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Abstract

In this chapter, thin-walled rectangular tubes under pure bending are considered, by per-
forming a series of FEM numerical studies. In the simulation, a homogeneous and isotropic 
elastic perfectly plastic material was employed for the tube material. A commonly used 
method for predicting the collapse load of rectangular tubes subjected to pure bending 
was proposed by Kecman. Kecman’s method focuses on a slenderness of the flange. When 
buckling occurs in the flange, this method uses a collapse load corresponding to the post 
buckling strength of the flange. When buckling does not occur at the flange, this method 
used a relation of the flange slenderness to the cross-sectional fully plastic yielding. This 
method for predicting the collapse loads is effective when the aspect ratio of web to flange 
is not large. However, for large aspect ratios, there is a large discrepancy between the values 
of maximum moment corresponding to the collapse loads obtained from this method and 
the FEM numerical results due to an effect of web slenderness. A new method is proposed 
to predict the maximum moment considering the effect of web slenderness. The validity of 
the collapse load estimation is checked by the results of FEM numerical simulation.

Keywords: thin-walled tube, bending, buckling, collapse load, fem

1. Introduction

The aims of this chapter are as follows:

• To understand the validity of existing estimation methods [1] by using the results of nu-

merical simulations.

• To point out a case in which the estimation method is not applicable by using the results of 
numerical simulations.

• To understand a factor of the discrepancy by using the results of numerical simulations.

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



• To propose a new estimation method by considering the factor and using mathematical 
approach.

• To understand the validity of the new estimation method by comparing with the results of 
numerical simulations.

We selected “Collapse load for thin-walled rectangular tubes under bending” as the subject 
of these topics. The research content of this chapter is based on our recent paper [2], and this 

chapter shows the results of numerical simulations in detail.

2. To understand the validity of existing estimation methods by 

using the results of numerical simulations

2.1. Numerical simulation method

Figure 1(a) shows the simulated rectangular tubes, in which one end of the rectangular tube 

was fixed to a rigid wall, and pure bending was applied from the other end by modeling a lid 
rotating about the z axis under rotary control θ. Bending moment M can be derived from the 
rigid wall as reaction moment. Figure 1(b) shows a deformation shape and bending angle θ. 

Until buckling occurs, axial strain ε
x
 can be defined by

   ε  
x
   =   θ __ 

L
   y  (1)

Figure 1(c) shows the axial strain distribution ε
x
 on cross-section for a square tube with 

t = 0.4 mm, a = b = 50 mm at θ/L = 0.01 m−1. As shown in Figure 1(c), the axial strain distribution 

ε
x
 of FEM is in good agreement with the value obtained from Eq. (1). The effects of various 

geometric parameters were investigated under bending collapse. These parameters were tube 
thickness t, width of the flange a, and width of the web b. In order to prevent torsional behavior, 
a rigid lid was adopted as suggested by Guarracino [3]. In particular, the lid thickness t

f
 was set 

to five times of t. In the simulation, a homogeneous and isotropic elastic perfectly plastic mate-

rial was employed for the tube material. As a yield condition, von Mises yield conditions were 
adopted. In this chapter, the material mechanical properties are set as follows. Young’s modu-

lus E is set as 72.4 GPa, the yield stress σ
s
 is set as 72.4 MPa, and Poisson’s ratio ν is set as 0.3.

In this chapter, in order to formulate the geometric nonlinear behavior and solve the nonlinear 
equation, the updated Lagrange method, algorithm based on the Newton–Raphson method, 

and return-mapping method were used. The rectangular tubes were meshed using four-node 
quadrilateral thickness shell elements (Element type 75) with five integration points across the 
thickness. A convergence test on element size was conducted, and the adopted divide method 
was that the wall width divided into at least 20 sublengths, and the wall length divided as the 
elements become almost square.

In order to neglect the influence of the boundary conditions, the ratio of the length and width 
L/a, L/b was set to L/a > 6, L/b > 6. It means that the length of tubes was assumed to be large enough.
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2.2. Kecman’s method for predicting the maximum bending moment of 

rectangular tubes

Kecman focused on slenderness corresponding to buckling stress of the compression flange 
and proposed a formula to predict the collapse load or the maximum moment M

max
. Depending 

on the value of buckling stress σ
buc-a

 of the compression flange

   σ  
buc−a   =   

 k  
a
    π   2  E
 _______ 

12 (1 −  ν   2 ) 
     (  t __ a  )    

2

   (2)

three cases are distinguished, as shown in Figure 2. In Eq. (2), k
a
 is the buckling coefficient, 

which Kecman assumed to be

   k  
a
   = 5.23 + 0.16   a __ 

b
    (3)

