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Abstract

A fundamental objective of remote sensing imagery is to spread out the knowledge about 
our environment and to facilitate the interpretation of different phenomena affecting the 
Earth’s surface. The main goal of this chapter is to understand and interpret possible 
changes in order to define subsequently strategies and adequate decision-making for 
a better soil management and protection. Consequently, the semantic interpretation of 
remote sensing data, which consists of extracting useful information from image date 
for attaching semantics to the observed phenomenon, allows easy understanding and 
interpretation of such occurring changes. However, performing change interpretation 
task is not only based on the perceptual information derived from data but also based on 
additional knowledge sources such as a prior and contextual. This knowledge needs to be 
encoded in an appropriate way for being used as a guide in the interpretation process. 
On the other hand, interpretation may take place at several levels of complexity from the 
simple recognition of objects on the analyzed scene to the inference of site conditions and 
to change interpretation. For each level, information elements such as data, information 
and knowledge need to be represented and characterized. This chapter highlights the 
importance of ontologies exploiting for encoding the domain knowledge and for using it 
as a guide in the semantic scene interpretation task.

Keywords: data, information, knowledge, remote sensing imagery, contextual 
information, semantic image interpretation, change interpretation, ontologies

1. Introduction

A fundamental objective of remote sensing is to spread out the knowledge about our envi-
ronment and to facilitate the interpretation of different phenomena affecting the Earth’s 
surface. Indeed, satellite images make possible to observe much more phenomena related 
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to the increase of information acquired from multiple sensors. For instance, these phenom-
ena include climatic change, urbanization, deforestation, desertification, and so on. Remote 
sensing and SIG communities have a great interest on change analysis and interpretation. 

Therefore, tools and strategies have been maintained for studying and analyzing the Earth’s 
surface dynamics. The principal objective, here, is to understand and interpret changes that 
may occur allowing, thus, to define strategies and an adapted decision-making for a better 
soil management and protection. Change detection, in remote sensing, can be defined as the 
process of identifying differences in the state of an object or a phenomenon by observing 
it at different times [1]. Applications associated with change detection include monitoring 

the evolution of cultures and land use, spatial progression of vegetation, forest and urban 
monitoring, the analysis of the climate change impacts and other cumulative changes. Several 
change detection approaches have been proposed in remote sensing. The general objectives 

of most change detection approaches include identifying the geographic locations and type of 

changes, quantifying the changes and assessing the accuracy of change detection results [2].

The information levels about changes from the remote sensing imagery can be categorized 

as (1) change detection level that allows detecting simple binary change (i.e. change vs. non-
change). This category includes techniques such as image differencing [3], image rationing [4] 

and change vector analysis (CVA) [5]. These techniques focus on changes localizing but do not 
provide any information about the change’s nature. (2) The second category (also called the-
matic level of change) allows the identification of the detailed change “from-to”. It includes 
techniques such as post-classification comparison [6] and classified objects change detec-
tion (COCD) [7]. For more details about change detection techniques from remotely sensed 
images, the reader can refer to the work of [2]. The authors have given an overview of differ-
ent change detection approaches where a comparison between pixel-based change detection 
and object-based change detection has been presented. Pixel-based change detection methods 
exploit the spectral characteristics of an image pixel to detect and measure changes. Although 
these methods have been successfully implemented in many areas for changes detection using 

remote sensing data, an important limitation of these approaches is that they do not exploit 
the spatial context of real objects [2]. To overcome this limitation, object-based approaches 
have been developed. Object-based change detection approaches, as defined by [8], allow to 
identify differences in geographic objects at different moments by using object-based analy-
sis. This later allows to obtain, from an object image, information such as shape, texture and 
spatial relationships allowing the exploitation of the spatial context [2]. Consequently, the 
inclusion of this contextual information allows to understand the semantics of objects [9].

Up to now, both change detection approaches (i.e. pixel-based and object-based methods) 
have been successful either for detecting simple binary change/non-change (i.e. answering 
“are there changes”?) or for detailing “from-to” change between different classes (i.e. what 
change?). However, at the two levels of change detection (change detection and identifica-
tion), these approaches do not give any information about the cause of changes (i.e. why 
and how change?), and, therefore, give no hints on how to evaluate their signification for the 
decision-making task. Consequently, an interpretation change level is needed for generating 
a description of the character and causality of change. The change interpretation level, here, 
allows to extract information from data (images) about changes that may occur, that is, to 
answer the question “why and how a change has been produced?”. As any interpretation 
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level, the change interpretation task is not only based on the perceptual information derived 
from data, but it requires other knowledge sources such as a prior and contextual knowledge 
to perform the interpretation task. This knowledge needs to be encoded in an appropriate 

way for being used as a guide into the interpretation process.

