
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

24

Provably-Efficient Online Adaptive Scheduling
of Parallel Jobs Based on Simple Greedy Rules

Yuxiong He1,2,3 and Wen-Jing Hsu1,2

1Singapore-MIT Alliance
2Nanyang Technological University

3Sun Microsystems
Singapore

1. Introduction

Scheduling competing jobs on multiprocessors has always been an important issue for
parallel and distributed systems. The challenge is to ensure overall system efficiency while
offering a level of fairness to user jobs. Although various degrees of successes have been
achieved over the past decades, few existing schemes address both efficiency and fairness
over a wide range of work loads. Moreover, in order to obtain analytical results, many
known results [22, 24, 7, 8, 17, 20, 23, 25, 33] require prior information about jobs such as
jobs' release time, amount of work, parallelism profile, etc, which may be difficult to obtain
in real applications. This chapter describes a scheduling algorithm - GRAD, which offers
provable efficiency in terms of makespan and mean response time by allotting each job a fair
share of processor resources. Our algorithm is non-clairvoyant [10, 6, 18, 12], i.e. it assumes
nothing about the release time, the execution time, and the parallelism profile of jobs.
A parallel job can be classified as adaptive or non-adaptive. An adaptively parallel job [34]

may change its parallelism, and it allows the number of the allotted processors to vary

during its execution. A job is nonadaptive if it runs on a fixed number of processors over its

lifetime. With adaptivity, new jobs can enter the system by simply recruiting processors

from the already executing jobs. Moreover, in order to improve the system utilization,

schedulers can shift processors from jobs that do not require many processors to the jobs in

need. However, since the parallelism of adaptively parallel jobs can change during the

execution and the future parallelism is usually unknown, how a scheduler decides the

processor allotments for jobs is a challenging problem. We describe GRAD that effectively

addresses such an adaptive scheduling problem.

Scheduling parallel jobs on multiprocessors can be implemented in two levels [14]: a kernel-
level job scheduler which allots processors to jobs, and a user-level thread scheduler which
maps the threads of a given job to the allotted processors. The processor reallocation occurs
periodically between scheduling quanta. The thread scheduler provides parallelism feedback to
the job scheduler. The feedback is an estimation of the number of processors that its job can
effectively use during the next quantum. The job scheduler follows some processor
allocation policy to determine the allotment to the job. It may implement a policy that is
either space-sharing, where jobs occupy disjoint processor resources, or time-sharing, where O

pe
n

A
cc

es
s

D
at

ab
as

e
w

w
w

.in
te

ch
w

eb
.o

rg

Source: Advances in Greedy Algorithms, Book edited by: Witold Bednorz,
ISBN 978-953-7619-27-5, pp. 586, November 2008, I-Tech, Vienna, Austria

www.intechopen.com

 Advances in Greedy Algorithms

440

different jobs may share the same processor resources at different points in time. Once a job
is allotted its processors, the allotment does not change within the quantum.
GRAD is a two-level scheduling algorithm that uses simple, greedy-like rules. The thread-
level scheduler called A-GREEDY [1] provides feedback based on two simple indicators
acquired from the past quantum, namely, whether its request was satisfied and whether the
allotted processors are well utilized. Based on the feedbacks from all jobs, the OS allocator
RAD [19] partitions processors as equally as possible. Once given the processors, A-
GREEDY greedily maps the ready threads of the job onto its allotted processors. If the
number of ready threads is less than or equal to the number of allotted processors, all ready
threads are scheduled to execute. Otherwise, each allotted processor is assigned with one
ready thread. The thread mapping in greedy manner ensures that the allotted processors
always make useful work unless there are insufficient number of ready threads to work on.
Based on the “equalized allotment” scheme for processor allocation, and by using the
history-based feedback, we show that GRAD is provably efficient. The performance is
measured in terms of both makespan and mean response time. GRAD achieves O(1)-
competitiveness with respect to makespan for job sets with arbitrary release times, and O(1)-
competitiveness with respect to mean response time for batched job sets where all jobs are
released simultaneously. Unlike many previous results, which either assume clairvoyance
[29, 21, 31] or use instantaneous parallelism [10, 6], GRAD removes these restrictive
assumptions. Moreover, because the quantum length can be adjusted to amortize the cost of
context-switching during processor reallocation, GRAD provides effective control over the
scheduling overhead and ensures efficient utilization of processors.
Our simulation results also suggest that GRAD performs well in practice. For job sets with
arbitrary release time, their makespan scheduled by GRAD is no more than 1.39 times of the
optimal on average (geometric mean). For batched job sets, their mean response time
scheduled by GRAD is no more than 2.37 times of the optimal on average.
The remainder of this chapter is organized as follows. Section 2 describes the job model,
scheduling model, and objective functions. Section 3 describes the GRAD algorithm. Section
4 analyzes the competitiveness of GRAD with respect to makespan. Section 5 shows the
competitiveness of GRAD with respect to mean response time for batched jobs, while its
detailed analysis is presented in Appendix A. Section 6 presents the empirical results.
Section 7 discusses the related work, and Section 8 gives some concluding remarks.

2. Scheduling and analytical model

Our scheduling input consists of a collection of independent jobs = {J1, J2, … , J } to be

scheduled on a collection of P identical processors. Time is broken into a sequence of equal-
sized scheduling quanta 1, 2, …, each of length L, where each quantum q includes the interval

[L ⋅ q,L ⋅ q +1, … ,L(q +1) - 1] of time steps. The quantum length L is a system configuration
parameter chosen to be long enough to amortize scheduling overheads. In this section, we
formalize the job model, define the scheduling model, and present the optimization criteria
of makespan and mean response time.
We model the execution of a multithreaded job Ji as a dynamically unfolding directed acyclic
graph (DAG, for short). Each vertex of the DAG represents a unit-time instruction. The work
T1 (Ji) of the job Ji corresponds to the total number of vertices in the dag. Each edge
represents a dependency between the two vertices. The span T∞(Ji) corresponds to the

www.intechopen.com

Provably-Efficient Online Adaptive Scheduling of Parallel Jobs Based on Simple Greedy Rules

441

number of nodes on the longest chain of the precedence dependencies. The release time r(Ji)
of the job Ji is the time at which Ji becomes first available for processing. Each job is handled
by a dedicated thread scheduler, which operates in an online manner, oblivious to the future
characteristics of the dynamically unfolding DAG.
The job scheduler and the thread schedulers interact as follows. The job scheduler may
reallocate processors between scheduling quanta. Between quantum q - 1 and quantum q,
the thread scheduler of a given job Ji determines the job's desire d(Ji, q), which is the number
of processors Ji wants for quantum q. Based on the desire of all running jobs, the job
scheduler follows its processor-allocation policy to determine the allotment a (Ji, q) of the job
with the constraint that a (Ji, q) ≤ d(Ji, q). Once a job is allotted its processors, the allotment
does not change during the quantum.