Figure 1. Numerical simulation model: (a) rectangular tube to which a pure bending moment is applied; (b) deformed 
shape; and (c) axial strain distribution on cross-section at θ/L = 0.01 m−1.
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The maximum moment M
max

 for the rectangular tube is given by

   M  
max

   =  σ  
s
    tb   2    

2a + b +  a  
e
   (3   a __ 
b
   + 2) 
  ____________ 

3 (a + b) 
    (4)

For Case 1

   M  
max

   =  M  
el
   +  ( M  

pl
   −  M  

el
  )    

 σ  
buc−a   −  σ  

s
  
 _______  σ  

s
      (5)

For Case 2, and

   M  
max

   =  M  
pl
    (6)

For Case 3. In the above equations

   a  
e
   = a (0.7   

 σ  
buc−a   ____  σ  
s
     + 0.3)   (7)

and M
el
 and M

pl
 are the maximum elastic moment

   M  
el
   =  σ  

s
   tb (a +   b __ 

3
  )   (8)

and the cross-sectional fully plastic bending moment

   M  
pl
   =  σ  

s
   tb (a +   b __ 

2
  )   (9)

respectively.

Figure 3 shows a flow chart of the Kecman’s method for predicting the maximum moment of 
tubes under pure bending.

2.3. The applicability of the Kecman’s method for square tubes

Figure 4 shows that the bending moment M and the axial stress σ
x
 on cross-section for a square 

tube with t = 0.4 mm, a = b = 50 mm are subjected to pure bending (σ
buc-a

 = 0.31σ
s
 < σ

s
). In order 

to better understand the bending collapse, Eq. (4) for Case 1 and the elastic buckling stress 

Figure 2. Schematic representation of axial stress distribution is used in the Kecman’s method: (a) case 1: σ
buc-a

 < σ
s
; (b) 

case 2: σ
s
 < σ

buc-a
 < 2σ

s
; and (c) case 3: σ

buc-a
 > 2σ

s
.
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σ
buc-a

 given by Eq. (2) are also shown as a comparison. As shown in Figure 4(a), the maximum 

moment of FEM is in agreement with Eq. (4). The maximum value of σ
x
 at point P is in good 

agreement with Eq. (2). In addition, the axial compression stress σ
x
 at point Q at the quarter-

web width keeps increasing after buckling occurs at point P in the middle of the compression 

flange, and the maximum value of σ
x
 at point Q occurs in the maximum moment. Moreover, 

as shown in Figure 4(b), although the axial compression stress in the middle of the compres-

sion flange decreases due to buckling at the flange, the axial compression stress increases at 

Figure 3. Flow chart of the Kecman’s method for predicting the maximum moment of tubes under pure bending.

Figure 4. Moment M and axial stress σ
x
 on cross-section for a square tube with t = 0.4 mm, a = b = 50 mm are subjected 

to pure bending: (a) changes in moment M and axial stress σ
x
 at points P and Q on cross-section and (b) axial stress 

distribution on cross-section at phases (1) and (2) corresponding to θ/L = 0.012 m−1 and θ/L = 0.038 m−1, respectively, as 
denoted in (a).
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both edges of the flange due to a corner constraint at the edges. Just after buckling, the stress 
increment at both edges is greater than the stress decrement in the middle of the compression 

flange, and thus the total force on the compression side increases and the moment increasing 
continuously. It is also noted that the stress on the web changes almost linearly; this suggests 
that buckling does not occur at the web. Therefore, the axial stress distribution when the 
maximum moment occurs is in good agreement with that obtained by the Kecman’s method 

using the effective width of the compression flange, as shown by the solid line in the figure.

The above investigation confirms that for such tubes with b/a = 1 and σ
buc-a

 < σ
s
, collapse is due 

to buckling at the compression flange, and the maximum moment can be predicted by the 
Kecman’s method for Case 1.

Figure 5 shows the bending moment M and the axial stress σ
x
 on cross-section for a square 

tube with t = 0.9 mm, a = b = 50 mm (σ
buc-a

 = 1.52σ
s
 > σ

s
). As shown in Figure 5(a), the maximum 

moment is in good agreement with the value obtained from Eq. (5) for Case 2. The maximum 
value of σ

x
 at point P and Q occurs in the maximum moment and σ

x
/σ

s
 at point P becomes 1. 

