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1. Introduction 

Greedy method, as an efficient computing tool, can be applied to various combinatorial or 
nonlinear optimization problems where finding the global optimum is difficult, if not 
computationally infeasible. A greedy algorithm has the nature of making the locally optimal 
choice at each stage and then solving the subproblems that arise later. It iteratively makes 
one greedy choice after another, reducing each given problem into a smaller one. In other 
words, a greedy algorithm never reconsiders its choices. Clearly, greedy method often fails 
to find the globally optimal solution. However, a greedy algorithm can be proven to yield 
the global optimum for a given class of problems such as Kruskal's algorithm and Prim's 
algorithm for finding minimum spanning tree, Dijkstra's algorithm for finding single-source 
shortest path, and the algorithm for finding optimum Huffman tree [5]. Even for some 
optimization problems proven to be NP hard, a greedy algorithm may generate near 
optimal solution with high probability if one exploits the problem structure properly. In this 
chapter, we focus on the optimization problems arising from plume detection, localization 
and tracking and provide convincing argument on the usefulness of greedy algorithms. 
Detection, identification, localization, tracking and prediction of chemical, biological or 
nuclear propagation is crucial to battlefield surveillance and homeland security. In addition, 
post-accident management for public protection relies critically on detecting and tracing 
dangerous gas leakages promptly. The determination of source origins and release rates is 
useful for the forecast of gas concentration in the atmosphere and for the management staff 
to prioritize off-site evacuation plans. A lot of research has been focused on detecting and 
localizing single or multiple plume sources with autonomous vehicles [11] or sensor 
networks such as [22] for a vapor-emitting source, [2] for a nuclear source, and [14, 15] for a 
chemical source. In [12] the plume detection and localization problem is formulated as 
abrupt change detection using sparse sensor measurements. The development of a large 
scale testbed has been reported in [8] for plume detection, identification and tracking. In [3] 
dense sensor coverage has been used for radioactive source detection while [26] showed that 
using three error-free intensity sensors, one can identify the plume origin to any desired 
accuracy with high probability. Although this approach offers an effective solution with 
linear complexity of the hypothesis space, a major limitation is that the continuous time 
dynamic model of plume propagation has to be in the product form. O
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When the sensing devices can not provide accurate plume concentration readings, plume 

tracking relies heavily on the sensor coverage instead of the physics-based propagation 

model. In this case, hidden Markov model (HMM) offers a flexible tool to model the 

uncertainty of plume propagation motion in the air. It has been applied to plume mapping 

in [11] and chemical detection in [23]. The main issue of HMM resides in the time varying 

state transition probabilities which are not readily available from the physics based plume 

propagation equation. A viable approach is to use the generalized HMM with fuzzy 

measure and fuzzy integral [20]. The resulting plume localization problem becomes finding 

the most likely source sequence based on a fuzzy HMM. Existing algorithms of Viterbi type 

[20, 21] can be very inefficient when the size of the hidden state is large. Recently, [19] 

showed that the average complexity of finding the maximum likelihood sequence can be 

much lower than that using Viterbi algorithm for an HMM in the high SNR regime. 

Motivated by the theoretical result in [19], we propose a decoding algorithm of greedy type 

to obtain a candidate source path and search only for state sequences within a constrained 

Hamming distance from the candidate plume path. Our method is applicable to a general 

class of fuzzy measures and fuzzy integrals being used in fuzzy HMM. We compare the 

localization error using our algorithm with that using fuzzy Viterbi algorithm in a plume 

localization scenario with randomly deployed sensors. Simulation results indicate that the 

proposed greedy algorithm is much faster than fuzzy Viterbi algorithm for plume tracing 

over a long observation sequence when the localization error probability is small. 

When the sensing devices provide fairly accurate concentration readings of the sources, one 

would expect that plume localization and release sequence estimation can be solved jointly. 

However, despite the abundant literature in plume detection [3, 23, 24] and localization [11, 

30, 31], limited efforts have been made toward solving the joint problem of source 

localization and parameter estimation. The main reason is that even finding linear 

parameters related to the source release rate is an ill-posed problem and one has to impose 

certain regularization technique to avoid potential overfit. To solve the plume identification 

and parameter estimation jointly, we adopt the least squares technique based on the 

solution to the advection-diffusion equation [16, 17] and impose lp-regularization for  

0 ≤ p ≤ 1 [4, 7] to characterize the sparsity of the unknown source release rate signal. We also 

discuss its advantage over the popularly used l2-regularization. The accuracy of source 

parameter estimation is examined for the cases where both the number of sources and the 

corresponding locations are unknown. Since the resulting optimization problem is nonlinear 

and involves both discrete and continuous variables, we apply a greedy approach to 

identify and localize one source at a time. It is very efficient and can be interpreted as 

greedy basis pursuit [13]. 