A schedule X = (ĸ, Ǒ) of a job set is defined as two mappings ĸ : ∪ Vi → {1, 2, … ,1},

and Ǒ : ∪ Vi → {1, 2, … , P}, which map the vertices of the jobs in the job set to the set

of time steps, and the set of processors on the machine respectively. A valid mapping must

preserve the precedence relationship of each job. For any two vertices u, v ∈ Vi of the job Ji, if

u ≺ v, then ĸ (u) < ĸ (v), i.e. the vertex u must be executed before the vertex v. A valid

mapping must also ensure that one processor can only be assigned to one job at any given

time. For any two vertices u and v, both ĸ (u) = ĸ (v) and Ǒ(u) = Ǒ(v) are true iff u = v.
Our scheduler uses makespan and mean response time as the performance measurement.
Definition 1 The makespan of a given job set is the time taken to complete all the jobs in

, i.e. T() = max T(Ji), where T(Ji) denotes the completion time of job Ji.

Definition 2 The response time of a job Ji is T(Ji) - r(Ji), which is the duration between its
release time r(Ji) and the completion time T(Ji). The total response time of a job set is given

by R() = Σ (T(Ji) - r(Ji)) and the mean response time is () = R()/ .

The goal of the chapter is to show that our scheduler optimizes the makespan and mean
response time, and we use competitive analysis as a tool to evaluate and compare the
scheduling algorithm. The competitive analysis of an online scheduling algorithm is to
compare the algorithm against an optimal clairvoyant algorithm. Let T*() denote the
makespan of an arbitrary jobset scheduled by an optimal scheduler, and T() denote the
makespan produced by an algorithm A for the job set . A deterministic algorithm A is said

to be c-competitive if there exists a constant b such that T() ≤ c ⋅ T*() + b holds for the
schedule of any job set. We will show that our algorithm is c-competitive in terms of the
makespan, where c is a small constant. Similarly, for the mean response time, we will show
that our algorithm is also constant-competitive for any batched jobs.

3. Algorithms

This section presents the job scheduler - RAD, and overviews the thread scheduler - A-
GREEDY [1].
RAD Job Scheduler
The job scheduler RAD unifies the space-sharing job scheduling algorithm DEQ [35, 27]
with the time-sharing RR algorithm. When the number of jobs is greater than the number of
processors, GRAD schedules the jobs in a batched, round-robin fashion, which allocates one
processor to each job with an equal share of time. When the number of jobs is not more than
the number of processors, GRAD uses DEQ as the job scheduler. DEQ gives each job an
equal share of spatial allotments unless the job requests for less.

www.intechopen.com

 Advances in Greedy Algorithms

442

When a batch of jobs are scheduled in the round-robin fashion, RAD maintains a queue of
jobs. At the beginning of each quantum, if there are more than P jobs, it pops P jobs from the
top of the queue, and allots one processor to each of them during the quantum. At the end of
the quantum, RAD pushes the P jobs back to the bottom of the queue if they are
uncompleted. The new jobs can be put into the queue once they are released.
DEQ attempts to give each job a fair share of processors. If a job requires less than its fair
share, however, DEQ distributes the extra processors to the other jobs. More precisely, upon

receiving the desires {d(Ji, q)} from the thread schedulers of all jobs Ji ∈ , DEQ executes the
following processor-allocation algorithm:
1. Set n = . If n = 0, return.

2. If the desire of every job Ji ∈ satisfies d(Ji, q) ≥ P/n, assign each job a (Ji, q) = P/n
processors.

3. Otherwise, let ’ = {Ji ∈ : d(Ji, q) < P/n}. Assign a (Ji, q) = d(Ji, q) processors to each Ji ∈

’. Update = - ’, and P = P - Σ ’ d(Ji, q). Go to Step 1.

Note that, at any quantum where the number of jobs is equal to the number of processors,
DEQ and RR give exactly the same processor allotment, and allocate each of P jobs with one
processor.
Adaptive Greedy Thread Scheduler
A-GREEDY [1] is an adaptive greedy thread scheduler with parallelism feedback. Between
quanta, it estimates its job's desire, and requests processors from the job scheduler. During
the quantum, it schedules the ready threads of the job onto the allotted processors greedily
[15, 5]. If there are more than a (Ji, q) ready threads, A-GREEDY schedules any a (Ji, q) of
them. Otherwise, it schedules all of them.
A- GREEDY's desire-estimation algorithm is parameterized in terms of a utilization parameter
 > 0 and a responsiveness parameter ǒ > 1, both of which can be adjusted for different levels of
guarantees for waste and completion time.

Before each quantum, A- GREEDY y for a job Ji ∈ provides parallelism feedback to the job
scheduler based on the Ji’s history of utilization in the previous quantum. A- GREEDY
classifies quanta as “satisfied” versus “deprived” and “eficient” versus “inefficient.” A
quantum q is satisfied if a (Ji, q) = d(Ji, q), in which case Ji’s allotment is equal to its desire.
Otherwise, the quantum is deprived.1 The quantum q is efficient if A- GREEDY utilizes no less
than a  fraction of the total allotted processor cycles during the quantum, where  is the
utilization parameter. Otherwise, the quantum is inefficient. Under the four-way
classification, however, A- GREEDY only uses three: inefficient, efficient-and-satisfied, and
efficient-and-deprived.
Using this three-way classification and the job's desire for the previous quantum, A-
GREEDY computes the desire for the next quantum as follows:

• If quantum q - 1 was inefficient, decrease the desire, setting d(Ji, q) = d(Ji, q - 1)=½, where
ǒ is the responsiveness parameter.

• If quantum q - 1 was efficient-and-satisfied, increase the desire, setting d(Ji, q) = ǒd(Ji, q - 1).

• If quantum q - 1 was efficient-and-deprived, keep desire unchanged, setting d(Ji, q) =
d(Ji, q - 1).