Highlighting the role of the remote sensing imagery for change detection and interpretation, 
an appropriate semantic interpretation method is needed for change interpretation in satel-
lite images. Such methods should take into account the description and the representation of 

different information elements at each interpretation level. This chapter focuses on semantic 
scene interpretation for change interpretation in satellite images. Semantic scene interpreta-
tion task is composed of different levels of abstraction. The objectives of this chapter are to 
describe the semantic scene interpretation strategy including the definition and the repre-
sentation of different information elements composing that process. It is structured in four 
sections. Section 2 intends to define required fundamental elements for the interpretation 
task and presents the role of ontologies for the semantic image interpretation. Afterwards, 
a description of semantic interpretation methods is discussed. Section 3 reviews and classi-
fies approaches for the semantic remote sensing image interpretation. Section 4 presents a 
proposed method for semantic change interpretation and describes its different components.

2. Semantic interpretation

Remote sensing utility comes not from the data itself but rather from the information that 
can be derived from this data [10]. For this reason, the interpretation and data transforma-
tion into usable information is an important step for the development of user’s applications. 

Interpretation plays an important role in the process of data analysis. It helps users to easily 

understand the extracted information from remote sensing data. Consequently, the interpre-
tation of this data enables user to make policy and management decisions. To be under-
standable, data must be transformed into information, and then, into knowledge as shown 
in Figure 1. In this section, we give a meaning to each information element, such as data, 
information and knowledge, and then we present the interpretation, in a general sense, and 
the existing interpretation methods.

2.1. Definitions and fundamental elements

There are many definitions and significations of informative elements such as data, informa-
tion and knowledge. According to [11], Data are facts that are the results of observations or 

measurements we make on objects (artifacts, sites, seeds and bones). In addition, data are 
defined as primitive symbolic entities, whose meaning depends on its integration within a 
context allowing its understanding by an interpreter [12]. Information is a set of facts with a 

processing capability added, such as context, relationships to other facts about the same or 
related objects, implying an increased usefulness. Information provides a meaning to data. It 
is an organized data answering the following basic questions: What? Who? When? Where? 
Knowledge is information with more context and understanding (answering the following 
basic questions: why? how? for which purpose?), perhaps with the addition of rules to extend 
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definitions and allowing inference. According to Pr. H. Moukdad of the Dalhousie University 
[13], knowledge is a reservoir of information that is stored in the human mind. It essentially 
constitutes the information that can be “retrieved” from the human mind without the need to 
consult external information sources [13]. Knowledge is internalized or understood informa-
tion that can be used to make decisions. These three entities can be viewed hierarchically in 

terms of complexity, data being the simplest and knowledge being the most complex of the 
three. Knowledge is the product of a synthesis in our mind that can be conveyed by informa-
tion, as one of many forms of its externalization and socialization [13]. Figure 1 shows the 

relationship between these three different informative elements.

Information comes from different sources, namely data, prior and contextual knowledge. 
Therefore, information must be combined in order to extract significant elements for the 
interpretation and, subsequently, for decision-making. The information combination is a role 
associated with the Fusion Information and Analytic Technology (FIAT) [14]. Indeed, data fusion 
is the process of combination of data or information from different sources to estimate or 
predict states of entities. It consists of developing methods that allow the extraction and con-
ciliation, from different knowledge sources, of (significates) expressive elements for decision-
making. However, for any interpretation system, its input and its output can take different 
meanings according to the considered situation. A statement can be either data or informa-
tion, and it can be knowledge (a prior and contextual). Such a situation is very frequent in 
the case of semantic interpretation of remote sensing images where different interpretation 
levels can be considered depending on the user outcome. On the other hand, high-level posi-
tioning considers a contextual attribution role to the input system for data, information and 
knowledge. Hence, information processing within the FIAT framework imposes a need to 
characterize and represent information in order to be exploited for the design of intelligent 
situation analysis and decision support systems. Moreover, information, according to [15], is 
the data that is relevant to the considered application. Losee [16] added that information is the 

value currently attached or instantiated to a characteristic returned by a process or function: 
information is a relational or functional concepts linking data sets. Linking input sets (called 

definition sets) to outputs set (called content sets) makes information to be informative.