The rest of the chapter is organized as follows. Section 2 formulates the plume localization 
problem using multiple binary detection sensors as maximum likelihood decoding over 
fuzzy HMM. Greedy algorithm is applied to maximum likelihood sequence estimation 
where the complexity comes from the fine resolution of the quantized surveillance area. 
Section 3 introduces the joint plume localization and source parameter estimation problem. 
Greedy algorithm is applied to source identification where the computational complexity 
mainly comes from the aggregation of unknown number of sources. Section 4 presents a 
concluding summary and discusses when one can expect good performance using greedy 
method. 
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2. Sequence estimation using fuzzy hidden Markov model 

This section focuses on the maximum likelihood sequence estimation where the problem 
lends itself with a combinatorial structure similar to a decoding problem. We start with 
continuous time plume propagation model in Section 2.1 and then discuss the discrete time 
Markov approximation of the plume source as well as the sensor measurement model in 
Section 2.2. Section 2.3 presents the sequence estimation problem over a fuzzy hidden 
Markov model (HMM) using Viterbi and greedy heuristic algorithm. Section 2.4 provides 
simulation study on tracing a single plume source with unknown source location and initial 
releasing time. 

2.1 Gaussian puff plume propagation model 
It is challenging to accurately model the spatial and temporal distribution of a contaminant 
released into an environment due to the inherent randomness of the wind velocities in 
turbulent flow. Here we adopt a continuous time plume propagation model of 
instantaneous release type given in [28]. A plume consisting of particles or gases has the 
concentration c satisfying the following continuity equation 

 

where 
 
is the j-th component of the wind velocity; D is the molecular diffusion coefficient; 

R is the rate of particle generation depending on the temperature T; S is the rate of 
aggregation of particles at location x and time t. In a perfectly known wind field where one 
knows the wind velocities at all locations, there will not be any turbulent diffusion. 
However, due to the randomness of the wind velocities, one can only expect that the mean 
concentration to satisfy the atmospheric diffusion equation 

 

where  is the j-th component of mean wind velocity and Kjj is the eddy diffusivity 

assuming molecular diffusion is negligible relative to turbulent diffusion. Assuming S(x, t) = 
0 (instantaneous release) without any boundary condition, one can obtain the closed form 
solution to the above partial differential equation, which in the two dimensional case is 

 

where x and y are the axis of the Cartesian coordinate system centered at the plume origin. 
In practice, one may not have the knowledge of the mean wind velocity at any location and 
it can also be time varying. In order to accommodate the uncertainty due to the aggregation 
of the plume release and the wind turbulence, in the sequel, we consider a dynamic model 
with both time and spatial transition following a Markov chain. 

2.2 Approximate plume propagation dynamics and measurement model 
We assume that the search region is partitioned into N cells indicating the possible origins of 

the plume source. The centroid of cell i is denoted by (qxi, qyi) for i = 1, …,N. Sensors are 
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homogeneous and randomly deployed in the search region. Time is discretized by the 

sensing interval Ʀt where chemical intensity is measured in the neighborhood of each 

sensor's location. If the intensity is above a predetermined threshold, then a sensor will 

declare its detection of chemical plume. Thus at any time instant k, a binary sequence yk is 

obtained from M sensors located at (rxi, ryi) indicating a possible chemical detection for  

i = 1, …,M. We assume that the flow velocity (vxi(k), vyi(k)) is also recorded by sensor i at time 

k (∀i, k). Denote by x(j)k the hidden state of cell j at time k taking binary values indicating 

whether it contains detectable chemicals. Denote by xk = [x(1)k x(2)k … x(N)k]’ the plume map 

at time k. Denote by y1:K = [y1 … yK] the detection sequence up to time K and, accordingly, 

x1:K = [x1 … xK] the possible plume sequence up to time K. The plume mapping problem can 

be written as finding the most likely plume sequence 

 
(1) 

where a statistical model between the state and observation sequence is assumed and the 

maximum likelihood (ML) criterion is used. From the ML estimate of the state sequence, one 

can identify the origin of the plume and its initial releasing time. Note that using the above 

formulation, one can also estimate the origins of multiple plumes at unknown and possibly 

different releasing times. The major difficulty lies in the availability of state and 

measurement model at any given time. 