1 We can extend the classification of “satisfied” versus “deprived” from quanta to time

steps. A job Ji is satisfied (or deprived) at step t ∈ [L ⋅ q,L ⋅ q + 1, .. ,L(q + 1) - 1] if Ji is satisfied
(resp. deprived) at the quantum q.

www.intechopen.com

Provably-Efficient Online Adaptive Scheduling of Parallel Jobs Based on Simple Greedy Rules

443

4. Makespan

This section shows that GRAD is c-competitive with respect to makespan, where c denotes a
constant. The exact value of c is related to the choice of A-GREEDY's utilization and
responsiveness parameter, as will be explained shortly.
We first review the lower bounds of makespan. Given a job set and P processors, lower
bounds on the makespan of any job scheduler can be obtained based on release time, work,

and span. Recall that, for a job Ji ∈ , the quantities r(Ji), T1 (Ji), and T∞(Ji) represent the
release time, work, and span of Ji, respectively. Let T* () denote the makespan produced

by an optimal scheduler on a job set on P processors. Let T1 () = Σ T1 (Ji) denote the

total work of the job set. The following two inequalities give two lower bounds on the
makespan [6]:

(1)

 (2)

To facilitate the analysis, we state a lemma from [1] that bounds the satisfied steps and the
waste of a single job scheduled by A-GREEDY. Recall that, the parameter ρ > 1 denotes A-
GREEDY's responsiveness parameter,  > 0 its utilization parameter, and L the quantum
length.
Lemma 1 [1] For a job Ji with work T1 (Ji) and span T∞(Ji) on a machine with P processors,
A- GREEDY produces at most 2T∞(Ji)/(1 - )+Llogǒ P +L satisfied steps, and it wastes at most
(1+ǒ - )T1 (Ji) / processor cycles in the course of the computation. □
The following theorem analyzes the makespan of a job set scheduled by GRAD.
Theorem 2 Let ǒ denote A-GREEDY's responsiveness parameter,  its utilization parameter, and L
the quantum length. Then, GRAD completes a job set on P processors in

(3)

time steps.
Proof. Suppose job Jk is the last job completed among the jobs in . Let S(Jk) denote the set of
satisfied steps for Jk, and D(Jk) denote its set of deprived steps. The job Jk is scheduled to start
its execution at the beginning of the quantum q where Lq < r(Jk) ≤ L(q + 1), which is the
quantum immediately after Jk's release. Therefore, we have T() ≤ r(Jk) + L + │S(Jk)│ +
│D(Jk)│. We now bound │S(Jk)│ and │D(Jk)│ respectively.
From Lemma 1, we know that the number of satisfied steps attributed to Jk is at most
│S(Jk)│≤ 2T∞(Jk)/(1 - ) + Llogǒ P + L.

We now bound the total number of deprived steps D(Jk) of job Jk. For each step t ∈ D(Jk),

GRAD applies either DEQ or RR as job scheduler. RR always allots all processors to jobs. By

definition, DEQ must have allotted all processors to jobs whenever Jk is deprived.

Thus, the total allotment on such a step t is always equal to the total number of

processors P. Moreover, the total allotment of over Jk's deprived steps D(Jk) is a

(,D(Jk)) = Σ Σ a (Ji, t) = P│D(Jk)│. Since any allotted processor is either working

productively or wasted, the total allotment for any job Ji is bounded by the sum of its total

www.intechopen.com

 Advances in Greedy Algorithms

444

work T1 (Ji) and total waste w(Ji). By Lemma 1, the waste for the job Ji is at most (ǒ -  + 1)/
times of its work. Thus, the total number of allotted processor cycles for job Ji is at most T1 (Ji)

+ w(Ji) ≤ (ǒ + 1)T1 (Ji) /. The total number of allotted processor cycles for all jobs is at most

Σ (ǒ + 1)T1 (Ji) / = ((ǒ + 1)/)T1 (). Given a (,D(Jk)) ≤((ǒ + 1)/)T1 () and a (,D(Jk)) = P

│D(Jk)│, we have │D(Jk)│ ≤ .
Therefore, we can get

□
Since both T1 () =P and max {T∞(Ji) + r(Ji)} are lower bounds of T*(), we obtain the

following corollary.
Corollary 3 GRAD completes a job set in

time steps, where T*() denotes the makespan of produced by an optimal clairvoyant scheduler. □
Since both the quantum length L and the processor number P are independent variables
with respect to any job set , Corollary 3 shows that GRAD is O(1)-competitive with respect
to makespan.
To better interpret the bound, let's substitute ǒ = 1.2 and  = 0.6, we have T() ≤ 8.67T*() +
Llg P/ lg 1.2 + 2L. Since both the quantum length L and the processor number P are
independent variables with respect to any job set , GRAD is 8.67-competitive given ǒ = 1.2
and  = 0.6.

When  = 0.5 and ǒ approaches 1, the competitiveness ratio (ǒ + 1)= + 2=(1 - ) approaches

its minimum value 8. Thus, GRAD is (8 + ε)-competitive with respect to makespan for any

constant ε > 0.

5. Mean response time

Mean response time is an important measure for multiuser environments where we desire
as many users as possible to get fast response from the system. In this section, we first
introduce the lower bounds. Then, we show that GRAD is O(1)-competitive for batched jobs
with respect to the mean response time.
Lower Bounds and Preliminaries
We first introduce some definitions.

Definition 3 Given a finite list A =〈αi〉 of n =│A│integers, define f : {1, 2, … , n}→{1, 2, … , n}

to be a permutation satisfying α f (1) ≤ α f (2) ≤ … ≤ α f (n). The squashed sum of A is defined as

www.intechopen.com

Provably-Efficient Online Adaptive Scheduling of Parallel Jobs Based on Simple Greedy Rules

445

The squashed work area of a job set on a set of P processors is

where T1 (Ji) is the work of job Ji ∈ . The aggregate span of is

where T∞(Ji) is the span of job Ji ∈ .
The research in [36, 37, 10] establishes two lower bounds for the mean response time:

 (4)

 (5)

where () denotes the mean response time of scheduled by an optimal clairvoyant
scheduler. Both the aggregate span T∞() and the squashed work area swa () are lower
bounds of the total response time R*() under an optimal clairvoyant scheduler.
Analysis

The proof is divided into two parts. In the first part where ≤ P, GRAD always uses DEQ
as job scheduler. In this case, we apply the result in [18], and show that GRAD is O(1)-

competitive. In the second part where > P, GRAD uses both RR and DEQ. Since we
consider batched jobs, the number of incomplete jobs decreases monotonically. When the
number of incomplete jobs drops to P, GRAD switches its job scheduler from RR to DEQ.
Therefore, we prove the second case based on the properties of round robin scheduling and
the results of the first case. The following theorem shows the total response time bound for
the batched job sets scheduled by GRAD. Please refer to Appendix A for the complete proof.
Theorem 4 Let ǒ be A-GREEDY's responsiveness parameter,  its utilization parameter, and L the
quantum length. The total response time R() of a job set produced by GRAD is at most

(6)

where swa () denotes the squashed work area of , and T∞() denotes the aggregate span of . □
Since both swa () / and T∞()/ are lower bounds on R(), we obtain the following

corollary. It shows that GRAD is O(1)-competitive with respect to mean response time for
batched jobs.
Corollary 5 The mean response time () of a batched job set produced by GRAD satisfies

where () denotes the mean response time of scheduled by an optimal clairvoyant scheduler. □

6. Experimental results

To evaluate the performance of GRAD, we conducted four sets of experiments, which are
summarized below.

www.intechopen.com

 Advances in Greedy Algorithms

446

• The makespan experiments compares the makespan produced by GRAD against the
theoretical lower bound for over 10000 runs of job sets.

