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1. A terse testament of hydroxyapatite

The term ‘Hydroxyapatite (HAp)’ is a naturally occurring mineral and chemically identical 

to the mineral constituent of bones and solid tissues of mankind and mammals. As a mineral 

species, apatite was first known in 1786 by “the father of German geology” Abraham Gottlob 
Werner (1750–1817) and entitled by him on or after the antediluvian Greek απατάω (apatao)—
“to mislead” or “to deceive” since it had earlier been does not specify one chemical opus. 
Though, the word “apatite” was revealed in the 1990s and is denoted as calcium orthophos-

phate, which would be a very infrequent heterogeneity of tourmaline, beryl and other stones 
[1]. The period of HAp in reformative science backdate to 1950s [2] furthermore for the filling 
of the bone defects, the bioceramics might be used as an inert scaffold. The history related 
to calcium orthophosphates dates back to 1770 [3] the mistaken for other minerals, such as 

beryl, tourmaline, chrysolite, amethyst, fluorite, etc., [1, 4, 5]. Currently, apatite is the term for 

a group of minerals with the same crystallographic structure and older history till 1950 could 
be delivered somewhere else in the published literature [6, 7]. On the basis of thorough litera-

ture survey of HAp, since 1950 in connection to its properties, production, composition and 
its applications were extensively studied and its usage in medicinal disciplines contributes 
many breakthroughs in contemporary technological developments in consideration with the 
interaction of materials on active species [8]. In the origin, HAp was used for grafting, which 

might not have reaction with neighbouring living cells. Far ahead, the development would 
change to the responsive nature of the material, also for the growth of bone the reactive mate-

rial pretends as a conductive scaffold [7]. In recent trend, developing fabrication technology 
with the dawn of recognizing of regenerative medicinal growth in the field of nanotechnology 
and have transformed the appearance of bioceramics to a dissimilar facet [9–14].

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Hydroxyapatite, HAp is an elementary calcium phosphate, and its chemical formula is 

Ca10(PO
4
)6(OH)

2
 present as main material of teeth, bones and mineral certainly with high bi-

affinity. It is composited by below methods, and it is also applicable in various fields includ-

ing biomaterials. In the meantime, amorphous HAp is no longer stable and could dissolve 
reliant on usage environment; a sintered body has been effectively used as a material in 

S. No. Methods/techniques Outcome Drawback Refs.

1. Dry Well-crystallized High temperature (1050°C in air) [15, 16]

2. Wet High-yield, cost-effective, simple 
technique, and suitable for 
various pressure conditions

Non-crystalline and impure phase [17]

3. Co-precipitation Crystalline, high-yield, cost-

effective, template-assisted & 
various temperatures conditions

Requires high temperature 
annealing to yield product

[18–20]

4. Sol–gel Simple technique, low cost, 
crystalline nature

Dependent on solvent, the 
temperature and pH

[21, 22]

5. Emulsion More efficient, simple and 
particle agglomeration is less, 

Suitable for various surfactants, 
temperature conditions.

Dependent on ratio of aqueous 
and organic phases, pH and 

temperature

[23, 24]

6. Hydrolysis Simple technique, particle 
agglomeration is little high, 
sources are texture dependent

Precursors depend strongly on 

pH and temperature

[25]

7. Hydrothermal Highly crystalline micro or nano-

sized structures, well-controlled 

morphology and porosity

Requires constant and 
uninterrupted temperature and 

pressure conditions

[26, 27]

8. Alternate energy input 

(low-energy plasma spray)

Uniform thickness, good 

crystallinity, well-controlled 

morphology, porosity, micro 

hardness, and fracture toughness

Requires constant, uninterrupted 
temperature and pressure 

conditions. High temp. 

withstanding substrates and good 

cleaning process

[28]

9. Microwave (MW)-assisted Yield of perfectly, highly 

crystalline, homogeneous size, 

porosity and morphology

Requires constant, uninterrupted 
temperature conditions to yield 

product

[29]

10. Ball-milling Simplicity, reproducibility, and 

large-scale production

Requires high temperature 
annealing to yield product and 

little agglomeration

[30]

11. Sonochemical Nanosized products, elicits 

perfect control of morphology, 

porosity and size

Requires constant, uninterrupted 
temperature and pressure 

conditions.