2.3 Fuzzy hidden Markov model and maximum likelihood decoding 
2.3.1 Hidden Markov plume model 
Two methods are popularly used in modeling plume propagation: numerical solution to the 

advection-dispersion equation and random simulation [9]. In this section, we use random 

simulation to generate realistic plume propagation sequence when evaluating the state 

sequence estimation algorithm. In a hidden Markov plume model, the state sequence {xk} is 

assumed to be a Markov chain. At any time k, a cell i has a probability pb originating a new 

plume release if it contains no plume at k - 1. A cell i has a probability pc releasing the same 

amount of plume at time k if it contains a plume source at k -1. A cell j has detectable plume 

at time k coming from the source in cell i at time k - 1 with probability pd(i) depending on the 

source intensity Q and minimal detectable intensity C. Without the presence of wind, we 

have pd(i) = 0 for Gaussian plume if 

 
(2) 

where D is the diffusion coefficient. With known flow velocity at cell i, the detectable region 

can be modified accordingly. Thus we denote by A(k) the state transition probability matrix 

of size 2N×2N with element amn(k) indicating p(xk = n⏐xk-1 = m) where m and n represent two 

binary sequences of length N. For each sensor, the probability of false alarm is assumed to 

be very low when there is no detectable plume in its neighborhood. The detection 

probability depends on the distance d between the sensor location and the centroid of the 

nearest cell which contains detectable plume. The following crude model is assumed. 

 (3) 
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where  is chosen such that the detection probability at the edge of the cell is 1-C/Q. Thus we 

have specified the observation model B of size 2N×2M for M sensors with element bnl 

indicating the probability p(yk = l⏐xk = n). The hidden Markov plume model is represented 

by the parameter vector  where π is the initial probability of the state. 

Note that the hidden Markov plume model is nonstationary since the state transition matrix 
is time varying. The model parameter Λ is difficult to learn from experiments since it 
requires large training sets with various wind conditions. 

2.3.2 Fuzzy hidden Markov model 
Fuzzy hidden Markov model (FHMM) is a natural extension of the classical hidden Markov 
model with fuzzy measure and fuzzy integral. The theoretical framework was first proposed 
in [20] and applied to handwritten word recognition in [21]. Here we briefly highlight the 
key components in FHMM and its advantage over a nonstationary hidden Markov plume 
model. 
FHMM replaces the probability measure used in the classical HMM with the fuzzy measure. 
A fuzzy measure Ǎ on the state space X is a mapping from subset of X onto the unit interval 

Ǎ: 2X → [0, 1] such that Ǎ (φ) = 0, Ǎ (X) = 1, and if E ⊂ F, then Ǎ (E) ≤ Ǎ (F). To combine the 
evidences from different sensor measurements, the concept of fuzzy integral is introduced 
to replace the classical probabilistic inference. For a discrete set X = {x1, …, xn}, the Choquet 
integral of a function h with respect to a fuzzy measure  Ǎ is computed as follows. 

 

(4) 

where h(x0) = 0, h(x1) ≤ h(x2) ≤ … ≤ h(xn) and 

 (5) 

A conditional fuzzy measure on Y given X is a fuzzy measure (·⏐x) on Y for any given x ∈ 

X. For E ⊂ Y , the  -induced fuzzy measure is computed by 

 
(6) 

With the above tools, a fuzzy hidden Markov model can be parameterized by  

where  is the initial fuzzy density of the state;  is the state transition matrix parameterized 

by fuzzy densities;  is measurement matrix parameterized by fuzzy densities. Note that the 
fuzzy state transition matrix is no longer time varying. This simplifies the learning of model 
parameters significantly. On the other hand, FHMM preserves the non-stationary nature of 
plume propagation and the nonstationary behavior is achieved naturally by the nonlinear 
aggregation of sensor measurements using fuzzy integral [20]. 

2.3.3 Viterbi algorithm for most likely sequence estimation 
For an HMM with parameter Λ, finding the most likely state sequence  given the 
observation  is often called maximum likelihood (ML) decoding. Viterbi algorithm 
guarantees obtaining the ML sequence with the following procedure [25]. 
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For a fuzzy hidden Markov model, the most likely state sequence given the observation 
sequence can also be defined with properly chosen fuzzy measure and fuzzy integral. The 
resulting optimization problem can be written as 

 
(7) 

where  is the extension of likelihood function in (13) with the conditional fuzzy 
measure. Note that the fuzzy likelihood function can be decomposed as follows. 

 

(8) 

Thus the decoding algorithm of Viterbi type can also be applied to FHMM. Specifically, the 
fuzzy Viterbi decoding procedure is as follows. 

 (9) 

 
(10)

 
(11)

where 

 

(12)

if Choquet integral is used with respect to a fuzzy measure Ǎ [20]. It is a time varying and 
nonlinear function of the fuzzy state transition parameter , which characterizes the 

nonstationary nature of plume propagation using only time invariant parameter set . The 
resulting state sequence estimate is still given by 

 