Moreover, as shown in Figure 5(b), the absolute value of the axial stress at phase (2), for which 
the maximum moment occurs, is greater than the value at phase (1) for all cross-sectional 
positions. At phase (2), the stress at the flanges is equal to the yield stress σ

s
, and there also 

exist plastic yielding regions in the webs. In Figure 5(b), Kecman’s stress distribution when 

the maximum moment occurs is obtained by linear interpolation of two theoretical stress 

distributions corresponding to M
el
 and M

pl
, respectively, and is shown by a solid line. It is 

seen from Figure 5(b) that the axial stress distribution when the maximum moment occurs 

obtained from numerical simulation is in good agreement with Kecman’s stress distribution.

Figure 5. Moment M and axial stress σ
x
 on cross-section for a square tube with t = 0.9 mm, a = b = 50 mm are subjected 

to pure bending: (a) changes in moment M and axial stress σ
x
 at points P and Q on cross-section and (b) axial stress 

distribution on cross-section at phases (1) and (2) corresponding to θ/L = 0.025 m−1 and θ/L = 0.065 m−1, respectively, as 
denoted in (a).
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The above investigation confirms that for such tubes with b/a = 1 and σ
buc-a

 > σ
s
, the collapse 

is not due to buckling at the compression flange, but rather plastic yielding at the flange, and 
the maximum moment can be evaluated by Eq. (5) for Case 2.

3. To point out a case in which the estimation method is not 

applicable by using the results of numerical simulations

In order to investigate the accuracy of the Kecman’s method for predicting the maximum 
moment M

max
 of tubes under bending, Figure 6 shows the maximum bending moment of FEM 

numerical simulations for tubes with aspect ratios b/a = 1, 2, and 3. Eqs. (4), (5) and (6) are also 

shown as a comparison. As shown in the figure, the prediction of the Kecman’s method is well 
in agreement with the results of FEM numerical simulations when the relative thickness t/a is 

not very small and the aspect ratio of web to flange b/a is not large, for example, when the tube 

relative thickness is about t/a > 0.008 for b/a = 1 and is about t/a > 0.016 for b/a = 2. However, 
for large aspect ratios, there is a large discrepancy between the values of maximum moment 
obtained from the Kecman’s method and the FEM numerical results. This means that tubes 
with cross-section of a large aspect to which the Kecman’s method does not apply are found 

Figure 6. Comparison of the Kecman’s method and the FEM numerical results.
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to exist. Therefore, it is necessary to investigate the bending collapse mechanism of rectangu-

lar tubes in order to give an effective method for predicting the maximum moment of tubes.

4. To understand a factor of the discrepancy by using the results of 

numerical simulations

We investigate three tubes to which the Kecman’s method is not applicable.

Figure 7 shows the bending moment M and the axial stress σ
x
 on cross-section for a rectan-

gular tube with t = 0.4 mm, a = 50 mm, b = 100 mm (σ
buc-a

 = 0.30σ
s
). As shown in Figure 7(a), 

the maximum moment is less than the value obtained from Eq. (4) for Case 1. The maximum 
value of σ

x
 at point P is in good agreement with the elastic buckling stress σ

buc-a
 given by 

Eq. (2), and the maximum value occurs before the maximum moment. Meanwhile, the axial 
compression stress σ

x
 at point Q at the quarter-web width decreases also before the moment 

becomes the maximum moment. Moreover, as shown in Figure 7(b), the axial stress in the 

compression flange is concentrated at the edges when the maximum moment occurs, and 
the axial stress on the compression web does not change linearly. This suggests that com-

pression buckling also arises at the web. Therefore, the axial stresses on the web at the 
maximum moment are less than that obtained by the Kecman’s method, as indicated by 

the arrows in Figure 7(b).

The above investigation reveals that, in cases when b/a are large and σ
buc-a

 < σ
s
, the collapse is 

not only due to buckling at the compression flange but also due to buckling at the compres-

sion web. Therefore, the maximum moment cannot be predicted by the Kecman’s method. 
Based on Figure 7(b), the cross-sectional stress distribution under the maximum moment cor-

responding to this collapse mode can be schematically represented by Figure 8(a) and called 

Case 4 in this chapter.