[31]

12. Others: Yield of perfectly homogeneous 

size crystalline morphology

Requires organic solvents and hot 
zone of an electric furnace

[32, 33]

a. Solvothermal process

b. Spray pyrolysis

Table 1. Shows the key methods for the synthesis of hydroxyapatite (HAp).
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general. And, the sintered body could not dissolve so much owing to its high crystallinity. 
Because fusion and grain growth of each particle arose on its process stage are foreseeable, 

it has been hard to control configuration and grain diameter on a nanoscale impartial like 
initial particles of amorphous HAp. The synthesis of HAp, with its numerous morphologies, 

structures, and textures, has enthusing a prodigious deal of interest in academic and indus-

trial research for numerous heterogeneous catalysis applications. In the past three decades, a 

numerous synthetic routes for producing HAp powders have been developed. Productions 
of HAp powders are classified under four different methods are enumerated in Table 1 [34].

2. Topical advancements in reformative medicinal treatments in the 

new prospects of application of nanotechnology

HAp is considered as bioceramics that signifies the enormous amount of regenerative scion 
material persisting in the flea market. HAp is analogous to the bony-like apatite structure and 
is considered to be an important inorganic constituent for bone. However, in the organic matrix 
HAp is circumscribed, so that the existences of HAp in the normal bone in the form of extra inor-

ganic trace elements [3]. Ailments related to the ablative and bone surgical treatment known as 
the abscission or removing a part of the bone, which ultimately needs renovation through vari-
ous available measures. Since, the HAp has found increasing demand in regenerative medicine 
as a possible auxiliary material second to auto graft. HAp could also be used in occurrences, 

wherever the defects or voids present in bone. This process leads to curing of blocks, or beads by 
employing powders of the mineral being positioned into or on the defected parts of bone. From 
the time when it is bioactive, it reassures the bone to spot on the problem for further orientation 
of growth and this procedure may perhaps be an alternate to bone or dental implants, means 

that it can integrate into bone or dental structures and support growth with the no breaking 

down or dissolving in the human body. Though, HAp is still used for this purpose today and it 
is also applicable for other purposes too. Numerous advancements in nanotechnology oriented 
reformative medicine for the overhaul or improvement of dented tissues function in several 
organ systems. However, most studies concern the goings-on of topical advancements in nano-

materials used in regenerative medicinal treatments [35], as summarized in Table 2, with some 

more literatures in HAp, on the basis of regenerative medicine in various organ systems.

Applications of nanotechnology in regenerative medicine would require the entire prospec-

tive to reform tissue repair and regeneration [35]. Till now, to trigger the regeneration process 

the growth of impeccable nanomaterials accomplished of transfer signals to the diseased or 

damaged cells and tissues it remnants a dare. By employing nano-HAp based materials in 

regenerative medicine is a material of significant relate to the safety in relations to human 
health aspects, for the reason that this area is still in its developing platform. Erstwhile to 
human health based applications, a systematic research work in relevance to the noxious 
effect of these nanomaterials would be carrying through in excessive manner. In conclusion, 
at the nanoscale level to make acquainted about the original mechanisms of cell-biomaterial 
surface interfaces, and further implement the findings from bench to bedside, a manageable 
teamwork flanked by the scientists and clinicians is of highly necessary for the societal benign.
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S. No. Body part Nanomaterials Outcome (type of study) Refs.