• The mean response time experiments investigate how GRAD performs with respect to
mean response time for over 8000 batched job sets.

• The load experiments investigate how the system load affects the performance of
GRAD.

• The proactive RAD experiments compare the performance of RAD against its variation
- proactive RAD. The proactive RAD always allots all processors to jobs even if the
overall desire is less than the total number of processors.

Fig. 1. The DAG of a fork-join job used in the simulation. This job has start-up length w0 = 1,
serial phase length w1 = 3, parallel phase length w2 = 2, parallelism h = 7, and the number of
iterations iter = 2.

6.1 Simulation setup
To study GRAD, we build a Java-based discrete-time simulator using DESMO-J [11]. Our
simulator models four major entities - processors, jobs, thread schedulers, and job
schedulers, and simulates their interactions in a two-level scheduling environment. As
described in Section 2, we model the execution of a multithreaded job as a dag. When a job
is submitted to the simulated multiprocessor system, an instance of a thread scheduler is
created for the job. The job scheduler allots processors to the job, and the thread scheduler
executes the job using A-GREEDY. The simulator operates in discrete time steps, and we
ignore the overheads incurred in the reallocation of processors.
Our benchmark application is the Fork-Join jobs, whose task graphs are typically as shown
in Figure 1. Each job alternates between a serial phase of length w1 and a parallel phase (with h-
way parallelism) of length w2, while the initial serial phase has length w0. The parallelism of
job's parallel phase is the height h of the job, and the number of iterations is denoted as iter .
Fork-Join jobs arise naturally in jobs that exhibit “data parallelism”, and apply the same
computation to a number of different data points. Many computationally intensive
applications can be expressed in a data-parallel fashion [30]. The repeated fork-join cycle in
the job reflects the often iterative nature of these computations. The average parallelism of
the job is approximately (w1 + hw2)=(w1 + w2). By varying the values of w0, w1, w2, h, and the
number of iterations, we can generate jobs with different work, spans, and phase lengths.
GRAD requires some parameters as input. We set the responsiveness parameter to be ǒ= 2.0,

and the utilization parameter  = 0.8 unless otherwise specified. GRAD is designed for

moderate-scale and large-scale multiprocessors, and we set the number of processors to be

P = 128. The quantum length L represents the time between successive reallocations of

www.intechopen.com

Provably-Efficient Online Adaptive Scheduling of Parallel Jobs Based on Simple Greedy Rules

447

processors by the job scheduler, and is selected to amortize the overheads due to the

communication between the job scheduler and the thread scheduler, and the reallocation of

processors. In conventional computer systems, a scheduling quantum is typically between

10 and 20 milliseconds. The execution time of a task is decided by the granularity of the job.

If a task takes approximately 0.5 to 5 microseconds, then the quantum length L should be set

to values between 103 and 105 time steps. Our theoretical bounds indicate that as long as

T∞� Llog P, the length of L should have little effect on our results. In our experiments, we

set L = 1000.

6.2 Makespan experiments
The competitive ratio of makespan derived in Section 4, though asymptotically strong, has a

relatively large constant multiplier. The makespan experiments were designed to evaluate

the constants that would occur in practice and compare GRAD to an optimal scheduler. The

experiments are conducted on more than 10, 000 runs of job sets using many combinations

of jobs and different loads.

Figure 2 shows how GRAD performs compared to an optimal scheduler. The makespan of a

job set has two lower bounds max (r(Ji) + T∞(Ji)) and T1() =P. The makespan

produced by an optimal scheduler is lower-bounded by the larger of these two values. The

makespan ratio in Figure 2 is defined as the makespan of a job set scheduled by GRAD

divided by the theoretical lower bounds. Its X-axis represents the range of the makespan

ratio, while the histogram shows the percentage of the job sets whose makespan ratio falls

into the range. Among more than 10, 000 runs, 76.19% of them use less than 1.5 times of the

theoretical lower bound, 89.70% use less than 2.0 times, and none uses more than 4.5 times.

The average makepsan ratio is 1.39, which suggests that, in practice, GRAD has a small

competitive ratio with respect to the makespan.

Fig. 2. Comparing the makespan of GRAD with the theoretical lower bound for job sets with
arbitrary job release time.

www.intechopen.com

 Advances in Greedy Algorithms

448

We now interpret the relation between the theoretical bounds and experimental results as
follows. When ǒ = 2 and  = 0.8, from Theorem 2, GRAD is 13.75-competitive in the worst
case. However, we anticipate that GRAD's makespan ratio would be small in practical
settings, especially when the jobs have total work much great than the span and with the
machine moderately- or highly- loaded. In this case, the term on T1 ()/P in Inequality (3) of
Theorem 2 is much larger than the term max {T∞(i) + r(i)}, i.e. the term T1()/P

generally dominates the makespan bound. The proof of Theorem 2 calculates the coefficient
of T1 ()/P as the ratio of the total allotment (total work plus total waste) versus the total
work. When the job scheduler is RAD, which is not a true adversary, our simulation results
indicate that the ratio of the waste versus the total work is only about 1/10 of the total work.
Thus, the coefficient of T1 ()/P in Inequality (3) is about 1.1. It explains why the makespan
produced by GRAD is less than 2 times of the lower bound on average as shown in Figure 2.

6.3 Mean response time experiments
This set of experiments is designed to evaluate the mean response time of the batch job sets
scheduled by GRAD. Figure 3 shows the distribution of the mean response time normalized
w.r.t. the larger of the two lower bounds { the squashed work bound swa () / and the

aggregated critical path bound T∞()/ . The histogram in Figure 3 shows that, among

more than 8, 000 runs, 94.65% of them use less than 3 times of the theoretical lower bound,
and none of them uses more than 5:5 times. The average mean response time ratio is 2.37.

Fig. 3. Comparing the mean response time of GRAD with the theoretical lower bound for
batched job sets.

Similar to the discussion in Section 6.2, we can relate the theoretical bounds for mean
response time to the experimental results. When ǒ = 2 and ǒ = 0.8, from Theorem 4, GRAD is
27.60-competitive. However, we expect that GRAD should perform closer to optimal in
practice. In particular, when the job set J exhibits reasonably large total parallelism, we have

swa () � T∞(), and thus, the term involving swa () in Theorem 4 dominates the total

response time. More importantly, RAD is not an adversary of A-GREEDY, as mentioned

www.intechopen.com

Provably-Efficient Online Adaptive Scheduling of Parallel Jobs Based on Simple Greedy Rules

449

before, the waste of a job is only about 1/10 of the total work in average for over 100, 000 job
runs we tested. Based on this waste, the squashed area bound swa () in Inequality (6) of
Theorem 4 has a coefficient to be around 2.2. It explains that the mean response time
produced by GRAD is less than 3 times of the lower bound as shown in Figure 3.