Note that the most likely sequence estimation algorithm of Viterbi type guarantees finding 
the optimal solution and it has the worst case complexity of O(K2N). Clearly, Viterbi 
algorithm is much more efficient than the exhaustive search method for general decoding 
problem given by (13) or its fuzzy extension (7), which has the complexity of O(2NK). 
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2.3.4 Greedy heuristic sequence estimation algorithm 
Viterbi algorithm (VA) has a complexity linear in the length of observation sequence but 
exponential in the number of cells. Throughout the past three decades, many attempts have 
been made to reduce the complexity of VA by searching only a selected number of paths in 

obtaining  (or ) with various criteria. However, unlike the original VA, there is no 

guarantee that the best state sequence obtained by any of those algorithms is indeed the 
optimal one. Recently, [19] proved the existence of efficient and exact maximum likelihood 
decoding method with the complexity polynomial in N under high SNR regime. 
Unfortunately, the decoding error probability goes to zero only when the SNR goes to 
infinity. In plume localization problem, the high SNR assumption is usually valid for the m-
th bit of the state variable when a sensor n is in cell m measuring its chemical concentration 
intensity. Thus we propose a greedy heuristic decoding algorithm applicable to both HMM 
and FHMM following the general constructive approach proposed in [19]. 
The algorithm contains three steps. 

1. Obtain a feasible solution  satisfying (m)k = y(n)k, ∀k, n where sensor n in cell m 
has a plume detection. 

2. Test the optimality: If the solution satisfies 

 (13)

then declare that  is the most likely sequence and stop. 
3. If the optimality test fails, then search the subset of the VA paths with Hamming 

distance no greater than L from  . 
The first step is crucial and may save significant amount of computational time if the 
solution is near optimal. It has been suggested in [19] to use the decision feedback method 
for obtaining a candidate solution. Its complexity scales in O(KN2). Intuitively, in the high 
SNR regime, we can assume that the false alarm probability of each sensor is very small, 
therefore, the plume map at a later time can be directly used to estimate the plume map at 
an earlier time where few sensor detections are made. Our decision feedback algorithm is 
similar to that of [19] but runs reversely in time as follows. 

 

 

The threshold L0 used in step 2 depends on the presumed plume path and SNR to be 
determined after having sensor detections. Note that if PFA → 0 and PD → 1, then the 
candidate solution will pass the test with high probability for arbitrarily chosen L0. The 
search constraint L used in step 3 is chosen to be compatible with (N -M) for large K. 

2.3.5 Performance analysis 

The proposed greedy decoding algorithm has the worst case complexity of O(K2L). If the 
SNR is large enough, then the average complexity of the algorithm is O(KN2) [19]. Next we 
show that the accuracy of our greedy heuristic algorithm has no essential loss compared 
with the optimal decoding algorithm, i.e., maximum likelihood decoder of Viterbi type, in 
the high SNR regime. 
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Theorem: Assume that the plume localization error Pe → 0 as K →∞. There exist L0 and L 
such that the greedy heuristic algorithm yields the error no larger than O(Pe) for large 
enough K. 
Proof sketch: For any state sequence  and the corresponding observation , define 

 
(14)

It has been shown in [19] that P(dmin > 0) = 1 when the SNR is large enough. If we choose 

 
(15)

then the test (13) is optimal in the sense that it only allows the most likely sequence estimate to 
pass asymptotically. Note that the test can be nontrivial if one chooses L0 = dmin due to the fact 

that any mismatched fuzzy likelihood function should satisfy  with 
probability one as Pe →0. 

The actual decoding error depends on the model parameter . By invoking Fano's 

inequality [6], we have  for any algorithm asymptotically. Under 

high SNR assumption, the entropy rate of the observation sequence satisfies 

 
(16)

When K is large, the feasible solution  will satisfy the following condition: ∀m 
containing a sensor, (m)k =x(m)k with probability one. If we choose L = N - M, then the best 

solution  within the subset of the VA paths with Hamming distance no greater than L 
from  has an error probability 

 

(17)

Since  decays exponentially with rate hy [19], we have 

 

for large K where the second inequality follows by the fact that conditioning reduces the entropy. 

In practice, the conditional entropy H( ⏐ ) has to be estimated using the posterior 

distribution πn. For the decoding problem over an HMM, πn is obtained recursively using 
Bayes rule. 

 

(18)
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For the decoding problem over an FHMM, the above equation should be replaced by the 
fuzzy intersection in the numerator and fuzzy integral in the denominator. In both cases, the 
resulting posterior distribution is helpful to design K for the desired decoding accuracy. 

2.4 Simulation study 
We simulate a plume source as independent particles following random walks which satisfy 
the advection and diffusion constraints. The model is reasonably accurate and the plume 
path generation is usually much faster than solving the advection-dispersion equation 
directly [18]. As an illustration, assuming Ʀt = 1s, the plume source is at (0, 0) with release 
rate 100 particles per second and duration of 8s. There are 20 sensors randomly deployed in 

a 1000×1000m2 field with sensing range of 50m for each sensor and at least 10 particles in its 
sensing area for a plume detection at any time. With wind velocity given by (vx(k), vy(k)) = 
(8, 5)m/s, longitudinal and transversal dispersivity L = 0.8, T = 0.2 and diffusion coefficient 
D = 0.9, one realization of the Gaussian plume at 100s is shown in Fig. 1 with two sensor 
detections. 
 