To resume, an information element (data, information or knowledge), is “an entity composed 
of a definition set and a content set linked by a functional relationship called informative 
relation, associated with internal and external context”. Figure 2 shows the general structure 

of an information element. Lillesand et al. [17], suggest that: “interpretation may take place at 

number of levels of complexity, from the simple recognition of objects on scene to the inference of site 

Figure 1. From data to decision-making (relation between information elements).
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 conditions”. Therefore, it is important to characterize the information element in each inter-
pretation level. Details of the characterization of the information element are presented in the 
semantic scene interpretation section.

2.2. Semantic image interpretation

In remote sensing imagery, image interpretation consists of assigning geographic object types 
to image objects [18]. A geographic object, according to [19], is an object of a certain minimum 
size on or near the Earth’s surface (e.g. a forest, lake or mountain), whereas an image object is 
a discrete region of a digital image that is internally coherent and different from its surround-
ings [20, 18].

Since long time, images interpretation has been based on pixels’ classification methods [17]. 

Recently, Castilla and Hay [20] have developed a new approach enabling the image anal-
ysis and interpretation based on the image partitioning into objects. This approach, called 
GEOBIA, relies on geographic objects to image objects based on three different steps: the seg-
mentation, extraction and classification [21, 22, 18]. The segmentation step delineates regions 

having common characteristics. According to [20, 18], this step is based on the hypothesis that 
partitioning an image into objects is related to the way humans conceptually organize the 

landscape to comprehend it. The extraction defines the characteristics of the objects, such as 
shape, texture or the spectral response (i.e. low-level features such as high values in defined 
spectral bands) [23]. The classification step assigns a category (i.e. a semantic meaning) to 
the segmented objects according to the attributes calculated in the extraction phase. This last 
step aims at enriching the objects of the image in order to assign them a significant semantics 
(i.e. high-level concepts such as vegetation). This process is performed through the analysis 
of segment attributes and the interrelationships among segments to identify their geographic 
labels [23]. Such a concept highlights the importance of contextual information in improv-
ing the classification [24]. These techniques have shown efficient results based on expert’s 
knowledge. However, expert’s knowledge is subjective and cannot be used directly by an 

Figure 2. Information element structure [14].
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automatic  process [22]. Consequently, this knowledge limits the automation of the image 
interpretation procedure. According to [18], the issue of automatic image interpretation con-
sists of developing target recognition algorithms to map geographic objects. At this level, the 
challenge consists of linking the symbolic semantic information (e.g. vegetation index value) 
with numerical low-level features (e.g. measured vegetation index value). However, match-
ing the high-level knowledge with the low-level knowledge leads to so-called semantic gap 
problem. This problem is defined as the lack of coincidence of the information that can be 
extracted from the visual data and the interpretation that the same data have for a user in a 
specific situation [25].

Hudelot et al. [26] defined the semantic images interpretation as the process of extraction and 
inference of high-level knowledge from the observed image. According to [26], “The role of the 

semantic interpretation is to assign a meaning to the perceived description of the scene, i.e. the data 

extracted from images. This meaning refers to application domain expertise and terminology”. These 
authors consider that the semantic image interpretation problem is often limited to a classi-
fication problem (i.e. identifying the class of the structured data extracted from the observed 
images using predefined models). Indeed, an interpreter focuses on identifying the seman-
tic contents of the observed images. However, according to the available knowledge, differ-
ent answers and interpretations are possible for the interpreter (i.e. interpretation may be 

done in many ways). Consequently, the semantic is not in the image. It depends on the prior 

knowledge of the application domain (i.e. high-level knowledge) on the one hand, and the 
application context on the other hand. Therefore, this knowledge needs to be represented and 
formulated in an efficient way allowing, then, to improve the semantic images interpretation.

With recent advances in knowledge engineering, ontologies are increasingly used for the for-
malization of the knowledge of a given domain, in a coherent and consensual manner [27]. 

Indeed, ontologies are admitted as powerful conceptual tools for describing the knowledge 
of a domain in a structured and shared way and for the management of unstructured data, in 
particular in the domain of the semantic web. They provide a relevant methodological frame-
work for the representation of prior knowledge in an image interpretation context [26]. Hence, 
from the fact that the semantic image interpretation can not only be based on the perceptual 

information coming from an image, the ontology can be used as a conceptual model encod-
ing the expert’s knowledge and guiding the interpretation task. However, the association of 
the expert’s knowledge (i.e. qualitative information) with its representation in the image (i.e. 
numerical and quantitative information) leads to the semantic gap problem as previously 
described. Therefore, the exploitation of the ontology offers the possibility to overcome this 
problem. Indeed, during the last few years, ontologies have been mostly used to solve the 
semantic gap problem by bridging the symbolic information and the information extracted 
from the images [28]. Gruber [29] defined ontology as an “explicit specification of a conceptu-