Figure 9 shows the bending moment M and the axial stress σ
x
 on cross-section for a rectangu-

lar tube with t = 0.5 mm, a = 20 mm, and b = 100 mm (σ
buc-a

 = 2.83σ
s
). As shown in Figure 9(a), 

the maximum moment is less than that obtained from Eq. (6) for Case 3. The axial compres-

sion stress σ
x
 at point P in the middle of the compression flange increases until the moment 

becomes the maximum moment, and the value σ
x
/σ

s
 becomes approximately 1. However, the 

axial compression stress σ
x
 at point Q at the quarter-web width decreases before the moment 

becomes the maximum moment. Also, as shown in Figure 9(b), the axial stress distribution in 

the compression flange is almost constant, and the absolute value of σ
x
/σ

s
 is approximately 1 

when the maximum moment occurs. However, as compared with Case 3 shown in Figure 2(c), 

it is found that although the buckling stress of the flange σ
buc-a

 obtained from Eq. (2) is higher 

than twice the yielding stress, σ
buc-a

 = 2.83σ
s
 > 2σ

s
, a plastic yielding region is not found in the 

web. Moreover, the axial stress in the web does not change linearly and decreases greatly in 
the compression portion of the web. This suggests that compression buckling arises at the 
web. Therefore, the axial stress distribution at the maximum moment differs greatly from that 
obtained by the Kecman’s method, as indicated by the arrows in Figure 9(b), because in the 

Kecman’s method, the buckling of web is not taken into account.
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The above investigation reveals that, in such tubes with large aspect ratio b/a, even though 
σ

buc-a
 > σ

s
, collapse is not due to plastic yielding at the flange, but rather buckling at the com-

pression web in a state of plastic yielding at the compression flange. Therefore, the maxi-
mum moment cannot be predicted by the Kecman’s method. Based on Figure 9(b), the 

cross-sectional stress distribution under the maximum moment corresponding to this col-

lapse mode can be schematically represented by Figure 8(b) and called Case 5 in this 
chapter.

Figure 7. Moment M and axial stress σ
x
 on cross-section for a rectangular tube with t = 0.4 mm, a = 50 mm, b = 100 mm are 

subjected to pure bending: (a) changes in moment M and axial stress σ
x
 at points P and Q on cross-section and (b) axial 

stress distribution on cross-section at phases (1) and (2) corresponding to θ/L = 0.007 m−1 and θ/L = 0.016 m−1, respectively, 
as denoted in (a).

Figure 8. Schematic representation of axial stress distribution with considering the buckling at web when the maximum 

moment occurs: (a) case 4: σ
buc-a

 < σ
s
 and (b) case 5: σ

buc-a
 > σ

s
.
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Figure 10 shows the bending moment M and the axial stress σ
x
 on cross-section for a rectan-

gular tube with t = 1.2 mm, a = 50 mm, b = 150 mm (σ
buc-a

 = 2.8σ
s
). As shown in Figure 10(a), the 

maximum moment is less than that obtained from Eq. (6) for Case 3. The axial compression 
stress σ

x
 at point P in the middle of the compression flange increases up to the yielding stress 

σ
s
 before the maximum moment was reached and sets the value σ

x
/σ

s
 equal approximately to 

1 until the moment becomes the maximum moment. However, the axial compression stress 
σ

x
 at point Q at the quarter-web width increases until the moment becomes the maximum 

Figure 10. Moment M and axial stress σ
x
 on cross-section for a rectangular tube with t = 1.2 mm, a = 50 mm, b = 150 mm 

are subjected to pure bending: (a) changes in moment M and axial stress σ
x
 at points P and Q on cross-section and (b) 

axial stress distribution on cross-section at phases (1) and (2) corresponding to θ/L = 0.015 m−1 and θ/L = 0.026 m−1, 

respectively, as denoted in (a).

Figure 9. Moment M and axial stress σ
x
 on cross-section for a rectangular tube with t = 0.5 mm, a = 20 mm, b = 100 mm are 

subjected to pure bending: (a) changes in moment M and axial stress σ
x
 at points P and Q on cross-section and (b) axial 

stress distribution on cross-section at phases (1) and (2) corresponding to θ/L = 0.036 m−1 and θ/L = 0.048 m−1, respectively, 
as denoted in (a).
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moment. Also, it is seen from Figure 10(b) that the axial stress distribution in the compression 

flange is almost constant, and the absolute value of σ
x
/σ

s
 is approximately 1 when the maxi-

mum moment occurs. Moreover, it is also found from a comparison with Figure 9(b) that 

in the web, no buckling occurs, but plastic yielding regions can be observed. However, the 
plastic yielding is not generated to the entire web, although the buckling stress of the flange 
σ

buc-a
 obtained from Eq. (2) is higher than twice the yielding stress, σ

buc-a
 = 2.8σ

s
 > 2σ

s
. Thus, 

the stress distribution is different from the cross-sectional fully plastic yielding, as indicated 
by the arrows in the figure. This suggests that even if a compression buckling does not arise at 
the web, the web slenderness also affects the cross-sectional fully plastic yielding of the tube 
under bending. That is, the conditions of generating the cross-sectional fully plastic yielding are 
dependent not only on the flange slenderness but also on the web slenderness. In the Kecman’s 
method, the conditions for the cross-sectional fully plastic yielding are determined by only the 

ratio of σ
buc-a

 to σ
s
.

