 1 ≤ i ≤  - ķ. Such a job Ji completes its overall execution under the schedule of RR as 

job scheduler.  

We first evaluate T1 ( ( )), which is the work done for  up to a time step t. Suppose that 

the job Ji terminates at the end of a quantum q where T(Ji) = q(L + 1) - 1. Let t = qL - 1 be the 

end of the quantum q - 1, which is L steps before the completion of Ji. The work done for Ji in 

interval  is T1 (Ji ( )) = T1 (Ji) - L. According to Lemma 8, no job completes more than  

T1  (Ji ( ))+ L amount of work in interval . Therefore, for any job Jj with j > i, we have 

 
(7) 

For each job Jj where j < i, by definition, we always have 

 (8) 

Thus, at time step t, from Inequalities (7) and (8), the total work done for the job set  is 

 

(9) 

Since RR always allots all processors to jobs, and all allotted processors are making useful 
work, RR executes P ready threads at any time step. Thus, the total work done for job set  
increases by P at each time step. From Inequality (9), we have 

 
 

Since T(Ji) = t + L, we complete the proof.                                                                                        □ 
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Case 2 - Part (c) 
The following lemma bounds the total response time of job sets scheduled by GRAD when 

 > P where swa ( ) denotes squashed work area, and T∞( ) denotes the aggregate span. 

Lemma 11 Suppose that a job set  is scheduled by GRAD on a machine with P processors 
where  > P. The response time R( ) of  is bounded by 

 
(10)

Proof. The jobs in  can be divided into RR set RR and DEQ set DEQ. Let n =  denote 

the number of jobs in . Recall that ķ denotes the number of jobs in DEQ, i.e. ķ ≤ P. 
Consider the jobs in the ascending order of their completion time such that T(J1) ≤ T(J2) ≤ … 
·≤ T(Jn). From Lemma 9, we have RR = {Ji│1 ≤ i ≤ n - ķ} and DEQ = {Ji│i > n - ķ}. We will 
calculate the total response time of the jobs in RR and DEQ respectively. 

Step 1: To calculate R( RR), we apply Lemma 10. For any job Ji ∈ RR, its completion time is 

T(Ji) ≤ (1/P)((n - i+1)T1 (Ji)+Σ1 ≤ j < i T1 (Jj))+L according to Lemma 10. Thus, the total response 

time of the jobs in RR is 

 
(11)

Step 2: We now calculate R( DEQ). The ķ jobs in DEQ are scheduled by RR until the time 
step t = T(Jn-ķ) at which the job Jn-ķ completes, and scheduled by DEQ afterwards. The total 
response time of DEQ is 

 (12)

From Lemma 10, we know that the completion time of the job Jn-ķ is 

 
(13)

To get R( DEQ), we only need to calculate R( DEQ ). 

Since the job set DEQ is scheduled by DEQ as the job scheduler from time step t onwards, 

we can apply the total response time bound in Lemma 7 to calculate R(JDEQ ). During 

the interval , job Jn-ķ completes T1 (Jn-ķ) amount of work. From Lemma 8, we know that 
each job Ji with i > n - ķ has completed at least T1 (Jn-ķ) - L amount of work. Thus, such a job Ji 

has remaining work T1 (Ji  ≤ T1 (Ji) - T1 (Jn-ķ) + L. The squashed work of DEQ  is 

 

(14)
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Let the constant c = 2 - 2/(1 + P) < 2. According to Lemma 7, we have 

 
(15)

where E1 = c T∞( ) + cPL(logǒ P + 1). 

We will now calculate the response time of DEQ. Since we know c = 2 – 2/(1 + P) > 1, the 

responsiveness parameter ǒ > 1, and the utilization parameter  ≤ 1, we have c(ǒ + 1)= > 2. 

Given Equation (12), and Inequalities (13), (14) and (15), the response time of DEQ is 

 

(16)

where E2 = E1 + (c  + 1)PL . 

Step 3: Given R( RR) in Inequality (11), R( DEQ) in Inequality (16), and c(ǒ+1)= > 2, the 

response time of  is the sum of them as follows: 
 

 
 

□ 
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Lemmas 7 and 11 bound the total response time of a batched job set  when  ≤ P and  

> P respectively. Combining them, we have completed the proof of Theorem 4. 
□ 
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