alization”. This definition is refined by [30] as a “formal specification of a shared conceptualiza-

tion”. Conceptualization refers to an abstract model of some phenomenon in the world by 
 identifying relevant concepts of that phenomenon. Explicit means that the identified concepts 
and the constraints on their use are explicitly defined. Formal refers to the fact that the ontol-
ogy should be machine readable, and Shared reflects the notion that an ontology captures 
consensual knowledge not private to some individuals but accepted by a group [31].
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An ontology specifies a set of concepts, their characteristics, their instances and their relation-
ships, and axioms that are relevant for modeling a domain of study and permits the inference 
of implicit knowledge. It separates the expert’s domain knowledge expressed by high-level 
concepts from the low-level features of image objects [18]. Generally, the association of these 
two levels can be performed using inference engines (i.e. reasoners) in the ontology. A rea-
soned is considered as a classification algorithm by remote sensing experts and based on logi-
cal rules (expressed in description logics), an automatic reasoner can infer new knowledge 
from explicit knowledge by ontologies and verify its logical consistency.

3. Semantic interpretation of remote sensing images

In a wide sense, ontologies, presented as explicit knowledge models, are widely used in 
images interpretation domain. First, particular contributions highlighted the use of ontologies 
in image processing domain have been presented in the multimedia field [26, 32–35]. Indeed, 
several multimedia ontologies have been presented and developed either for the description 

of the image low-level content, or, as standard annotation vocabularies for describing the 
image high-level content. Approaches proposed in [32–34] are examples of ontologies pro-
posed in this context. Other approaches focusing on images processing or annotation prob-
lem have exploited ontologies as an annotation vocabulary to facilitate the mapping between 
perceptual primitives and high-level concepts. These approaches use a visual or object ontol-
ogy at the intermediate level (i.e. in between low-level features and domain concepts [26]). 

According to Maillot [35], the visual concept ontology guides the domain knowledge acquisi-
tion process by providing a set of generic visual terms close to natural language and closer 

to images features. It respectively allows the reduction of the domain knowledge acquisi-
tion bottleneck and the semantic gap between domain concepts and low-level features. In 
Mezaris [36], an object ontology, which is a set of qualitative intermediate-level descriptors, 
has been proposed. It is used to allow the qualitative definition of the high-level concepts 
(that user query for) and their relations. Similarly, Hedelot et al. [26] have presented a solu-
tion to the symbol grounding problem. The symbol grounding problem refers to the map-
ping between low-level features (i.e. the numerical image data) and the high-level semantic 
concepts. The proposed work presents a learning approach for linking low-level features and 
visual concepts by using an intermediate processing ontology and a prior knowledge-based 
approach to explicitly build links between the low-level features data and the visual concepts. 
Ontologies have also been used as a framework allowing the explicit and formal description 
of the domain application and contextual knowledge. This framework is used as a model to 
guide the analysis and the interpretation, by exploiting the formal reasoning tools related to 
ontologies [26]. In this context, the description logics have been used in order to enable the 
logic formalization of the interpretation or annotation problems [37].

Ontologies have been widely exploited in the remote sensing domain, particularly, for the 
interpretation or the annotation of remote sensing imagery. Hence, several approaches 
have been proposed for geographical information analysis and management. The proposed 

approaches are distinguished according to their objective.
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3.1. Ontology-based objects classification

As we have introduced, object-based classification consists of assigning a semantic class label 
(i.e. high-level concept) to a region (i.e. image object) in the image. In this context, Raskin and 
Pan [38] used ontology as a knowledge base allowing to classify orthogonal classes such as 

space, time, Earth realms, physical quantities and integrative science knowledge classes such 
as phenomena, events, and so on. In Ref. [39], authors have presented a semantic model for 
the classification of landforms, which are extracted from a digital elevation model using OBIA 
methods. Andrès et al. [22] have proved that expert’s knowledge explanation via ontologies 
can improve the automation of satellite images and then they have presented an ontological 

approach allowing to classify remote sensing images. Jess et al. [40] proposed an ontological 

framework for ocean satellite images classification, which depicts how a potential building of 
an ontology model for low and high level of features. Recently, Belgiu et al. [41] have presented 

a method that consists of coupling an ontology-based knowledge representation for objects clas-
sification with the OBIA framework. A very recent semantic object-based classification method 
(using ontology of high-resolution remote sensing imagery) has been presented in [42]. In this 

approach, authors started by ontology modeling, then, a classification part is performed based 
on data-driven machine learning, segmentation, feature selection, sample collection and on an 
initial classification. Finally, image objects are re-classified based on the ontological model.

