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Abstract

In this work, we discuss the numerical solution of the Taylor vortex and the lid-driven
cavity problems. Both problems are solved using the Stream function-vorticity formula-
tion of the Navier-Stokes equations in 2D. Results are obtained using a fixed point
iterative method and working with matrixes A and B resulting from the discretization
of the Laplacian and the advective term, respectively. We solved both problems with
Reynolds numbers in the range of 3200 ≤ Re ≤ 7500. Results are also obtained using the
velocity-vorticity formulation of the Navier-Stokes equations. In this case, we are using
only the fixed point iterative method. We present results for the lid-driven cavity prob-
lem and for the Stream function-vorticity formulation with Reynolds numbers in the
range of 3200 ≤ Re ≤ 7500. As the Reynolds number increases, the time and the space step
size have to be refined. We show results for 3200 ≤ Re ≤ 20,000. The numerical scheme
with the velocity-vorticity formulation uses a smaller step size for both time and space.
Results are not as good as with the Stream function-vorticity formulation, although the
way the scheme behaves gives us another point of view on the behavior of fluids under
different numerical schemes and different formulation.

Keywords: Navier-Stokes equations, velocity-vorticity formulation, Stream
function-vorticity formulation, Reynolds number, fixed point iterative process

1. Introduction

The fixed point iterative method has already been used for solving the Navier-Stokes equa-

tions and the Boussinesq system under different formulations, see [1–4].

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



The idea behind this iterative methodwas to work with a symmetric and positive definite matrix.

The scheme worked very well, as shown in [1–4], but the processing time was, in general, very

large especially for high Reynolds numbers. Workingwith matrixes A and B, we are dealingwith

a non-symetricmatrix, but it can be proved that it is strictly diagonally dominant forΔt sufficiently

small. The processing timewith the secondmethodwas reduced in approximately 30 or 35%.

Additionally, in order to show that the fixed point iterative method works well for moderate

and high Reynolds numbers, we report results for the lid-driven cavity problem and Reynolds

numbers in the range of 3200 ≤ Re ≤ 100,000 using the Stream function-vorticity formulation

and also the velocity-vorticity formulation, but in the case of the velocity-vorticity formulation,

we just arrive to Re = 20,000, because of computing time and memory requirements.

Results, in both formulations, are obtained using the fixed point iterative method reported in

[5], which is applied to a non-linear elliptic system resulting after time discretization. The

method has shown to be robust enough to handle moderate and high Reynolds numbers,

which is not an easy task, see [1, 2].

As the Reynolds number increases, the mesh has to be refined and a smaller time step has to be

used, in order to capture the fast dynamics of the flow and, numerically, because of stability

reasons, as mentioned in [6], although, with the velocity-vorticity formulation [7, 8], a finer

mesh has to be used, both in time and in space.

The computing time is, in general, very large with this numerical scheme and for both formu-

lations, so that is why we are looking forward to reduce computing time working with both

matrixes A and B resulting from the discretization of the Laplacian and the advective term,

respectively, instead of working just with matrix A, which is symmetric and positive definite.

With the Stream function-vorticity formulation, and for moderate and high Reynolds numbers,

the second scheme was faster than the fixed point iterative method (see [9, 10]). With respect to

the velocity-vorticity formulation, we are just showing results using the fixed point iterative

method, and for lower Reynolds numbers, but we are looking forward to modify the scheme

also in order to reduce computing time.

2. Mathematical model

Let Ω⊂RN N ¼ 2; 3ð Þ be the region of a viscous, incompressible, non-stationary flow and Γ is

its boundary

ut �
1

Re
Δuþ ∇pþ u ∙∇ð Þu ¼ f , að Þ

∇ ∙u ¼ 0 bð Þ

8

<

:

(1)

These are the Navier-Stokes equations in primitive variables. This system must be provided

with appropriate initial conditions u x; 0ð Þ ¼ u0 xð Þ in Ω and boundary conditions u ¼ g on Γ:

When working in a two-dimensional region Ω, taking the curl in both sides of (Eq. (1a)) and

taking into account that
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u1 ¼
∂ψ

∂y
, u2 ¼ �

∂ψ

∂x
, (2)

followed by (Eq. (1b)), with ψ the Stream function, u1 and u2 the two components of the

velocity, we arrive to the Stream function-vorticity formulation of the Navier-Stokes equations.

The following system of equations is then obtained:

Δψ ¼ �ω að Þ

ωt � vΔωþ u ∙∇ω ¼ f ω, bð Þ

(

(3)

where ω is the vorticity given by ω = ∂u2
∂x � ∂u1

∂y , and v ¼ 1
Re.