The above investigation reveals that in such tubes with large aspect ratio b/a, even though 
σ

buc-a
 > 2σ

s
, the cross-sectional stress distribution under the maximum moment correspond-

ing to this collapse mode may differ from that of the cross-sectional fully plastic yielding. 
Therefore, the maximum moment for such tubes cannot be predicted by the Kecman’s method.

5. To propose a new estimation method by considering the factor 

and using mathematical approach

5.1. Effect of the web slenderness on the buckling at web

Bending stress occurs in the web of tube. The problem of web buckling is expressed in 
Figure 11. In Figure 11(a), plate ABCD is defined by the width b and thickness t. As a bound-

ary condition, displacement in the out-of-plane direction (displacement in the z direction) 

is fixed at both longitudinal edges (BC and DA). The bending and compression are applied 
through displacement control. For the ultimate loading after buckling, the distribution of 

compressive stress σ
x
 along the width direction is characterized by two effective widths, b

e1
 

and b
e2

, as shown in Figure 11(b). In the figure, compressive stress is denoted by a positive value.

Many studies have been reported on the ultimate loading of a plate after buckling under 
bending and compression. For example, the effective widths b

e1
 and b

e2
 for a plate under stress 

gradient shown in Figure 11 are given in AS/NZS 4600 standard [4] and NAS [5] as follows:

   

⎧

 
⎪

 ⎨ 
⎪

 

⎩

 

 b  
e1

   =   
 b  
e
  
 ____ 

3 − ψ  

  

 b  
e2

   =  { 
 b  
e
   / 2 when ψ ≤ − 0.236

   
 b  
e
   −  b  

e1
   when ψ > − 0.236

  

    (10)

In addition, b
e1

 + b
e2

 shall not exceed the compression portion of the web. Here, ψ is ratio of   f  
1
  ∗   

and  f  
2
  ∗  .   f  

1
  ∗   and  f  

2
  ∗   are web stresses shown in Figure 11(b).

  ψ =   
 f  
2
  ∗ 
 __ 

 f  
1
  ∗ 
    (11)
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λ is defined by

  λ =  √ 

_____

   
 σ  
s
  
 ____  σ  

buc−b  
      (12)

The elastic buckling stress of web σ
buc-b

 is calculated as follows:

   σ  
buc−b   =   

 k  
b
    π   2  E
 _______ 

12 (1 −  ν   2 ) 
     (  
t
 __ 
b
  )    

2

   (13)

where the buckling coefficient k
b
 is given by

   k  
b
   = 4 + 2   (1 − ψ)    3  + 2 (1 − ψ)   (14)

b
e
 is given by

   b  
e
   = 𝜌b  (15)

ρ is called the reduction factor and is given by

  ρ =   
1
 __ λ    (16)

which is proposed by von Karman et al. [6]. The following formula for ρ:

  ρ =   
1
 __ λ   (1 −   

0.22
 ____ λ  )   (17)

is also proposed by Winter [7] and is well used for design specifications. The reason of Eq. (15) 
modified to Eq. (17) in actual design is mainly due to the fact that the maximum load capacity 

Figure 11. Plate subjected to compression and bending: (a) analyzed model and (b) axial compressive stress σ
x
 

distribution on E–E cross-section in (a).
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of a buckling plate is reduced greatly by imperfections when the buckling stress is close to the 

yield stress [8]. Therefore, Eq. (16) is desirable for the present model because the influence of 
imperfections is not taken into consideration here. Moreover, in order to consider continuity 
of the load capability of a web with λ = 1, for which elastic buckling does not occur because 
σ

buc-b
 = σ

s
, we apply Eq. (16) to the present study.

Eq. (10) is applied to the webs investigated in Figures 7(b) and 9(b)to determine the corre-

sponding effective width; the stress distributions on the web based on the obtained effective 
width using Eq. (10) are shown in Figures 12(a) and 13(a). In Figure 12(a), the stress distri-

bution obtained using Eq. (10) is qualitatively corresponding with the redistribution of the 
compression stress after buckling obtained from the FEM numerical simulation. However, in 
Figure 13(a), even though there is a fall of the compression stress in the compression portion 
of the web after buckling as shown by the FEM simulation, the stress distribution obtained 

from Eq. (10) looks like a straight line because the effective widths b
e1

 and b
e2

 determined by 

Eq. (10) satisfy the following equation:

   b  
e1

   +  b  
e2

   =   b ____ 
1 − ψ    (18)

which means b
e1

 + b
e2

 is equal to the compression portion of the web.