3.2. Ontology-based objects recognition

Several studies are focused on the object recognition problem in satellite imagery. For instance, 
Durand et al. [43] have presented an ontology for the recognition of urban objects in satellite 

images. This ontology has been enriched later in [44] with other domain concepts and spatial 

relations and then has been used for the annotation and interpretation of the remote sensing 

image. In [45], Forestier et al. have developed an ontology for the identification of urban fea-
tures in satellite images. The proposed method starts by associating a set of low-level charac-
teristics to each image region by using a segmentation algorithm. Then, the knowledge base 
(i.e. the ontology) is used to assign a semantic to the considered region. This work has been 

extended and generalized in [46] by adding new knowledge functions (KFs) including spa-
tial relations between objects. Therefore, the proposed approach has been applied for coastal 
objects recognition. Recently, Luo et al. [47] have presented an ontology-based framework 
that was used to model the land cover extraction knowledge and interpret high resolution 
satellite (HRS) images at the regional level. In this work, the land cover ontology structure is 
explicitly defined, representing the spectral, textural and shape features, and allowing for the 
automatic interpretation of the extracted results. Similarly, Gui et al. [48] have presented an 

ontological method for extracting individual buildings with different orientations and differ-
ent structures from SAR images based on ontological semantic analysis.

3.3. Ontology-based change detection

Modeling different states of objects, or phenomenon, in time allows to detect and identify dif-
ferent changes that can undergo these objects and phenomena. However, few ontology-based 
approaches have been proposed for change detection in remote sensing domain. For instance, 
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Hashimoto et al. [49] have presented a framework based on ontologies and heuristics for 

automatic change interpretation. The proposed framework considers remote sensing data 

analysis as a knowledge information processing, which derives new information about tar-
gets with inference from the observed data and a priori knowledge for remote sensing images. 

In [50], an ontology has been exploited to support spatio-temporal modeling in order to study 
different land use/cover changes such as splitting, merging, separation and annexation. In 
this work, the GeoSPARQL ontology including spatial information, the fluent ontology for 
temporal information and the domain ontology that stored knowledge and contextual infor-
mation related to the geospatial environment, has been combined allowing to represent and 
to reason about spatio-temporal dynamics. More recently, Li et al. [51] have implemented an 

integrated computational framework to support semantic modeling and reasoning about spa-
tio-temporal change of geographical objects in land use/cover (LULCC) data, regarding space, 
time and topology. In this framework, a spatial ontology has been created to encode essential 
knowledge about spatio-temporal variation changes such as deforestation and urbanization. 
Then, based on the knowledge defined in this ontology and on related reasoning rules, the 
semantic platform allows the semantic query and change reasoning of areas with LULCC.

4. Proposed approach: multi-levels semantic images interpretation

4.1. Semantic scenes interpretation strategy

Semantic image interpretation is defined by the semantics extraction and inference processes 
of high knowledge from an observed image. Semantics extraction refers to the image inter-
pretation from a human perspective. It consists of obtaining useful spatial and semantic infor-
mation on the “basic informative granules” (i.e. pixels, objects, zones, global scene) using 
human knowledge and experience. Generally, existing approaches, for semantics image inter-
pretation, follow a multi-level strategy for describing the image content. According to Marr’s 
vision [52], this architecture allows to separate the perceptual levels (i.e. syntactic description 
of the visual content of the image according to descriptors and visual primitives) and the 

conceptual or semantic levels (i.e. the meaning of the elements present in the image). Hudelot 

et al. [26] have adapted this architecture for semantic image interpretation in the medical 

domain. These authors suggested that the semantic level can be divided into three semantic 

abstraction sub-levels: semantic object level, semantic spatial level and semantic global level. 
Consequently, we have used this multi-level architecture for semantic scenes interpretation in 
remote sensing domain and subsequently for changes interpretation.