 

Fig. 1. One realization of plume propagation at K = 100. 

We partition the region into 100 cells of the same square shape. It is assumed that initially 
there is no plume source in the sensing field. All 20 sensors are assumed to be synchronized 
and provide binary detections to a centralized data processor for plume mapping. The 
FHMM assumes pb = 0.005 and pc = 0.8. The plume source always starts at the bottom left cell 
at 4s with a constant release rate. Viterbi algorithm maintains all feasible solutions in its 
trellis graph while greedy heuristic algorithm only keeps the solutions within a Hamming 
distance of 8 to the initial candidate. We compare the probability of finding the correct cell 
and initial releasing time of the plume source after K time steps. The plume localization 
error probabilities are shown in Fig. 2 based on 5000 Monte Carlo runs for each K. We can 
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see that greedy heuristic algorithm has the localization error close to that using Viterbi 
algorithm and the performance gap decreases as K increases. Using Matlab to compile both 
algorithms on a Pentium 4 PC with 2.80GHz CPU, we found that the average time to find 
the best state sequence using greedy heuristic algorithm is 0.05s when K = 100 while Viterbi 
algorithm takes 5.3s in average to obtain the most likely sequence estimate. Thus the 
proposed greedy algorithm achieves the plume localization accuracy close to that using 
Viterbi algorithm while the computational time is orders faster than that using Viterbi 
algorithm. 
Our approach can also be used to estimate the total mass of plume release. However, there 

is no guarantee on its accuracy even for instantaneous release of a single plume due to the 

nature of binary sensor detection. To estimate the release rate sequence of a plume source, 

denser sensor coverage or more accurate plume concentration intensity measurement is 

needed. This problem will be addressed in the next section. 

 

 

Fig. 2. Comparison of plume localization error probability with various observation length K. 

3. Parameter estimation and model selection for gaussian plume sources 

This section deals with joint plume localization and release sequence estimation when the 

number of plume sources is unknown. We start with the plume source aggregation and 

sensor measurement model in Section 3.1. Section 3.2 presents the regularized least squares 

solution to the parameter estimation problem. Section 3.3 discusses the implementation of 

the joint model selection (on the number of sources) and parameter estimation using greedy 

algorithm and the choice of regularization parameter. Section 3.4 compares our approach 

with alternative regularization methods. Section 3.5 provides realistic source release 

scenarios to assess the performance of the proposed algorithm. 
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3.1 Plume aggregation and sensor measurement model 
We assume that the wind field in the search area can be accurately modeled and sensors can 
collect fairly accurate concentration readings in their neighboring areas. A Cartesian 
coordinate system is used with x-axis oriented towards the mean wind direction, y-axis in 
the cross-wind direction and z-axis in the vertical direction. If the source of a pollutant is 
located at (x0, y0, z0) with release rate q(t), then at time t, the concentration of the pollutant at 
some down-stream location (x, y, 0) can be written as [16] 

 
(19)

where the kernel K(t, τ ) is 

 

(20)

with mean wind speed u and diffusion coefficients Kx, Ky, Kz along x, y and z directions, 
respectively. 
We assume that there are J sensors deployed at fixed locations where sensor j is located at  

(xj, yj , 0) and collects N concentration readings cj = {C(xj , yj , 0, tn)} . Denote by c = {cj}  the 

collection of all sensor readings. Denote by q = {q(τi)}  the discretized source release sequence 

where q(τi) is the release rate at time τi. Ideally, we have the following observation equation 

 (21)

where p = (x0, y0, z0) denotes the unknown source location. Note that for measurement cj(xj , 
yj , 0, tn), the corresponding element a(jn,k) in A(p) is given by 

 (22)

where βnk is a quadrature weight [16, 17]. The estimation of source location p and release rate 
q can be formulated as the least squares problem given by 

 
(23)

Note that this formulation is valid only for a single source. 
To extend the estimation problem to include multiple sources, we assume that the 
concentration readings are the results of aggregation from multiple source releases. Assume 

that there are s sources with unknown locations {p(i)}  and release rate sequences 

{q(i)} . Then we have the following ideal observation equation 

 

(24)

The source parameter estimation problem becomes identifying the number of sources, the 
corresponding origins and the release sequences jointly using only the concentration 
readings from multiple sensors. 
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3.2 Regularized least squares 
In the single source case, the matrix A in (23) can be analyzed for various source locations. 
By ranking the singular values of A, the authors of [16] found that the discrete time least 
squares problem (23) is in general ill-posed and suggested to use the Tikhonov 
regularization to ensure certain smoothness of q. However, for a source with an 
instantaneous release, the sequence q may have only a single spike, which violates the 
smoothness assumption. Nevertheless, for multiple sources with instantaneous releases, we 
will observe the aggregated sparse signal with an unknown number of spikes. In fact, the 
sparsity assumption is crucial for the identification of multiple sources with instantaneous 
releases at different times. To encourage the sparsity of the release rate sequence estimate, 
we propose to use lp-regularized least squares as the objective function, i.e., 