1. Bone Poly(epsilon caprolactone) Improved cell attachment, proliferation, 
differentiation, and mineralization of 
osteoblasts (in vitro)

[36]

Lineage restriction of progenitor cells by 

topographical cues (in vitro)
[37]

Nanoscaled calcium phosphate Large-sized blood vessel infiltration 
leads to bone formation (in vivo; canines)

[38]

HAp-coated titanium Enhanced and accelerated osseoimplant 

integration (in vivo; rats)
[39]

Hybrid biomimetic collagen-

hydroxyapatite composites

Crosslinking reactions for hard tissue 

engineering application with designed 

bioactive properties

[40]

Nanostructured beta tri-calcium 

phosphate-coated over poly (lactic 
acid)

Enhanced osteoconductivity of scaffold 
(in vitro) and heterotrophic bone 
formation (in vivo; rabbits)

[41]

Carbon nanotubes Extracellular matrix calcification (in 
vitro); lamellar bone regeneration (in 
vivo; mice)

[42]

Porous bone formation in bone defect (in 

vivo; rats)
[43]

Silica nanofibers Proliferation and maturation of MG63 
cells (in vitro)

[44]

2. Cartilage Pentosan poly sulfate in poly 

(ethylene glycol) HA

Formation of cartilage like tissues by 
mesenchymal progenitor cells (in vitro)

[45]

PVA/PCL [poly(vinyl alcohol) 
poly(caprolactone)]

Proliferation and chondrogenic 

differentiation of MSCs (in vitro); 
improved healing of cartilage defects (in 
vivo; rabbits)

[46]

3D porous polycaprolactone (PCL)-

hydroxyapatite (HAp) scaffold 
combined with MC

Improves the biological performance of 
3D PCL-HAp scaffold

[47]

POSS–PCU [polyhedral oligomeric 
silsesquioxane with polycarbonate 
polyurethane]

Enhanced survival, proliferation, and 
chondrogenic differentiation of adipose 
tissue derived stem cells (in vitro)

[48]

Enhanced growth and proliferation of 

nasoseptal chondrocytes (in vitro)
[49]

3. Peripheral 

nervous system
Electrospun collagen/poly (lactic-co-

glycolic acid)

Axon regeneration, myelination, and 

action potential propagation (in vivo; 
rats)

[50]

Poly(L-lactide-co-glycolide)/

chitosan/hydroxyapatite(PLGA/
chitosan/HAp)

In vivo application of PLGA/chitosan/
HAp conduits for nerve regeneration

[51]

POSS–PCU–MWCNT Novel biomaterial capable of electronic 
interfacing with tissue holds potential to 

promote nerve regeneration

[52]

Hydroxyapatite - Advances in Composite Nanomaterials, Biomedical Applications and Its Technological Facets6



S. No. Body part Nanomaterials Outcome (type of study) Refs.

4. Central nervous 
system

Small interfering ribonucleic acid 

(Si-RNA) chitosan nanoparticles

Increased delivery of drugs by crossing 
BBB (blood–brain barrier) (in vivo; rats)

[53]

Nano-HAPs on the growth of 

human glioma U251 and SHG44 
cells in vitro and in vivo

Nano-HAPs have an obvious 
antineoplastic function in vitro and 
in vivo. It reduces the poisonous, adverse 
reactions to 1,3-bis(2-chloroethyl)-1-
nitrosourea (BCNU), strongly cooperate 

with certain other chemotherapy drugs, 

decrease the toxicity, and might become 

a new clinical antineoplastic drug.

[54]

5. Myocardial 

tissue/myocardial 

infarction (MI)

Insulin-like growth factor-1 (IGF-1) 
with poly(lactic-co-glycolic acid)

Increased protein kinase B 

phosphorylation and reduced infarct size 

(in vivo; mice)

[55]

Electrospun (hb/gel/fb) 
[poly(hemoglobin/gelatin/

fibrinogen)]

Cardiomyogenic differentiation of 
mesenchymal stem cells (MSCs) (in 

vitro)

[56]

PGS [poly(glycerol sebacate)] Increased transplant cell retention and 

survival (in vitro)
[57]

Gold nanoparticles-loaded hybrid 
nanofibers

Cardiomyogenic differentiation of 
MSCs; superior biological and functional 
properties (in vitro)

[58]

Calcium hydroxyapatite–based 
dermal filler into the infarct

Injection of an acellular dermal filler 
into an MI immediately after coronary 

occlusion reduces early infarct expansion 

and limits chronic LV remodeling.