As shown in Figure 3, the proposed architecture is composed of different levels of abstraction. 
Consequently, following the idea that the “interpretation may take place at several levels of 
complexity, from the simple recognition of objects on scene to the inference of site conditions”, 
an interpretation task will be accorded to each level. For each level, the interpretation strat-
egy depends on: the input data (i.e. definition set) (e.g. scene), the output goal (i.e. definition 
content) (e.g. semantic objects classification) and a prior and contextual knowledge (e.g. spatial 
and temporal relations, contextual criteria, constraints, etc.). However, as we have introduced, 
there are various meanings associated with the word “information”. Input can take  different 
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meanings according to the considered situation. It can be data, information or knowledge. This 
suggests that an input, in itself, has no unique meaning. Hence, data, information and knowl-
edge are most likely context-dependent representations. Consequently, different situations 
may be perceived if they are interpreted with different contexts of the observed data. Because 
there are different meanings of information (i.e. data, information, knowledge), in this chapter, 
the interpretation process is considered as an information fusion problem. Information fusion 

focuses on combining different elements for the success of the interpretation step. However, 
the success of information fusion task is related to the way its basic components are defined 
and to the quality of their associated knowledge as well as the information or knowledge pro-
duced by the fusion process itself [14]. In this section, we focus on defining and characterizing, 
for each interpretation level, the information element structure and its main components. The 
main components of information element are as follows [14]:

1. A definition set giving the potential information input element (i.e. what the information 
refers to);

2. A content set encoding the possible knowledge produced by the information (e.g. meas-
urements or estimations of physical parameters, decisions, hypothesis);

3. An input-output relationship representing the functional link model (e.g. mathematical, 
physical) that associates the input elements with the produced information contents;

4. An internal context gathering intrinsic characteristics, constraints, or controls about the 
information relation itself;

5. An external context containing data, information, or knowledge useful to the elaboration 
of the meaning or the interpretation of the information element.

Formally, an information element J can be represented as follows:

 𝙅 =  (information definition set, informative relation, information content set, internal 

context, external context)   (1)

Figure 3. General adapted architecture for semantic scenes interpretation.
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In the basic information element structure, illustrated in Figure 2, objects and contents 
represent entities linked through the informative relation. According to Bosse et al. [14], 
the nature of these entities may be either hard or soft. Hard means that these entities are 

quantitatively defined with numbers, individuals, and so on, an example of hard object is 
raws of pixels and an example of hard contents is features. Soft signifies that entities are 
qualitatively defined with words, opinions, predictions, and so on. For instance, a rule, 
defining an image vegetation segment, is a soft object, and the vegetation segment rep-
resents the soft content. However, soft entities require a context in which the qualitative 
descriptors are defined [14]. An informative relation may be impersonal (or hard) when it 

does not depend on external conditions to link objects to contents. However, it may also 
behave in a softer way by using cognitive factors such subjective judgements, opinions and 
perceptions (e.g. (J) representing human experts’ outputs). For example, if we consider the 
informative relation a sensor making an acquisition, setting parameters value of this sensor 
belongs to the internal context. However, the conditions why the sensor has been set up 
with these setting belong to the external context. These conditions include the context of 
observation. This later represents an important part of the perception process as it is all that 

an influence on the perception of an event and all that is needed to understand the observa-
tion. Therefore, different situations may be perceived, relying on the same set of sensory 
information items, if they are interpreted within the different contexts of observation. Thus, 
providing the external context for a specific domain and specific aim makes a system to be 
intelligent for interpreting a specific situation. Part of this context is the domain knowledge 
that every human uses to interpret and understand any perception. The exploitation of the 
ontology offers the best way for representing and reasoning about this knowledge. In the 
following section, we describe the information element of each semantic image interpreta-
tion level and we demonstrate the role of ontologies for representing and reasoning about 

both internal and external contexts.

4.2. Information element: pixel level

The semantic image interpretation strategy starts with a feature extraction step from the 
image where raw image data are “converted” into visual features (edges, segments, regions, 
intersections, etc.), which are supposed to correspond to meaningful parts of semantic objects. 
What is considered here is not information but a kind of abstract data (i.e. a set of pixels). 
This level of abstraction corresponds to the information element paradigm when associated 

with the basic objects that are observed. An informative relation, that is, feature extraction, 
is used to link objects (input set) to contents (output set). This informative relation embeds 

knowledge allowing to build this link. However, the informative relation extracting features 
from the image (i.e. the definition set) probably needs to know the resolution of the sensor 
producing the image pixels [14] and other knowledge such as segmentation and extraction 
algorithms and feature properties. This additional information belongs to the internal context 
of the information element. In addition, contextual information such as sensing conditions 
including the acquisition date, the sun elevation angle, atmospheric conditions and algo-
rithms characterization (that have to be known “ previously” in the feature extraction step). 
This information belongs to the external context of the information element. Figure 4 shows 

the information element structure of the pixel level (data).
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4.3. Information element: visual primitives level

The visual primitives’ level aims to assign a semantic attribution (i.e. labeling) to the extracted 
image segments from the shapefile containing the information about image features. An infor-
mative relation that links the input set (i.e. shapefile) to the output set (i.e. labeled segments) 
and uses internal information including features proprieties and segments rules for reason-
ing about segments labels. The attribution of these labels is based on an external resource (i.e. 
external context) formulated as a visual primitive ontology. This ontology includes a general 
description of expert’s knowledge about geographical features representation. The concepts, 
associated to this structure, are derived from images concepts. Figure 5 illustrates the struc-
ture of the information element in the visual primitives’ level. At this level, it is worthwhile to 
notice that the information definition set (i.e. input definition set) is represented by a shapefile 
format and the information content set (i.e. output set) by a RDF file format.