6.4 Load experiments
This set of experiments is designed to investigate how the load affects the performance of
GRAD. The load of a job set J on a machine with P processors indicates how heavily the jobs
compete for processors on the machine, which is calculated as follows

For a batched job set, the load is just the average parallelism of the set divided by the total
number of processors.
Figure 4 shows how GRAD performs against the theoretical lower bound with respect to
makespan by varying system load. The makespan ratio in this figure is defined as the
makespan of a job set scheduled by GRAD divided by the larger of the two lower bounds.
Each data point represents the makespan ratio of a job set. The testing results suggest that
the makespan ratio becomes smaller when the load gets heavier. Specifically, the makespan
generated by GRAD is very close to the lower bound when the load is greater than 4; it
never exceeds 1.5 times of the makespan produced when the system load is greater than 3.
However, when the load is less than 2, the makespan ratio spreads in the range from 1 to 4.

Fig. 4. Comparing GRAD against the theoretical lower bound for makespan with varying
load.

Figure 5 shows the performance of GRAD with respect to mean response time for batched
jobs by varying system load. It compares the mean response time incurred by GRAD with

www.intechopen.com

 Advances in Greedy Algorithms

450

the theoretical lower bound. Under heavy load, the mean response time produced by GRAD
concentrates on about 2 times of the lower bound, while under light load, the ratio spreads
in the range from 1 to 4.

Fig. 5. Comparing GRAD against the theoretical lower bound for mean response time with
varying load for batched jobs.

The load experiments bring up a question of how to improve the performance of GRAD
under light load. The job scheduler RAD makes conservative decision on the allocation of
processors to jobs. When the system is lightly loaded where the total demand is less than the
total number of processors, RAD keeps some processors idle without allocating them to any
jobs. Since a greedy thread scheduler executes a job faster with more processors allotted, a
job scheduler that always allots all processors to jobs should perform better under light load.
We will explore such a variation of the job scheduler RAD in the next set of the experiments.

6.5 Proactive RAD experiments
Proactive RAD always allocates all processors to jobs even if the total requests are less than

the total number of processors. At a quantum q, when the total requests d(, q) = Σ
 d(Ji, q) are greater than or equal to the total number P of processors, the proactive RAD
works exactly the same as the original one. However, if d(, q) < P, the proactive RAD
evenly allots the remaining P - d(, q) processors to all the jobs.
Figure 6 shows the makespan ratio of proactive RAD against its original algorithm by
varying system load. Each data point in the figure represents a job set's makespan ratio,
defined as the makespan produced by the proactive RAD divided by that of the original. We
can see that the makespan ratio is less than 1 for most of the runs, indicating that the
proactive RAD out-performs the original one in most of these job sets. Moreover, the
difference between them becomes more pronounced under light load, and diminishes with
the increase of the system load. The reason is that the proactive RAD generally allocates
more processors to jobs, especially when the load is light. The increased allotment allows

www.intechopen.com

Provably-Efficient Online Adaptive Scheduling of Parallel Jobs Based on Simple Greedy Rules

451

faster execution of jobs which shortens the makespan of the job set. Figure 6 gives evidences
that the proactive RAD improves the performance of our scheduling algorithm under light
load.

Fig. 6. Comparing the proactive RAD against the original for makespan with varying load.
The X-axis represents the load of the system. The Y- axis represents the makespan ratio
between the proactive and original RAD.

Fig. 7. Comparing the proactive RAD against the original for mean response time with
varying load . The X-axis represents the load of the system. The Y-axis represents the mean
response time ratio between the proactive and original RAD.

www.intechopen.com

 Advances in Greedy Algorithms

452

7. Related work

Adaptive parallel job scheduling has been studied both empirically [27, 38, 35, 26] and
theoretically [16, 9, 28, 12, 13, 4]. McCann, Vaswani, and Zahorjan [27] introduce the notion
of dynamic equipartitioning (DEQ), which gives each job a fair allotment of processors
based on the job's request, while allowing processors that cannot be used by a job to be
reallocated to the other jobs. Brecht, Deng, and Gu [6] prove that DEQ with instantaneous
parallelism as feedback is 2-competitive with respect to the makespan. Later, Deng and
Dymond [10] prove that DEQ with instantaneous parallelism is also 4-competitive for
batched jobs with respect to the mean response time.
Even though using instantaneous parallelism as feedback is intuitive, it can either cause
gross misallocation of processor resources [32] or introduce significant scheduling overhead.
For example, the parallelism of a job may change substantially during a scheduling
quantum, alternating between parallel and serial phases. Depending on which phase is
currently active, the sampling of instantaneous parallelism may lead the task scheduler to
request either too many or too few processors. Consequently, the job may either waste
processor cycles or take too long to complete. On the other hand, if the quantum length is set
to be small enough to capture frequent changes in instantaneous parallelism, the proportion
of time spent reallotting processors among the jobs increases, resulting in a high scheduling
overhead.
Our previous work in [18] presents a two-level adaptive scheduler AGDEQ, which uses
DEQ as the job scheduler, and A-GREEDY as the thread scheduler. Instead of using
instantaneous parallelism, AGDEQ uses the job's utilization in the past as feedback. AGDEQ
is O(1)-competitive for makespan, and in a batched setting, O(1)-competitive for mean
response time. However, as with other prior work [6, 10] that uses DEQ as the job scheduler,
AGDEQ can only be applied to the case where the total number of jobs in the job set is less
than or equal to the number of processors.

8. Conclusions

We have presented a non-clairvoyant adaptive scheduling algorithm GRAD that ensures
provable efficiency, fairness and minimal overhead.
The history-based feedback mechanism of GRAD can be applied to not only greedy-based
thread schedulers, but many other thread schedulers. For example, GRAD using greedy
rules to map ready threads to allotted processors is suitable for scheduling jobs in more
centralized setting such as data parallel applications. In the centralized setting, the scheduler
has the information of all ready threads at any moment such that it can apply greedy rules
to make effective assignment of ready threads. However, for applications using many
processors and executed with more distributed setting, it can be costly for a scheduler to
collect the ready threads information before making each scheduling decision. In this case,
other than using a greedy thread scheduler, it is more practical to apply a distributed thread
scheduler such as A-STEAL [2, 3] that uses randomized work stealing. A-STEAL performs
as well as A-GREEDY asymptotically [3] in terms of both job completion time and waste,
however, A-STEAL has slightly larger coefficients because it does not have the complete
information on ready threads to make full utilization of the allotted processors. Therefore, a
greedy scheduler like A-GREEDY could be a good choice in the centralized setting, while A-
STEAL can be applied in the distributed setting where a greedy thread scheduler is no

www.intechopen.com

Provably-Efficient Online Adaptive Scheduling of Parallel Jobs Based on Simple Greedy Rules

453

longer applicable. Analogously, one can develop a two-level scheduler by applying the
feedback mechanism in GRAD, and application-specific thread schedulers. Such a two-level
scheduler can be developed to provide both system-wide performance guarantees such as
minimal makespan and mean response time, and optimization of individual applications.