 
(25)

where the regularization parameters p controls the sparsity of the solution q and ǌ makes 
the tradeoff between the goodness-of-fit to the observations and the complexity of the 
model. Note that p = 1 is popularly used in compressed sensing [10] due to its numerical 
reliability. In fact, for any given p, minimizing (25) becomes a convex program if one 
chooses p = 1. However, our l1-regularized least squares problem still requires non-convex 
optimization without knowing the source location p. In addition, when choosing the 
regularization term with 0 < p < 1, one favors a more sparse solution than that using l1-
regularization [7]. This might be helpful when one has prior knowledge about the type of 

release of plume sources. In this case, the regularization term E· E  is not a norm, but  

d(x, y) = Ex - yE  is still a metric. 

When the concentration readings are the aggregation of individual release, we have to 
identify the number of sources and find their locations. In this case, we are facing a model 
selection problem, where model s corresponds to s sources with unknown locations  

{p(i)}  and release rate sequences {q(i)} . Assuming that different sources have different 

instantaneous release times so that there is no identifiability issue among the models, we can 
choose model s that minimizes a modified version of (25) 

 

(26)

where 

 

(27)

Note that the first term in the penalty encourages the sparsity of each identified source 
release sequence and the second term is for model complexity of the source location 
parameter based on the Bayesian information criterion [27]. The second term is necessary 
because one does not want to treat one source with two instantaneous releases (sparsity of 2) 
as two different sources with instantaneous releases at different time instances (sparsity of 
1). In practice, when the locations of two sources are close, they could be identified as a 
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single source with aggregated release rate sequence. This seems to be acceptable when the 
locations of multiple sources are within the arrange of the localization accuracy obtained by 
minimizing (26). 

3.3 Model selection and parameter estimation with a greedy algorithm 
Finding the optimal solution to (26) requires solving a high dimensional nonlinear 
optimization problem for any fixed regularization parameters p and ǌ. In practice, the 
number of sources is usually small and a strong source can have the dominant effect on the 
sensor readings. Thus it would be meaningful to identify and localize one source at a time 
by treating the impact from the remaining possible sources as additive noise. In this case, 
assuming the source location is given, one can obtain the sparse solution of the release rate 
sequence by solving the following optimization problem. 

 
(28)

When p = 1, the problem becomes a convex program and is highly related to LASSO [29]. 
Once we obtain the release rate of the source, we can refine the estimate of source location 
by solving the regular nonlinear least squares problem given by 

 
(29)

Note that for the newly estimated source location, the sparsity (non-zero locations) of the 
solution to (28) may change. We can iteratively update the release rate and source location 
estimate until the residual is comparable to the noise level of sensor readings. 
We can extend the above procedure to deal with unknown number of sources. We apply a 
greedy heuristic algorithm that iteratively refines the estimate of signal sparsity and the 
noise level to determine the appropriate regularization parameter. The algorithm is greedy 
in the sense of extracting one plume source at a time, from the strongest one to the weakest 
(based on the penalty term in the model selection criterion). It simultaneously determines 
the number of sources, the corresponding locations and release rate sequences by the 
following steps. 
1. Set s = 1. 
2. Initialization: Set k = 0, q(s)k = 0 with an initial guess of source location p(s)k. 
3. Refining the estimate: Use Newton-Ralphson update 

 (30)

to refine the estimated source release sequence. 
4. Choosing regularization parameter: Compute the median of the residual  

⏐c - A(p(s)k)q(s)k+1⏐ and choose ǌ proportional to the estimated noise level. 
5. Denoising by soft thresholding: Compute the sparse approximation of q(s)k+1 by  

q(s) =T(q(s)k+1) where 

 (31)

6. Source localization: Solve the nonlinear least squares problem 
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(32)

7. Model selection: Set k = k+1 and iterate until q(s) converges to a sparse solution q(s)* or 
a predetermined maximum number of iterations kmax has reached. Subtract out the 
identified source from sensor readings. 