4.4. Information element: object level

The semantic object level allows to attribute a hard classification to objects in scene. Indeed, 
the semantic objects interpretation consists of attributing hard classes such as forest, lake, 
urban and others to the labeled visual primitive extracted in the former step. This later, for-
mulated as knowledge, has been extracted in the visual primitive level, and it is used as an 
input definition set of the information element in the semantic object level. What is consid-
ered, at this level, is not information or data, but a set of knowledge allowing to describe the 
semantics of objects in the image. The link between the symbolic description (i.e. input defi-
nition set) and the semantic content (i.e. output set) is performed through the classification 
reasoner  representing the informative relation of the information element. This informative 

relation needs other knowledge in order to associate the semantic definition to different image 
contents. Such knowledge includes prior and contextual knowledge, which are formulated as 
a domain ontology. Generally, the main concepts of this ontology are geographic objects such 
as urban, forest, water, and so on, and their hierarchical relationships (i.e. “is-a” relation). The 
general information element structure of the semantic object level is illustrated in Figure 6.

Figure 4. Information element in pixel level interpretation.
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4.5. Information element: semantic spatial level

In the semantic spatial interpretation level, the focus is made in order to give a visual descrip-
tion of the whole content of the image scene in a given time. In other words, the objective 
is to describe different objects, present in the scene, and the existing spatial relations that 
hold between them. Consequently, this allows to give a conceptual representation of seman-
tic objects and their spatial relation allowing a semantic interpretation at the scene level. A 

spatial relation extraction reasoner (representing the informative relation of the information 
element defining the knowledge here) allows to make a link between the semantic objects 
hierarchy (i.e. input definition set) and the conceptual representation (i.e. output content 
set). To build this link, the informative relation needs to use some predefined constraints 
about spatial relationships. These constraints (or spatial rules) are part of the internal con-
text allowing to define spatial relations that existing between different objects in the scene. 
Spatial relationships include neighborhood relations (such as externally connected (EC), 
disconnected (DC), and non-tangential proper part (NTPP)); directional relations describing 
relative orientations of objects (e.g. North and South); and distance relations (such as near 
and far relationships [53]).

All these spatial relations are formulated in a spatial relation ontology as presented in [26], and 
then, they are integrated as parts of an external context in the structure of information element. 
On the other hand, the informative relation requires the integration of the domain knowl-
edge (i.e. domain ontology) with the spatial relation ontology for the global  interpretation 

and understanding of the scene. Notice here, that this domain ontology is used as an external 
context of the information element in the semantic object level. Therefore, the integration of 
the spatial relation ontology with the domain ontology (as an external context) in this informa-
tion element of the semantic spatial level illustrates the growing extent of J context as J level of 
abstraction increases (Figure 7).

Figure 5. Information element in the primitive-level interpretation.
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4.6. Information element: global semantic level

The global semantic level (or high semantic level) refers to the semantic scenes interpretation in 

the time. This allows to describe the semantic content in terms of objects and their relations of dif-
ferent images representing the same scene in the time. To reach this purpose, the global semantic 
scenes interpretation consists of integrating temporal relations that can hold between images’ 

objects. The obtained result, output content, is an ontological conceptualization representing 
 different concepts in the images as well as their relationships, namely, semantic, spatial,  temporal 
and filiation relations. Figure 8 shows the structure of the information element in this level. In 

this structure, the informative relation considers as an input set the semantic spatial representa-
tion of different scenes (e.g. two scenes here). In order to allow linking these representations and 

Figure 7. Information element in spatial level interpretation.