This system represents the Navier-Stokes equations in the Stream function-vorticity formula-

tion. The incompressibility condition (Eq. (1b)), because of (Eq. (2)), is automatically satisfied

and the pressure does not appear any more.

3. The velocity-vorticity formulation

Taking the curl in

ω ¼ �∇� u, (4)

and using the identity ∇� ∇� a ¼ �∇
2aþ ∇ ∇ ∙ að Þ and (Eq. (1b)), we obtain the following

Poisson type equation for the velocity:

Δu ¼ �∇� ω (5)

Two Poisson type equations for the velocity are obtained, which together with the equation for

the vorticity give us:

Δu1 ¼ �
∂ω

∂y
að Þ

Δu2 ¼
∂ω

∂x
bð Þ

ωt � vΔωþ u ∙∇ω ¼ f ω cð Þ

8

>

>

>

>

<

>

>

>

>

:

(6)

These are the Navier-Stokes equations in the velocity-vorticity formulation.

4. Numerical method for the Stream function-vorticity formulation

The following second-order approximation for the time derivative is used:

ωt x; nþ 1ð ÞΔtð Þ ≈
3ωnþ1 � 4ωn þ ωn�1

2Δt
, (7)

where n ≥ 1, x∈Ω and Δt > 0 is the time step.
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The resulting discretization system reads:

Δψnþ1 ¼ �ω, ψ∣Γ ¼ ψbc að Þ

αωnþ1 � vΔωnþ1 þ u
nþ1

∙∇ωnþ1 ¼ f ω, ω∣Γ ¼ ωbc, bð Þ

(

(8)

where α ¼ 3
2Δt and f ω ¼ 4ωn�ωn�1

2Δt .

At each time level, the following non-linear system has to be solved.

Δψ ¼ �ω, ψ∣Γ ¼ ψbc að Þ

αω� vΔωþ u ∙∇ω ¼ f ω, ω∣Γ ¼ ωbc, bð Þ

(

(9)

To obtain ψ1
�

, ω1) in (Eq. (8)), any second-order strategy using a combination of one step can

be applied and steady systems of the form (Eq. (9)) are also obtained.

For solving this system of equations, two strategies were used in this work: First, we used the

fixed point iterative method described in [5]:

Denoting Rω ω;ψð Þ by

Rω ω;ψð Þ ¼ αω� vΔωþ u ∙∇ω� f ω in Ω, (10)

our system is equivalent to

Δψ ¼ �ω, ψ∣Γ ¼ ψbc að Þ

R ω;ψð Þ ¼ 0, ω∣Γ ¼ ωbc bð Þ

(

(11)

Then, at each time level, the following the fixed point iterative process (see [5]) is used:

Given ωn,0 = ωn and ψn,0 ¼ ψn solve until convergence in ω and ψ

Δψn,mþ1 ¼ �ωn,m in Ω,

ψn,mþ1 ¼ ψbc on Γ

ωn,mþ1 ¼ ωn,m � rω αI � vΔð Þ�1Rω ωn,m
;ψn,mþ1

� �

in Ω,

ωn,mþ1 ¼ ωn,mþ1
bc on Γ, rω > 0;

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

(12)

and then take ωnþ1;ψnþ1
� �

¼ ωn,mþ1;ψn,mþ1
� �

:

To reduce the computing time, we worked in solving the system by the following method at

each time step:

Δψnþ1 ¼ �ωn, ψnþ1∣Γ ¼ ψbc að Þ

αI �
v

h2
A

� �

ωnþ1 þ
1

2h
Bωnþ1 ¼ f ω, ωnþ1∣Γ ¼ ωbc, bð Þ

8

>

<

>

:

(13)
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where A and B are the matrixes resulting from the discretization of the Laplacian and the

advective term respectively, and (Eq. (13b)) is solved using Gauss-Seidel method.