[59]

6. Skin Silver nanoparticles Reduced inflammation and promotion of 
wound healing (in vitro)

[60]

Plasma-treated electrospun 

poly(lactic-acid) co-poly(epsilon 

caprolactone), and gelatin

Increased fibroblast proliferation and 
collagen secretion (in vitro)

[61]

Titanium abutment (control) and 

one HA-coated abutment (case) 

interface

The HAp-coated abutment can achieve 
integration with the surrounding skin.

[62]

Rosette nanotubes with PHeMA 
[poly(2-hydroxyethyl methacrylate]

Increased keratinocyte and fibroblast 
proliferation (in vitro)

[63]

7. Eye Polydimethylsiloxane Topographical cue for formation of 

functioning corneal endothelium (in 

vitro)

[64]

HAp, polytetrafluoroethylene 
(PTFE), polyhydroxyethyl 
methacrylate (HEMA), and glass 

(control)

Improving the initial cell adhesion 
environment in the skirt element of 
keratoprostheses may enhance tissue 

integration and reduce device failure 
rates.

[65]

Super paramagnetic nanoparticles Increased gene expression and 

neurite growth, subcellular organelle 

localization, and nano therapeutics 

delivery (in vitro)

[66]
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3. Conclusion

In summary, hydroxyapatite is one of the well-studied biomaterials in the medical field for its 
established biocompatibility and for being the main content of the mineral part of bone, teeth 

and various organ systems. However the fact demonstrates that it has been more imperious 
towards ground-breaking research against novel medical applications for the cause of the soci-
ety. It has all the typical topographies of biomaterials, such as, bioactive, biocompatible, non-
toxic, osteoconductive, non-immunogenic, non-inflammatory, bioceramic coatings, bone void 
fillers for orthopedics, dental implant coating, HAp thin films, and resemblance to the inor-

ganic component of human beings. In the midst of the major remarkable progress are in various 
fields of molecular biology, biochemistry, bioinformatics, microbiology, genetics, cytometry, 
medical diagnostics, drug & gene delivery, and the addition of nanotechnology are the most 
important worldwide challenges so far. The dispute of novel spectroscopic/microscopical inno-

vation contains interdisciplinary areas that might endure to be enhanced for these innovative 
global developments in x-ray imaging, spectral imaging, time-correlated single-photon count-
ing, fluorescence quenching, endo- and exo-thermic reaction rates, kinetic chemical reaction 
rates, In vitro and In vivo studies, visual implants, neurology and non-invasive optical biopsy. 
Thus, studies towards unique nano-hydroxyapatite used in regenerative medicinal treatments 
might give way to mechanisms of cell-biomaterial relations at the nanoscale level that may fea-

sibly turn out to be the upcoming forerunners to human applications in the embryonic stage.
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S. No. Body part Nanomaterials Outcome (type of study) Refs.

8. Lung Deferoxamine Regeneration of microvascular 
anastomosis in airways (in vivo; mice)

[67]

HAPNs in both A549 and 16HBE 
cells

HAPNs might be a promising agent or 

mitochondria-targeted delivery system 
for effective lung cancer therapy.

[68]

101F6 (tumor suppressor gene) 

nanoparticles

Increased tumor cell lysis (in vitro and 
in vivo; mice)

[69]

Courtesy: Reproduced from Ref. [35] with permission from Dove Medical Press, copyright 2014.

Table 2. Topical advancements in nanomaterials used in regenerative medicinal treatments [35].
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