 (33)

Repeat steps 2-6 until 

 (34)

8. Declare the number of sources (s - 1), the corresponding locations p(s - 1)* and release 
rate sequences q(s - 1)*. 

For any given ǌ and p(s)*, the above iterative procedure converges to the optimal solution of 
(28) for p = 1 [1]. We used the median estimator of the residue to obtain the noise level 
which is robust against outliers. It is less sensitive to possible model mismatch than using 
the mean of the residue when we initially assume that there is a single (strong) source which 
results in the concentration readings while treating other (weak) sources as noise. Note that 
the dimension of p(s) only depends on the model order, i.e., the number of sources, which is 
usually much lower than the dimension of release sequences q(s). Thus solving the 
nonlinear least squares problem (32) is less computationally demanding than solving (26) 
directly. 
When 0 < p < 1, (28) becomes non-convex program and any iterative procedure may be 
trapped at a local minimum. Another issue is that (24) may become underdetermined when 
A has rank deficiency. In such a case, the sparse solution to the following constrained 
optimization problem 

 

is still meaningful. To encourage more sparsity of the release rate sequence with smaller p 
and solve the above constrained optimization problem directly, we apply iterative 
reweighted least squares (IRLS) update [7] and replace the soft thresholding step by 

 
(35)

where the weighting matrix W(n) is diagonal with entries 

 

(36)

The damping coefficient ε is chosen to be relatively large initially and decreases to a very 

small number when the above iteration is close to converge. Note that the IRLS algorithm 
converges in less than 100 iterations most of the time in our simulation study. Even though 
there is no theoretical guarantee that the resulting solution is globally optimal, we suspect 
that it does approach to near global minimum since the solution quality improves when 
using smaller p. 

www.intechopen.com



Greedy Methods in Plume Detection, Localization and Tracking 

 

319 

The above greedy algorithm can be interpreted as performing basis pursuit [13]. Specifically, 
given the stacked observation c, we want to find a good n term approximation using 
different sources as the basis functions from a general dictionary D. Denote by {gi} the i-th 
basis being selected. Basis pursuit proceeds as follows. 
1. Initialization: 

• Approximation: s0 = 0 

• Residual: r0 = c 

• Basis collection: ƥ0 = φ 
2. Pure greedy search: 

 

Unfortunately, identifying a basis in the greedy pursuit is equivalent to localizing the origin 
of a single source, which requires solving a nonlinear least squares problem. The 
regularization on release rate sequence and penalty on the number of unknown sources 
prevent the resulting optimization problem from being ill-posed. Note that when the basis 
functions in the dictionary satisfy certain mutual incoherence property, the greedy basis 
pursuit algorithm guarantees finding the best n term approximation [13]. 

3.4 Comparison with other regularization techniques 
Tikhonov's regularization has been proposed in [16, 17] which essentially uses the objective 
function 

 

(37)

where L controls the smoothness of q(i) with the approximate form 

 
(38)

The popular choice for obtaining a smooth solution is N = 2. Unfortunately, the above 
regularization technique only works for continuous releases from well separated sources. 
We rely on the sparsity of q(s) to identify the model order s, which is suitable for localizing 
multiple sources of instantaneous release type. 
Another sparsity enforced estimator was proposed in [4] which essentially minimizes the 
following objective function 

 
(39)

For known source locations, the estimated release rate guarantees to recover all possible 
sparse signals with a large probability [4]. However, the above objective function is a non-
smooth function of p(s), which is difficult to optimize when both source locations and 
release rate sequences are unknown. In practice, we fix the source locations p(s) and solve 
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(39) via linear programming. Then we fix the release rate sequence q(s) and update p(s) in 
its gradient descent direction. The iteration continues until p(s) reaches a stationary solution 
and the sparsity of q(s) does not change. 

3.5 Simulation of joint plume localization and release sequence estimation 
We present the simulation study of source localization and release rate estimation using 
multiple sensors. We are interested in both model selection and source parameter estimation 
accuracy. 

3.5.1 Scenario generation 
Consider a single source located at (-40, 35, 12) with instantaneous release of q(10) = 2 · 105. 
We assume that the wind speed u = 1.8 along x-axis and Kx = Ky = 12, Kz = 0.2113. Five 
sensors, located at (0, 0), (15, 15), (30, 30), (45, 45), (60, 60), respectively, collect concentration 
readings synchronously with 100 samples per sensor. All sensors are on the ground with 
zero elevation. We add Gaussian noise to the sensor readings with standard deviation  
4 · 10-3. Each sensor will have a plume detection when the concentration reading exceeds 
0.01. Fig. 3 shows one realization of the concentration readings from the five sensors. We can 
see that sensor 1 has early detection while sensors 3-5 have relatively large peaks in the 
concentration readings. 
We also considered the case of two sources where one source located at (-40, 35, 12) has the 
instantaneous release of q(10)=2 · 105 and the other located at (-30, 15, 15) has the 
instantaneous release of q(50)=1 · 105. Fig. 4 shows one realization of the concentration 
readings from the five sensors. Compared with Fig. 3, we can barely see the effect of the 
second source release due to the detection delay and source aggregation.  