9. Acknowledgements

The preliminary version of GRAD algorithm was published in our paper [19] coauthored
with Charles E. Leiserson. The authors would like to thank Charles for many helpful
discussions on formalizing the analysis and advices on revising the write-up.

10. References

[1] K. Agrawal, Y. He, W. J. Hsu, and C. E. Leiserson. Adaptive task scheduling with
parallelism feedback. In Proceedings of the ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, pages 100 - 109, New York City, NY, USA, 2006.

[2] K. Agrawal, Y. He, and C. E. Leiserson. An empirical evaluation of work stealing with
parallelism feedback. In Proceedings of the International Conference on Distributed
Computing Systems, pages 19 - 29, Lisboa, Portugal, 2006.

[3] K. Agrawal, Y. He, and C. E. Leiserson. Work stealing with parallelism feedback. In
Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, San Jose, CA, USA, 2007.

[4] N. Bansal, K. Dhamdhere, J. Konemann, and A. Sinha. Non-clairvoyant scheduling for
minimizing mean slowdown. Algorithmica, 40(4):305-318, 2004.

[5] R. D. Blumofe and C. E. Leiserson. Space-efficient scheduling of multithreaded
computations. SIAM Journal on Computing, 27(1):202-229, 1998.

[6] T. Brecht, X. Deng, and N. Gu. Competitive dynamic multiprocessor allocation for
parallel applications. In Parallel and Distributed Processing, pages 448 - 455, San
Antonio, TX, 1995.

[7] S. Chakrabarti, C. A. Phillips, A. S. Schulz, D. B. Shmoys, C. Stein, and J. Wein. Improved
scheduling algorithms for minsum criteria. In In the Proceedings of Automata,
Languages and Programming, pages 646-657, Paderborn, Germany, 1996.

[8] B. Chen and A. P. A. Vestjens. Scheduling on identical machines: How good is lpt in an
on-line setting? Operations Research Letters, 21:165-169, 1998.

[9] X. Deng and P. Dymond. On multiprocessor system scheduling. In Proceedings of the
ACM Symposium on Parallel Algorithms and Architectures, pages 82-88, Padua, Italy,
1996.

[10] X. Deng, N. Gu, T. Brecht, and K. Lu. Preemptive scheduling of parallel jobs on
multiprocessors. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms,
pages 159-167, Philadelphia, PA, USA, 1996.

[11] DESMO-J: A framework for discrete-event modelling and simulation. http://asi-
www.informatik.uni-hamburg.de/desmoj/.

[12] J. Edmonds. Scheduling in the dark. In Proceedings of the ACM Symposium on the Theory of
Computing, pages 179-188, Atlanta, Georgia, United States, 1999.

[13] J. Edmonds, D. D. Chinn, T. Brecht, and X. Deng. Non-clairvoyant multiprocessor
scheduling of jobs with changing execution characteristics. Journal of Scheduling,
6(3):231-250, 2003.

www.intechopen.com

 Advances in Greedy Algorithms

454

[14] D. G. Feitelson. Job scheduling in multiprogrammed parallel systems (extended
version). Technical report, IBM Research Report RC 19790 (87657) 2nd Revision,
1997.

[15] R. L. Graham. Bounds on multiprocessing anomalies. SIAM Journal on Applied
Mathematics, pages 17(2):416-429, 1969.

[16] N. Gu. Competitive analysis of dynamic processor allocation strategies. Master's thesis,
York University, 1995.

[17] L. A. Hall, D. B. Shmoys, and J. Wein. Scheduling to minimize average completion time:
off-line and on-line algorithms. In Proceedings of the ACM-SIAM Symposium on
Discrete Algorithms, pages 142-151, Philadelphia, PA, USA, 1996.

[18] Y. He, W. J. Hsu, and C. E. Leiserson. Provably e±cient two-level adaptive scheduling.
In Proceedings of the Workshop on Job Scheduling Strategies for Parallel Processing, Saint-
Malo, France, 2006.

[19] Y. He, W. J. Hsu, and C. E. Leiserson. Provably efficient online non-clairvoyant
scheduling. In Proceedings of IEEE International Parallel and Distributed Processing
Symposium, Long Beach, CA, USA, 2007.

[20] K. S. Hong and J. Y. T. Leung. On-line scheduling of real-time tasks. IEEE Transactions
on Computers, 41(10):1326-1331, 1992.

[21] K. Jansen and H. Zhang. Scheduling malleable tasks with precedence constraints. In
Proceedings of the ACM Symposium on Parallel Algorithms and Architectures, pages 86-
95, New York, NY, USA, 2005.

[22] D. Karger, C. Stein, and J. Wein. Handbook of Algorithms and Theory of Computation,
chapter 35 - Scheduling Algorithms. CRC Press, 1997.

[23] H. Kellerer, T. Tautenhahn, and G. J. Woeginger. Approximability and
nonaproximability results for minimizing total flow time on single machine. In
Proceedings of the ACM Symposium on the Theory of Computing, Philadelphia,
Pennsylvania, USA, 1996.

[24] E. L. Lawler, J. K. Lenstra, A. H. G. R. Kan, and D. B. Shmoys. Sequencing and Scheduling:
Algorithms and Complexity, pages 445-552. Elsevier Science Publishers, 1997.

[25] S. Leonardi and D. Raz. Approximating total flow time on parallel machines. In
Proceedings of the ACM Symposium on the Theory of Computing, pages 110-119, El
Paso, Texas, USA, 1997.

[26] S. T. Leutenegger and M. K. Vernon. The performance of multiprogrammed
multiprocessor scheduling policies. In SIGMETRICS, pages 226-236, Boulder,
Colorado, United States, 1990.

[27] C. McCann, R. Vaswani, and J. Zahorjan. A dynamic processor allocation policy for
multiprogrammed shared-memory multiprocessors. ACM Transactions on Computer
Systems, 11(2):146-178, 1993.

[28] R. Motwani, S. Phillips, and E. Torng. Non-clairvoyant scheduling. In Proceedings of the
ACM- SIAM Symposium on Discrete Algorithms, pages 422-431, Austin, Texas, United
States, 1993.

[29] G. Mounie, C. Rapine, and D. Trystram. E±cient approximation algorithms for
scheduling malleable tasks. In Proceedings of the ACM Symposium on Parallel
Algorithms and Architectures, pages 23-32, New York, NY, USA, 1999.

[30] L. S. Nyland, J. F. Prins, A. Goldberg, and P. H. Mills. A design methodology for data-
parallel applications. IEEE Transactions on Software Engineering, 26(4):293-314, 2000.