5. Numerical method for the velocity-vorticity formulation

The second-order approximation (Eq. (7)) for the time derivative is used and the following

non-linear system is obtained in Ω

Δu1 ¼ �
∂ω

∂y

Δu2 ¼
∂ω

∂x
, u∣Γ ¼ ubc

Rω ω; uð Þ ¼ 0, ω∣Γ ¼ ωbc,

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

(14)

where

Rω ω; uð Þ � αω� vΔωþ u∙∇ω� f ω: (15)

Using again the fixed point iterative method previously described, we have:

Given ωn,0 ¼ ωn, un,01 ¼ un1 , u
n,0
2 ¼ un2 solve until convergence in ω, u1 and u2

Δun,mþ1
1 ¼ �

∂ωn,m

∂y

Δun,mþ1
2 ¼

∂ωn,m

∂x
, u

n,mþ1∣Γ ¼ u
n,mþ1
b, c

αI � vΔð Þωn,mþ1 ¼ αI � v∆ð Þωm � rω > 0, ωn,mþ1∣Γ ¼ ωn,m
bc

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

(16)

and then take ωnþ1; unþ1
1 ; unþ1

2

� �

¼ ωn,mþ1; un,mþ1
1 ; un,mþ1

2

� �

:

6. Numerical experiments

With respect to the lid-driven cavity problem and using the Stream function-vorticity formu-

lation Ω ¼ 0; 1½ � � 0; 1½ �, the top wall is moving with a velocity given by (1, 0) and for the other

walls, the velocity is given by (0, 0).Ψ is over-determined at the boundary (∂ψ
∂n ∣Γ is also known)

and there is no boundary condition for ω. In our case, we have followed the alternative

proposed by Goyon [11]. Ψ = 0 is chosen over Г. A translation of the boundary condition in

terms of the velocity (primitive variable) has to be used. By Taylor series expansion of

(Eq. (3a)), we obtained:
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ω 0; y; tð Þ ¼ �
1

2h2x
8ψ hx; y; tð Þ � ψ 2hx; y; tð Þ½ �

ω a; y; tð Þ ¼ �
1

2h2x
8ψ a� hx; y; tð Þ � ψ a� 2hx; y; tð Þ½ �

ω x; 0; tð Þ ¼ �
1

2h2y
8ψ x; hy; t

� �

� ψ x; 2hy; t
� �� �

ω x; b; tð Þ ¼ �
1

2h2y
8ψ x; b� hy; t

� �

� ψ x; b� 2hx; tð Þ
� �

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

(17)

where hx, hy denote the spatial step size in the directions of x and y, respectively.

In Figures 1 and 2, we show results for the lid-driven cavity problem with Re ¼ 5000 and

Re ¼ 7500, with hx ¼ hy ¼ 1=64.

For the Taylor vortex problem, results are shown in Figures 3 and 4 for Re ¼ 5000 and

Re ¼ 7500, with hx ¼ hy ¼ 2π=64 and t ¼ 10.

The exact Stream function and the vorticity are also shown in Figure 5, for Re ¼ 5000. For this

problem, Ω ¼ 0; 2π½ � � 0; 2π½ � the exact solution is known and is given by:

u1 x; y; t
� �

¼ � cos xð Þ sin yð Þe
2t
Re

u2 x; y; t
� �

¼ sin xð Þ cos yð Þe
2π
Re

(18)

In the primitive variables formulation, we have as initial conditions:

u1 x; y; tð Þ ¼ � cos xð Þ sin yð Þ

u2 x; y; tð Þ ¼ sin xð Þ cos yð Þ
(19)

Figure 1. Streamlines (left) and isovorticity contours (right) for Re = 5000, hx = hy = 1/64.
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For the Stream function, the boundary conditions are:

ψ x; 0; tð Þ ¼ ψ x;π; tð Þ ¼ cos xð Þe
2t
Re

ψ 2π; y; tð Þ ¼ cos yð Þe
2t
Re

(20)

For the vorticity, the boundary conditions are:

ω x; 0; tð Þ ¼ ω x; 2π; tð Þ ¼ 2 cos xð Þe
2t
Re

ω 0; y; tð Þ ¼ ω 2π; y; tð Þ ¼ 2 cos yð Þe
2t
Re

(21)

Figure 3. Stream function and vorticity for Re = 5000 hx = hy = 2π/64 and t = 10.

Figure 2. Streamlines (left) and isovorticity contours (right) for Re = 7500, hx = hy = 1/64.
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In Tables 1 and 2, we show computing times for the above-mentioned problems with both the

methods; the Fixed Point Iterative Method and working with matrixes A and B.

In Figure 6, we show the streamlines and isovorticity contours for Re ¼ 25; 000, with h ¼

hy ¼ 1=728. In Figure 7, we show results for Re ¼ 50; 000, with h ¼ hx ¼ hy ¼ 1=1024. For

these values of the Reynolds number, since there is no steady state, we show results for

Tfinal ¼ 5.

Figure 4. Exact stream function and vorticity for Re = 5000 hx = hy = 2π/64 y t = 10.

Figure 5. Stream function and vorticity for Re = 7500 hx = hy = 2π/64 y t = 10.