Figure 6. Information element in the semantic object-level interpretation.
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the output result (i.e. content set), the informative relation, that is, the temporal and filiation rela-
tions reasoner, uses temporal and filiations rules as the internal context integrates temporal and 
filiation relations ontologies. Temporal relations define possible relations that hold between two 
time intervals that can be used for reasoning about the temporal descriptions of events, actions, 
beliefs, intentions or causality. Generally, Allen’s Interval Algebra [54] is the most known and 

widely used model for topological temporal relations between objects in time. The importation of 

the SWLRTO  ontology, as part of external context, offers the possibility to classify different time 
relations. This allows, for example, to define the rule for the temporal relation before as follows:

 SWRLTO : hasTime (? i1, ? t1) ̂ SWRLTO : hasTime (? i2, ? t1) ̂ SWRL : lessThan (? t1, ? t2) →before 
(? i1, ? i2)   (2)

In addition, filiation relations are also of great importance for reasoning about relations between 
objects in times. Filiation relations have been introduced by Del Mondo [55] and include con-
tinuation and derivation relationships. Continuation occurs when an entity (real object) contin-
ues to exist from one time to the next with the same identity, and the derivation occurs when 
an entity creates some others with new identities [55]. Thus, these relations must be integrated 
to the context allowing, thus, the informative relation to link the input set to the output set.

4.7. Information element: change interpretation

The final objective of the semantic scenes interpretation is the interpretation of changes that may 
occur. The change interpretation process consists of the detection of the changes that can affect 
different states of objects and the relations between these changes. Changes can be classified 
into: (1) domain-independent occurrences (such as growth, shrinkage, disappearance, appear-
ance, etc.) or (2) domain-dependent (or domain-specific) occurrences (such as deforestation, 
urbanization and desertification). Most researches, analyzing and studying changes, consider 
the first category as events and the second as processes (i.e. geographic processes). However, rela-
tions can exist between the two occurrences. These relations can be either composition or consti-
tution relationships, for example, a deforestation process is specified as the shrinkage and then 

Figure 8. Information element in the global-level interpretation.
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the disappearance of forest zone, and either can be causal relationships such as cause and initi-
ate relations, for examples, deforestation initiates the shrinkage of a forest, urbanization causes 
the deforestation, and so on. Consequently, the information element in this level must describe 
the knowledge about these changes and their relations. Therefore, the role of the informative rela-
tion (i.e. change reasoner) is to interpret changes that have occurred from the semantic descrip-
tion of different scenes (input set) allowing subsequently to obtain a semantic representation 
about changes and their relationships (i.e. the content set). To link the information definition set 
to the information content set, this informative relation is based on two contextual information: 
internal and external context. The internal context includes contextual information about objects 
or different relationships, which are used for the interpretation process. For instance, the spatial 
reduction of an entity whose coverage is a forest (internal context) is interpreted as phenomena 
of deforestation. External context includes the representation and descriptions about events and 
processes. It is about expert (prior) knowledge describing definitions of different occurrences. 
Descriptions of events and processes can be formulated using upper ontologies such as the basic 
fundamental ontology (BFO) [56]. This ontology distinguishes between static entities such as 

forest and dynamic entities such as deforestation. Therefore, combining the BFO ontology with 
the domain ontology (which represent knowledge of remote sensing images) allows to give a 

conceptual representation describing events and processes that can be used as an external con-
text to help the interpretation of changes. In Figure 9, the information element structure and its 
components in the change interpretation level are presented.

5. Conclusions and discussion

Semantic images interpretation is an important step for any decision-making system. It allows 
to give a semantic description of the image content. Consequently, this allows an agent (user 
or machine) to take the best management decision of a given situation. The interpretation 

may take place at different levels of complexity, from the simple recognition of objects on 
scene to the inference of site conditions and also to change interpretation. In this chapter, we 
have mainly focused on the semantic scenes interpretation for change interpretation in remote 

Figure 9. Information element in the change-level interpretation.
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sensing imagery. Therefore, we have demonstrated that the semantic scenes interpretation 
can be done in different level, from the low level to the high level. For each level, it is impor-
tant to characterize the structure of the information element (i.e. data, information or knowl-
edge) and its components (i.e. input set, output set, internal and external context) required for 
the interpretation process. Consequently, a semantic conceptualization based on ontological 
concepts for representing the components of the information elements and for the interpreta-
tion step has been illustrated in this chapter. Especially, the ontology exploitation has been 
applied to formulate the expert’s knowledge such as a prior and contextual knowledge. These 
types of knowledge are important for the semantic scenes interpretation task.

Generally, the structure of the information element is composed of the definition set, con-
tent set, informative relation and both internal and external context. In addition, as we have 
shown in Figure 2, quality of information (QoI) also must be integrated into the information 

element structure. Therefore, the characterization of the quality of information is necessary 
for the interpretation process. QoI about information is through its attributes and their rela-
tions. Generally, there are four main aspects of information quality: uncertainty, relevance, 
reliability and completeness. Future studies include the description of these aspects and their 

integration in the semantic images interpretation process [18].
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