[31] U. Schwiegelshohn, W. Ludwig, J. L.Wolf, J. Turek, and P. S. Yu. Smart smart bounds
for weighted response time scheduling. SIAM Journal of Computing, 28(1):237-253,
1998.

www.intechopen.com

Provably-Efficient Online Adaptive Scheduling of Parallel Jobs Based on Simple Greedy Rules

455

[32] S. Sen. Dynamic processor allocation for adaptively parallel jobs. Master's thesis,
Massachusetts Institute of technology, 2004.

[33] D. B. Shmoys, J. Wein, and D. P. Williamson. Scheduling parallel machines online. In
Proceedings of the IEEE Symposium on Foundations of Computer Science, pages 131-140,
San Juan, Puerto Rico, 1991.

[34] B. Song. Scheduling adaptively parallel jobs. Master's thesis, Massachusetts Institute of
Technology, 1998.

[35] A. Tucker and A. Gupta. Process control and scheduling issues for multiprogrammed
shared-memory multiprocessors. In Proceedings of the ACM Symposium on Operating
Systems Principles, pages 159-166, New York, NY, USA, 1989.

[36] J. Turek, W. Ludwig, J. L. Wolf, L. Fleischer, P. Tiwari, J. Glasgow, U. Schwiegelshohn,
and P. S. Yu. Scheduling parallelizable tasks to minimize average response time. In
Proceedings of the ACM Symposium on Parallel Algorithms and Architectures, pages 200-
209, Cape May, New Jersey, United States, 1994.

[37] J. Turek, U. Schwiegelshohn, J. L.Wolf, and P. S. Yu. Scheduling parallel tasks to
minimize average response time. In Proceedings of the ACM-SIAM Symposium on
Discrete Algorithms, pages 112-121, Philadelphia, PA, USA, 1994.

[38] K. K. Yue and D. J. Lilja. Implementing a dynamic processor allocation policy for
multiprogrammed parallel applications in the SolarisTMoperating system.
Concurrency and Computation-Practice and Experience, 13(6):449-464, 2001.

Appendix A. Proof of Theorem 4

The proof is divided into two cases - when ≤ P and when > P.

Case 1: when ≤ P

For the first case where ≤ P, GRAD always use DEQ as job scheduler. In our previous

work [18], we show that AGDEQ (the combination of DEQ and A-GREEDY) is O(1)-
competitive with respect to mean response time for batched jobs when ≤ P. The

following lemma from [18] bounds the mean response time of a batched job set with ≤ P.

Lemma 7 [18] A job set is scheduled by GRAD on P processors where ≤ P. The total response

time R() of the schedule is at most

where c = 2 - 2/ + 1).

Case 2: when jJ j > P
We now derive the mean response time of GRAD for batched jobs for the second case where

 >P. Since all jobs in the job set J arrive at time step 0, the number of uncompleted jobs
decreases monotonically. When the number of uncompleted jobs drops down to P or below,
GRAD switches its job scheduler from RR to DEQ. We divide the analysis into three parts.
In Part (a), we prove two technical lemmas (Lemmas 8 and 9) which show the properties of
round robin as the job scheduler. In Part (b), we analyze the completion time of the jobs
which are scheduled by RR during their entire execution. In Part (c), we combine results and
give response time of GRAD in general.
A batched job set can be divided into two subsets - RR set and DEQ set. The RR set,

denoted as RR, includes all the jobs in which are entirely scheduled by RR for their

execution. The DEQ set, denoted as DEQ, includes all the jobs in which are scheduled by

RR at the beginning, and by DEQ eventually. There exists a unique quantum q called the

www.intechopen.com

 Advances in Greedy Algorithms

456

final RR quantum such that q is the last quantum scheduled by RR, and from quanta q+1

onwards are all scheduled by DEQ. According to RAD, there must be greater than P

uncompleted jobs at the beginning of q, and less than or equal to P uncompleted jobs

immediately after the execution of q. Let ķ denote the total number of uncompleted jobs

immediately after the execution of the final RR quantum. We know that ķ =│ DEQ│, and ķ ≤

P. Let Ǒ denote a permutation that lists the jobs according to the ascending order of their

completion time, i.e. T(JǑ(1)) ≤ T(Ǒ(2)) ≤ … ≤ T(Ǒ()). We have RR = { Ǒ(i) │ 1 ≤ i ≤ - ķ}

and DEQ = { Ǒ(i)│i > - ķ}, i.e. DEQ includes the ķ jobs that are completed last, and RR

includes the other - ķ jobs.

We define two notations - t-suffix and t-preffix, and use them to simplify the notations. For

any time step t, t-suffix denoted as represents the set of time steps from t to the

completion of by = {t, t + 1, … , T()}, while t-preffix denoted as represents set of

time steps from 1 to t by = {1, 2, … , t}. We shall be interested in the suffixes of jobs.

Define the t-suffix of a job Ji ∈ to be the job Ji(), which is the portion of job Ji that remains

after t - 1 number of time steps have been executed. The t-suffix of the job set is

Thus, we have = (), and the number of uncompleted jobs at time step t is the

number│ ()│ of nonempty jobs in (). Similarly, we can define the t-prefix of a job Ji

as Ji (), and the t-prefix of a job set as ().

Case 2 - Part (a)
The following two technical lemmas present the properties of round robin as a job

scheduler. The first lemma shows that jobs make almost the same progress on the execution

of their work when they are scheduled by RR. The second lemma relates the work of jobs to

their completion time.

Lemma 8 A batched job set is scheduled by GRAD on a machine with P processors where
 > P. At any time step t scheduled by RR, for any two uncompleted jobs Ji and Jj , we have

│T1 (Ji ()) - T1 (Jj ())│≤ L, where L is the length of the scheduling quantum.
Proof. Since RR gives an equal share of processors to all uncompleted jobs, for any two jobs

that arrive at the same time, their allotments differ by at most L at any time. When a job's

allotment is 1, its allotted processor is always making useful work. Then the work done for

any two uncompleted jobs differs by at most L at any time before their completion. □

Lemma 9 A batched job set is scheduled by GRAD on a machine with P processors where
 > P. The following two statements are true:

1. If Ji ∈ RR, Jj ∈ RR, and T1 (Ji) < T1 (Jj), then T(Ji) ≤ T(Jj).

2. If Ji ∈ RR, and Jj ∈ DEQ, then T1 (Ji) ≤ T1 (Jj).
Proof. We now prove the first statement. Let t = T(Ji). At time step t, job Ji completes work T1

(Ji). From Lemma 8, we know that T1 (Jj ()) ≥ T1 (Ji ()) - L = T1 (Ji) - L. Since job Jj completes

after job Ji, job Jj takes at least one more scheduling quantum than Ji to complete its

execution. Thus the work done for Jj during the period from t to T(Jj) is at least L. Therefore,

we have T1 (Jj) = T1 (Ji ()) ≥ T1 (Ji ())+ L ≥ T1 (Ji).