In fact, when the effective width is determined using Eq. (10), there are many instances in 
which Eq. (18) is satisfied. Figure 14 shows various possible values of buckling stress of web, 
for which Eq. (18) is satisfied, for various assumed stress ratios ψ by solid line, as evaluated 
in Eq. (10) with ρ defined in Eq. (16). In Figure 14, the dashed line shows the corresponding 

result if ρ was calculated using Eq. (17); it is also seen from the dashed line that even if Eq. (17) 
is used for ρ the instances in which Eq. (18) is satisfied still exist. For these instances, the 
redistribution of the compression stress after buckling cannot be expressed by the effective 
width obtained from Eq. (10); this means that there is a possibility of giving a too large load 

Figure 12. Stress distribution of web when the ultimate load is reached for the tube used in Figure 7(b): (a) comparison 
with Eq. (10) and (b) comparison with Eq. (19).
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capability of web from Eq. (10). Therefore, here as a comparison, we also use another solution 
given by Rusch and Lindner [9] which is given for the same plate shown in Figure 11(a) but 

with one of the two longitudinal edges BC being free. Although the free boundary condition 
at the longitudinal edge BC is different from the actual situation of web constituting the tube, 
the effect is assumed to be small because BC is under tension stress.

Figure 14. Various possible buckling stress σ
buc-b

 and stress ratio ψ with Eq. (18) satisfied.

Figure 13. Stress distribution of web when the ultimate load is reached for the tube used in Figure 9(b): (a) comparison 
with Eq. (10) and (b) comparison with Eq. (19).
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In Ref. [9], the effective widths b
e1

 and b
e2

 are given by

   { 

 b  
e1

   =  b  
e
   −  b  

e2
  

  
  
 b  
e2

  
 ___ 
b
   =   0.226 _____ 

 λ   2 
  

     (19)

where

    
 b  
e
  
 __ 
b
   =   

ρ
 ____ 

1 − ψ    (20)

Here, λ and ρ are calculated by Eqs. (12) and (16), respectively, the buckling stress σ
buc-b

 is 

determined by Eq. (13) with k
b
 determined as follows:

   k  
b
   = 1.7 − 5ψ + 17.1  ψ   2   (21)

Figures 12(b) and 13(b) show the comparisons of stress distributions on the web obtained 

from FEM and Eq. (19) for the tubes used in Figures 7(b) and 9(b), from which it is seen that 

the redistribution of stress after web buckling can be approximately expressed using Eq. (19). 

Comparing (a) and (b) in Figure 12, it is seen that for the stress distribution on the web in the 

tube used in Figure 7(b), Eq. (19) is inferior in accuracy to Eq. (10). However, as shown in 
Figure 13, which shows the stress distributions on the web for the tube used in Figure 9(b), 

although the fall of the compression stress in the compression portion of the web after buck-

ling is not expressed by the solution obtained from Eq. (10), it is expressed by the solution from 

Eq. (19). In fact, it is seen from Eq. (20) that for the stress distribution on the web as obtained 

from Eq. (18), the length of b
e1

 + b
e2

 is always smaller than the compression portion of the web.

5.2. Effect of the web slenderness on the cross-sectional fully plastic yielding

For tubes with large aspect ratio of web to flange, as an effect of web slenderness on the tube 
collapse, we considered the possible buckling of web and thus investigated the existence of 
Cases 4 and 5, as shown above. Hereafter, we consider the other effect of web slenderness on 
the cross-sectional fully plastic yielding.

As shown in Figure 6, for tubes with b/a = 3, there is a large discrepancy between Kecman’s 

prediction and the FEM simulation. When the tubes are very thin (e.g., when t/a < 0.02 for 

b/a = 3) it is thought that the error generating is brought about because the web buckling was 

not taken into consideration in the Kecman’s method. However, for the relatively thick tubes, 
the cause which produces the error is clearly different because buckling does not occur in 
such tubes. For example, for the tube with b/a = 3 and t/a = 0.024 shown in Figure 10(b), even 
though the buckling stress of flange σ

buc-a
 calculated by Eq. (2) is σ

buc-a
/σ

s
 = 2.8 > 2, the maxi-

mum moment M
max

 as evaluated by FEM numerical simulation is   M  
max

   /  M  
pl
   ≅ 0.9 , which is not in 

agreement with Eq. (6) for the case of σ
buc-a

/σ
s
 = 2 in the Kecman’s method. Here, buckling does 

not occur in the web either because σ
buc-b

/σ
s
 = 1.4 > 1. Also, it is seen from Figure 10(b) that the 

stress distribution on the cross-section is different from that shown in Figure 2(c) for Case 3 
corresponding to the cross-sectional fully plastic yielding. This fact means that the condition 
for reaching the cross-sectional fully plastic yielding is also related to the web slenderness.
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In order to consider the effect of the web slenderness on the tube collapse, the condition of 
σ

buc-a
 > 2σ

s
 for Case 3 or for M

max
 = M

pl
 in the Kecman’s method is replaced in the present study 

by the following condition:

   { 
 σ  
buc−a   ≥ 2  σ  

s
  
  

 σ  
buc−b   ≥ 2  σ  

s
  
    (22)

Here, σ
buc-b

 is determined assumed ψ = −1. When Eq. (22) is not satisfied, that is, when

   { 
 σ  
s
   <  σ  

buc−a   < 2  σ  
s
  
   

 σ  
buc−b   ≥ 2  σ  

s
  
     (23)

or

   { 
 σ  
buc−a   ≥ 2  σ  

s
  
  

 σ  
s
   <  σ  

buc−b   < 2  σ  
s
  
    (24)

or

   { 
 σ  
s
   <  σ  

buc−a   < 2  σ  
s
  
   

 σ  
s
   <  σ  

buc−b   < 2  σ  
s
  
    (25)

the stress on cross-section is expressed by Case 2 shown in Figure 2(b). This fact can be con-

firmed from Figure 10(b) for which Eq. (24) is satisfied.

It is seen from the cross-sectional stress distribution shown in Figure 10(b) that the maximum 

moment in this case is dependent on the plastic yielding region in the web. Denoting the 

length of this plastic yielding region by b
s
 (see Figure 2(b)), the maximum moment can be 

evaluated through the value of b
s
 as follows:

for Case 2,

   M  
max

   =  σ  
s
   t [  1 __ 

6
   (2  b   2  + 2  bb  

s
   −  b  

s
  2 )  + ab]   (26)

Substituting Eqs. (8), (9), and (26) into Eq. (5), b
s
 is obtained as

    
 b  
s
  
 __ 
b
   =  

⎧
 

⎪

 ⎨ 
⎪

 

⎩
 
1 −  √ 

________

 2 −   (  t __  t  
ea
    )    

2

     (for  t  
ea
   < t <  √ 

__
 2    t  
ea
  ) 
    

1                       (for t ≥  √ 
__

 2    t  
ea
  ) 

     (27)

where t
ea

 is the flange thickness for which the elastic buckling stress σ
buc-a

 obtained from Eq. (2) 

is equal to the yielding stress σ
s
 and is given by

   t  
ea
   = a  √ 

_______

   
12 (1 −  ν   2 ) 

 _______ 
 k  
a
    π   2 

      √ 

__

   
 σ  
s
  
 __ 
E

      (28)

Eq. (26) means that the b
s
 is determined by the flange slenderness only when Eq. (23) is satis-

fied. Therefore, when Eq. (24) is satisfied, we also suppose that the b
s
 can be determined by 

the web slenderness only as follows:
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 b  
s
  
 __ 
b
   =  

⎧
 

⎪

 ⎨ 
⎪

 

⎩
 
1 −  √ 

________

 2 −   (  t __  t  
eb
    )    

2

     (for  t  eb   < t <  √ 
__

 2    t  
eb
  ) 
    

1                       (for t ≥  √ 
__

 2    t  
eb
  ) 

     (29)

where t
eb

 is the web thickness for which the elastic buckling stress σ
buc-b

 is equal to the yielding 

stress σ
s
 and is given by

   t  
eb
   = b  √ 

_______

   
12 (1 −  ν   2 ) 

 _______ 
 k  
a
    π   2 

      √ 

__

   
 σ  
s
  
 __ 
E

      (30)

Furthermore, we assume that this technique can also be used to evaluate the maximum 
moment in the case when Eq. (25) is satisfied. That is, M

max
 is determined from the smaller 

one from both values of b
s
 given in Eq. (27) and in Eq. (29). Validity of this assumption can be 

understood from Figure 16(b) shown later, in which for the tube with t/a = 0.016, Eq. (25) is 

satisfied: σ
buc-a

 = 1.23σ
s
 and σ

buc-b
 = 1.39σ

s
. Therefore, when using Eq. (26) to determine M

max
 for 

Case 2, the value of b
s
 is calculated using Eq. (27) if

   t  
ea
   >  t  

eb
    (31)

and is calculated using Eq. (29) if

   t  
ea
   <  t  

eb
    (32)

Using t
ea

 and t
eb

, the condition of Eq. (22) can be rewritten as.