3.5.2 Model selection and parameter estimation accuracy 
We want to compare our lp-regularization method with Tikhonov's method [16, 17] (denoted 
by p = 2) and Dantzig selector [4] (denoted by p = ∞) for both one-source and two-source 
cases. Note that Tikhonov's method is not appropriate for estimating instantaneous release 
rate, which is non-smooth. However, it is meaningful to study how the incorrect assumption 
in regularization may affect model selection accuracy. We estimated the probability of 
identifying the correct number of sources based on 100 realizations of each case. For those 
instances where the number of sources is correctly identified, we also computed the root 
mean square (RMS) error of the location estimate for each source. In the case of s = 2, the 
RMS error of the second source is in parentheses. The results are listed in Table 1. We can 
see that in the single source case, our lp-regularization method can identify the correct 
number of sources almost perfectly. In the two-source case, Tikhonov's method failed to 
identify the second source most of the time and Dantzig selector can only identify the 
correct number of sources with 64 out of 100 cases. Surprisingly, the proposed lp-
regularization method is able to find the correct model order with higher than 80% 
probability. As we reduce p, there is a slight increase in the probability of obtaining the 
correct number of sources due to the strong enforcement of sparsity. Among all cases where 
the first source is correctly identified, the root mean square error of the estimated release 
rate is 4.6 · 104 with p = 1. Note that the root mean square error of estimated location of the 
first source increases when we have a second source aggregated to it. Note also that the 
algorithm assuming the correct model order can only achieve the root mean square error of 
estimated location of the second source around 18 using lp-regularized method with p = 1. 
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These observations suggest that the lp-regularized least squares method is effective in joint 
model selection and parameter estimation for instantaneous source release. 
 

 

Fig. 3. Sensor readings for a single source with instantaneous release. 

 
Table 1. Comparison of Model Selection and Source Localization Accuracy with Different 
Regularization Methods 

3.5.3 Model mismatch to continuous release source 
Consider a single source located at (-40, 35, 12) with continuous release rate 

 
One realization of the concentration readings from the five sensors is shown in Fig. 5. Note 
that the concentration readings from sensors 2-5 have not reached their peaks by the end of 
the samples. This will in general make the source parameter estimation more difficult. In 100 
realizations, the lp-regularized least squars method with p = 1 identified one source in 92 
times and two sources in 8 times with their estimated locations close to each other. The 
incorrect identification of model order is due to the abrupt release at two time instances  
t = 10 and t = 50 with exponential decay of the release rate. The root mean square error of 
the estimated source location is 15.4 using the estimates from the correctly identified cases. 
Clearly, the lp-regularized least squares method can tolerate slight model mismatch when 
the release rate sequence is not overly sparse. 
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Fig. 4. Sensor readings for two sources, each with instantaneous release. 

 
Fig. 5. Sensor readings for one source with continuous release. 

4. Discussion and conclusions 

In this chapter, we studied plume detection, localization and tracking problem with two 
different settings. For plume mapping with binary detection sensors, we formulated the 
problem as finding the most likely state sequence based on a fuzzy hidden Markov model. 
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Under the assumption that each sensor has high detection and low false alarm probability, we 
proposed a greedy heuristic decoding algorithm with much less computational cost than the 
well known Viterbi algorithm. The plume localization accuracy of our algorithm is close to the 
optimal decoder using Viterbi algorithm when tracking a single plume using randomly 
deployed sensors. Our algorithm is applicable to general decoding problem over a long 
observation sequence when the localization error probability of the Viterbi decoder is small. 
There is a serious drawback of using FHMM for plume tracing. In our FHMM formulation, 
one can not distinguish whether a plume existence state is due to source releasing or plume 
propagation without knowing the whole state sequence. Thus one has to make tradeoff 
between the delay and localization accuracy. A refined plume propagation model based on 
more accurate sensor readings and contaminant transport physics was then used for source 
localization and release rate sequence estimation. When localizing unknown number of 
sources based on the observation of aggregated concentrations, we proposed an lp-
regularized least squares method to estimate the location and release rate of atmospheric 
pollution. For 0 ≤ p ≤ 1, the method enforces sparsity of the release sequence of each 
identified source. The proposed greedy method can identify multiple sources of 
instantaneous release type and can also localize sources of continuous release. The accuracy 
of source parameter estimation has been examined for the cases where the number of 
sources and the corresponding locations are unknown. 
In general, the least squares approach does not provide any measure of the estimation error. 
However, one can examine the residual and make additional assumptions such as additive 
Gaussian noise in order to quantify the covariance of the localization error. Through 
simulation study, we found that the proposed method is effective in localizing instantaneous 
release sources and has certain degree of tolerance to model mismatch. It is worth noting that 
the sensor locations, sampling rate and measurement accuracy can affect the source 
localization performance significantly. Finding the best sensor placement and sensing strategy 
in a given surveillance area is another important research theme and demands future work. 
We hope that with the advances in the development of greedy algorithms, many other 
challenging optimization tasks can be tackled with efficient and near optimal solutions. 
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