For any two jobs Ji ∈ RR, and Jj ∈ DEQ, we have T(Ji) < T(Jj). By using a similar analysis, we
can prove the second statement.

www.intechopen.com

Provably-Efficient Online Adaptive Scheduling of Parallel Jobs Based on Simple Greedy Rules

457

Lemma 9 relates the work of jobs to their completion time. Its second statement tells us that

only the ķ jobs with largest work are scheduled by DEQ eventually, and the other - ķ

jobs are scheduled by RR for their overall execution. Moreover, according to its first

statement, under the schedule of RR, the jobs with less work are completed more quickly

than those with more work. Consider the jobs according to their work such that

T1 (J1) ≤ T1 (J2) ≤ … ≤ T1 (). From Lemma 9, we have RR = {Ji│1 ≤ i ≤ - ķ} and

DEQ = {Ji│i > - ķ}.

Case 2 - Part (b)
The following lemma bounds the completion time of the jobs in RR where T1 (Ji) denotes the
work of a job Ji.
Lemma 10 GRAD schedules a batched job set on a machine with P processors where > P.

Consider the jobs according to their work such that T1 (J1) ≤ T1 (J2) ≤ … ≤ T1 (). For

1 ≤ i ≤ - ķ, the completion time T(Ji) of a job Ji is T(Ji) ≤ ((- i + 1) T1 (Ji) +Σ1 ≤ j < i T1 (Jj))=P+L.

Proof. Since we consider the jobs according to their work, from Lemma 9, we have Ji ∈ JRR

where 1 ≤ i ≤ - ķ. Such a job Ji completes its overall execution under the schedule of RR as

job scheduler.

We first evaluate T1 (()), which is the work done for up to a time step t. Suppose that

the job Ji terminates at the end of a quantum q where T(Ji) = q(L + 1) - 1. Let t = qL - 1 be the

end of the quantum q - 1, which is L steps before the completion of Ji. The work done for Ji in

interval is T1 (Ji ()) = T1 (Ji) - L. According to Lemma 8, no job completes more than

T1 (Ji ())+ L amount of work in interval . Therefore, for any job Jj with j > i, we have

(7)

For each job Jj where j < i, by definition, we always have

 (8)

Thus, at time step t, from Inequalities (7) and (8), the total work done for the job set is

(9)

Since RR always allots all processors to jobs, and all allotted processors are making useful
work, RR executes P ready threads at any time step. Thus, the total work done for job set
increases by P at each time step. From Inequality (9), we have

Since T(Ji) = t + L, we complete the proof. □

www.intechopen.com

 Advances in Greedy Algorithms

458

Case 2 - Part (c)
The following lemma bounds the total response time of job sets scheduled by GRAD when

 > P where swa () denotes squashed work area, and T∞() denotes the aggregate span.

Lemma 11 Suppose that a job set is scheduled by GRAD on a machine with P processors
where > P. The response time R() of is bounded by

(10)

Proof. The jobs in can be divided into RR set RR and DEQ set DEQ. Let n = denote

the number of jobs in . Recall that ķ denotes the number of jobs in DEQ, i.e. ķ ≤ P.
Consider the jobs in the ascending order of their completion time such that T(J1) ≤ T(J2) ≤ …
·≤ T(Jn). From Lemma 9, we have RR = {Ji│1 ≤ i ≤ n - ķ} and DEQ = {Ji│i > n - ķ}. We will
calculate the total response time of the jobs in RR and DEQ respectively.

Step 1: To calculate R(RR), we apply Lemma 10. For any job Ji ∈ RR, its completion time is

T(Ji) ≤ (1/P)((n - i+1)T1 (Ji)+Σ1 ≤ j < i T1 (Jj))+L according to Lemma 10. Thus, the total response

time of the jobs in RR is

(11)

Step 2: We now calculate R(DEQ). The ķ jobs in DEQ are scheduled by RR until the time
step t = T(Jn-ķ) at which the job Jn-ķ completes, and scheduled by DEQ afterwards. The total
response time of DEQ is

 (12)

From Lemma 10, we know that the completion time of the job Jn-ķ is

(13)

To get R(DEQ), we only need to calculate R(DEQ).

Since the job set DEQ is scheduled by DEQ as the job scheduler from time step t onwards,

we can apply the total response time bound in Lemma 7 to calculate R(JDEQ). During

the interval , job Jn-ķ completes T1 (Jn-ķ) amount of work. From Lemma 8, we know that
each job Ji with i > n - ķ has completed at least T1 (Jn-ķ) - L amount of work. Thus, such a job Ji

has remaining work T1 (Ji ≤ T1 (Ji) - T1 (Jn-ķ) + L. The squashed work of DEQ is

(14)

www.intechopen.com

Provably-Efficient Online Adaptive Scheduling of Parallel Jobs Based on Simple Greedy Rules

459

Let the constant c = 2 - 2/(1 + P) < 2. According to Lemma 7, we have

(15)

where E1 = c T∞() + cPL(logǒ P + 1).

We will now calculate the response time of DEQ. Since we know c = 2 – 2/(1 + P) > 1, the

responsiveness parameter ǒ > 1, and the utilization parameter  ≤ 1, we have c(ǒ + 1)= > 2.

Given Equation (12), and Inequalities (13), (14) and (15), the response time of DEQ is

(16)

where E2 = E1 + (c + 1)PL .

Step 3: Given R(RR) in Inequality (11), R(DEQ) in Inequality (16), and c(ǒ+1)= > 2, the

response time of is the sum of them as follows:

□

www.intechopen.com

 Advances in Greedy Algorithms

460

Lemmas 7 and 11 bound the total response time of a batched job set when ≤ P and

> P respectively. Combining them, we have completed the proof of Theorem 4.
□

www.intechopen.com

Greedy Algorithms

Edited by Witold Bednorz

ISBN 978-953-7619-27-5

Hard cover, 586 pages

Publisher InTech

Published online 01, November, 2008

Published in print edition November, 2008

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Each chapter comprises a separate study on some optimization problem giving both an introductory look into

the theory the problem comes from and some new developments invented by author(s). Usually some

elementary knowledge is assumed, yet all the required facts are quoted mostly in examples, remarks or

theorems.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Yuxiong He, and Wen-Jing Hsu (2008). Provably-Efficient Online Adaptive Scheduling of Parallel Jobs Based

on Simple Greedy Rules, Greedy Algorithms, Witold Bednorz (Ed.), ISBN: 978-953-7619-27-5, InTech,

Available from: http://www.intechopen.com/books/greedy_algorithms/provably-

efficient_online_adaptive_scheduling_of_parallel_jobs_based_on_simple_greedy_rules

© 2008 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