Re Fixed point iterative method (s) Working with A and B (s)

5000 153 120

7500 801 610.25

Table 1. Time in seconds, for both Reynolds numbers and the two methods described for the lid-driven cavity problem.
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Re Fixed point iterative method (s) Working with A and B (s)

5000 15.5 12.75

7500 15.5 12.75

Table 2. Time in seconds, for both Reynolds numbers and the two methods for the Taylor vortex problem.

Figure 6. Streamlines (left) and isovorticity contours (right) for Re = 25,000, h = hx = hy = 1/728 y dt = 0.00025, Tfinal = 5.

Figure 7. Streamlines (left) and isovorticity contours (right) for Re = 50,000, h = hx = hy = 1/1024 y dt = 0.00025, Tfinal = 5.
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Then, in Figure 8, we show just the isovorticity contours for Re ¼ 75; 000, with h ¼ hx ¼ hy ¼

1=1024 and for Re ¼ 100; 000, with h ¼ hx ¼ hy ¼
1

1280 and Tfinal ¼ 5.

In the case of the velocity-vorticity formulation and the lid-driven cavity problem, the bound-

ary condition for u is given by u = (1, 0) in the moving boundary y = b and u = (0, 0) anywhere

else at the boundary.

Not all the results were obtained using the second-order discretization. In some cases, a fourth-

order discretization has to be used, using the fourth-order option of Fishpack [12] (used in this

work for solving the elliptic problems appearing).

In Figure 9, we show the streamlines and the isovorticity contours for Re ¼ 3200, h ¼ hx ¼

hy ¼ 1=512, Tfinal ¼ 50.

Figure 8. Isovorticity contours (left) for Re = 75,000, h = hx = hy = 1/1024 y dt = 0.00025, Tfinal = 5, isovorticity contours (right)

for Re = 100,000, h = hx = hy = 1/1280 y dt = 0.00025, Tfinal = 5.

Figure 9. Streamlines (left) and isovorticity contours (right) for Re = 3200, h = hx = hy = 1/512 y dt = 0.0001, Tfinal = 50.
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In Figure 10, we show the isovorticity contours for Re ¼ 20; 000 with (a) h ¼ hx ¼ hy ¼ 1=1512,

Tfinal ¼ 5, obtained using the velocity-vorticity formulation and (b) with the Stream function-

vorticity formulation with h ¼ hx ¼ hy ¼ 1=768, Tfinal ¼ 5.

As can be noticed with the Stream function-vorticity formulation, we are using a value of h half

of the size of the one used with the velocity-vorticity formulation. We assume the results

obtained with the first-mentioned formulation are more reliable. Computing time for the

velocity-vorticity formulation was much larger. We think there are still some numerical prob-

lems with this formulation and for very high Reynolds numbers.

7. Conclusions

For the lid-driven cavity problem results agree very well with those reported in the literature

[1–4, 13, 14], and by working with matrixes A and B it was possible to reduce computing time

between a 30 and 35%.

As can be seen in Figures 1 and 2, numerical oscillations occurred, given the high Reynolds

numbers used in such a way that it is necessary to use smaller values of h [6], numerically

because of stability of the method and physically in order to capture the fast dynamics of the

flow.

For high Reynolds numbers and small values of h the computational work takes a lot of time,

so reducing computing time becomes a very important fact. For the Taylor Vortex Problem [8, 15],

processing time was also reduced between 30 and 35%.

With the velocity-vorticity formulation, as already mentioned, we only show results using the

Fixed Point Iterative Method, and we are looking forward working with both matrixes A and

B, in order to reduce computing time also with this formulation. This is the reason why we only

show results till Re = 20,000 and not for higher Reynolds numbers.

Figure 10. Isocontours for the vorticity for Re = 20,000, (a) velocity-vorticity formulation with h = hx = hy = 1/1512,

dt = 0.0001, Tfinal = 5, (b) Stream function-vorticity formulation with h = hx = hy = 1/768, dt = 0.0001, Tfinal = 5.
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In conclusion, the numerical scheme applied with the stream function-vorticity formulation

is not as good with the velocity-vorticity formulation, although, the way it behaves with

some values of the parameters and the order of discretization, gives us another point of

view about the behavior of the fluids under different numerical methods and different

formulations.

We must also say that our code has not been parallelized since it is difficult to do this. It must

be taken into account that the equations, in both formulations, are coupled. We are looking

forward to use a solver for the system of linear equations that can be parallelized. This can be

viewed as a future work.
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