  t ≥  √ 
__

 2    t  
ea
   andt ≥  √ 

__
 2    t  
eb
    (33)

5.3. Estimation of collapse load for thin-walled rectangular tubes under bending

Figure 15 shows a flow chart of a new method proposed in the present study for predicting 
the maximum moment of tubes under pure bending. This method includes both the possible 
buckling at web and the effect of web slenderness on the cross-sectional fully plastic yielding. 
In the flow chart, σ

buc-b,1
 and σ

buc-b,2
 are the buckling stress of web assuming the stress ratio 

ψ to be

  ψ = −   
b −  y  

1
  
 ____  y  

1
     = −   

 a  
e
   + b

 ____ 
a + b

    (34)

and ψ = −1, respectively. Moreover, it is notable that in calculating the maximum bending 
moment for Cases 4 and 5 the stress ratio ψ is also unknown, which shall be determined from 
the conditions of pure bending through trial and error. Using the determined value of ψ, the 
maximum moment for Cases 4 and 5 is calculated as follows:

for Case 4:

    
 M  

max
  
 _____  σ  

s
   t   = ψ [ b   2  +  d  

1
  2  −  d  

2
  2 ]  +   

2 (1 − ψ) 
 ______ 

3b
   [ b   3  +  d  

1
  3  −  d  

2
  3 ]  +  a  

e
   b  (35)
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for Case 5:

    
 M  

max
  
 _____  σ  

s
   t   = ψ [ b   2  +  d  

1
  2  −  d  

2
  2 ]  +   

2 (1 − ψ) 
 ______ 

3b
   [ b   3  +  d  

1
  3  −  d  

2
  3 ]  + ab  (36)

In Eqs. (35) and (36).

   d  
1
   =  b  

e2
   +   

ψ
 ____ ψ − 1

   b,  d  
2
   = b −  b  

e1
    (37)

6. To understand the validity of the new estimation method by 

comparing with the results of numerical simulations

In Figure 16, the maximum moment predicted by the present method is compared with that 

obtained from the FEM numerical simulation with a/b = 1, 2, and 3 for Figures 16(a), 16(b), and 

16(c), respectively. As a result of the prediction method proposed in this chapter, “method 1” 
uses Eq. (10) and “method 2” uses Eq. (19) for calculating the effective width.

The case number of the collapse corresponding to each thickness is also shown in the figures. 
In Case 2, there are two possible subcases: (1) t

ea
 > t

eb
 as shown in Figure 16(a) and (b) and 

(2) t
ea

 < t
eb

 as shown in Figure 16(c); the maximum moment is determined by Eq. (27) for the 
former and by Eq. (29) for the latter. As shown in these figures, Eqs. (27) and (29) give good 
prediction to the corresponding subcase, respectively.

For Cases 4 and 5, although each result obtained from methods 1 and 2 is approximately in 
agreement with the FEM results of numerical simulations, it is found that there is a gap in 

the results between methods 1 and 2. When the buckling stress of the web σ
buc-b

 is close to 

Figure 15. Flow chart of a new method proposed in the present study for predicting the maximum moment of tubes 

under pure bending.
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the yielding stress σ
s
, the method 1 gives a too large prediction as compared with the FEM 

results, reflecting the fact that b
e1

 + b
e2

 given by Eq. (10) may be equal to the compression por-

tion of the web as shown in Figure 14. However, for small t/a, when σ
buc-b

 is very much less 
than the yielding stress, method 1 is more accurate compared with method 2. Combining the 
 advantages of these two methods, it is seen from Figure 16(a), (b), and (c) that the smaller one 

from both solutions obtained from method 1 and obtained from method 2 is in good agree-

ment with the FEM results for all of Cases 4 and 5.

Figure 16. Prediction of the maximum bending moment M
max

 for rectangular tubes: (a) a/b = 1; (b) a/b = 2; and (c) a/b = 3.
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7. Conclusion

In this chapter, bending collapse of rectangular tubes was investigated using the FEM 
numerical simulation. The Kecman’s method in which the post buckling strength of the 
flange and the effect of the flange slenderness on the cross-sectional fully plastic yielding are 
taken into account is effective when the aspect ratio of web to flange is not large. However, 
in order to predict accurately the maximum moments of rectangular tubes with large aspect 

ratio of web to flange, the slenderness of web has to be taken into account. Our new method 
in which the post buckling strength of the web under stress gradients and the effect of 
the web slenderness on the cross-sectional fully plastic yielding are taken into account are 

proposed, and the predicted maximum moment agrees with the results of FEM numerical 

simulations.
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