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Abstract

Since the initial developments in the state-space theory in the 1950s and 1960s, the state
estimation has become an extensively researched and applied discipline. All systems
that can be modelled mathematically are candidates for state estimators. The state
estimators reconstruct the states that represent internal conditions and status of a system
at a specific instant of time using a mathematical model and the information received
from the system sensors. Moreover, the estimator can be extended for system parameter
estimation. The resulting Kalman filter (KF) derivatives for state and parameter estimation
also require knowledge about the noise statistics of measurements and the uncertainties of
the system model. These are often unknown, and an inaccurate parameterization may
lead to decreased filter performance or even divergence. Additionally, insufficient system
excitation can cause parameter estimation drifts. In this chapter, a sensitivity-based adap-
tive square-root unscented KF (SRUKF) is presented. This filter combines a SRUKF and
the recursive prediction-error method to estimate system states, parameters and covari-
ances online. Moreover, local sensitivity analysis is performed to prevent parameter estima-
tion drifts, while the system is not sufficiently excited. The filter is evaluated on two testbeds
based on an axis serial mechanism and compared with the joint state and parameter UKF.

Keywords: Unscented Kalman, filter, recursive prediction-error method, state
estimation, parameter estimation, covariance estimation, sensitivity analysis

1. Introduction

State estimation is applicable to almost all areas of engineering and science. It is interesting to
engineers for different reasons such as the control of a system using a state-feedback controller or
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monitoring the system states that are not measureable with sensors, or the sensors are too
expensive or too difficult to install. The system states can be defined as variables, which provide
a representation of internal conditions and status of a system at a specific instant of time. Applica-
tions that include a mathematical model of any system are candidates for state estimation. The
estimations can be useful, for example, car assistance systems [1], predictive maintenance [2],
structure health estimation [3], and many other applications (see [4] and references therein).

Different algorithms were proposed for online state estimation. A historical survey of the
filtering algorithms can be found in [5]. The Kalman filter (KF) was presented in [6] and
nowadays is the most widely applied algorithm for state estimation on linear systems. The KF
is a linear optimal estimator [7]. This means that the KF is the best filter that uses a linear
combination of the system measurements and states in order to estimate the last ones. The
main operation of the KF is the propagation of the mean and covariance of the (Gaussian)
random variables (RVs) through time. The KF assumes that the model and the noise statistics
affecting the system are known. Otherwise, the estimates can degrade.

Different derivatives of the KF have been developed for nonlinear systems during the last
decades. The extended Kalman filter (EKF) presented in [8] is the most commonly used
estimator for nonlinear system. This filter linearizes the system and measurement equations
at the current estimate. This may lead to poor performances for highly nonlinear or highly
noisy systems [9]. To address the linearization errors of the EKF, the unscented Kalman filter
(UKF) was presented in [10]. This filter uses the unscented transformation (UT) to pick a
minimal set of points around the mean of the GRV. These points capture the true mean and
covariance of the GRV, and they are then propagated through the true nonlinear function
capturing the a posteriori mean and covariance more accurately.

The mathematical models usually describe the behaviour of the systems, and generally the
structure and the parameters need to be determined. Once the structure is defined, system
inputs and measurements can be used to identify the model parameters. This can be
performed offline [11, 12]. However, the parameters usually may vary during operations. In
order to monitor these variations online, the nonlinear extensions of the KF can be extended for
parameter estimation [9].

The KF derivatives can only achieve good performances under a priori assumptions, for exam-
ple, accurate system models, noise statistics knowledge, and proper initial conditions [7, 9, 13]. If
one of these assumptions is not guaranteed, the KF derivative can potentially become unstable
and the estimations can be diverged [14-16]. Moreover, tuning the performance of these filters
implies primarily adjusting the process and measurement noise covariances to match the
(unknown) real-system noise statistics. In the last decades, numerous methods were presented
to estimate these unknown covariances. The autocovariance least-square method was presented
in [17, 18], and it was extended (and simplified) in [19], and diagonal process and noise covari-
ances were considered in [20]. This method estimates the noise covariances using least squares
and it can only be used with KF. The method was extended for nonlinear or time-varying
systems using an EKF in [21]. Online covariance estimation for EKF and square-root cubature
Kalman filter (SRCuKF) was presented in [22]. These methods implement a combination of a KF
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derivative and a recursive prediction-error method (RPEM) to estimate covariances online. In
[23], an adaptive UKF was presented to estimate only covariances online.

In this chapter, a sensitivity-based adaptive square-root unscented Kalman filter (SB-aSRUKEF)
is presented. This filter estimates system states, parameters and covariances online. Using local
state sensitivity models (SMs), this filter prevents parameter and covariance estimation drifts,
while the system is not sufficiently excited. Sensitivity analysis (SA) for the UKF is also
presented. The performance of this filter is validated in simulations on two testbeds and
compared with the joint UKF for parameter and state estimation.

Section 2 covers some algorithms for recursive estimation of states, parameters, and covari-
ances. The SB-aSRUKEF is the main topic of this chapter. This filter uses a KF derivative for state
estimation. In Section 2.1, the KF for state estimation in linear dynamic systems is presented.
The UKEF, a nonlinear extension of the KF, is described in Section 2.2 and also extended for
estimating system parameters. Section 2.3 covers parameter estimation using the RPEM. The
UKF and the RPEM are combined in Section 2.4 to obtain the aSRUKEF. In order to identify
unknown parameters, the system inputs should be persistently exciting. Sensitivity models
(SMs) are presented in this section and are used to evaluate the system excitation and prevent
parameter estimation drifts while the system is not sufficiently excited.

Section 3 covers the testbed used for the filter evaluations. A planar one-link robot system is
described in Section 3.1, and a pendulum robot (pedubot) is mathematically modelled in
Section 3.2. The first testbed is used for the SM analysis, and the chaotic system is used to
compare the filter performance with the joint SRUKF. The evaluation results of the SB-aSRUKF
are presented in Section 4. The SMs are analysed with different system inputs on the first
testbed in Section 4.1, and the filter performance for state and parameter estimation is com-
pared with the joint SRUKEF in Section 4.2. Section 5 completes the chapter with conclusions.

2. Recursive estimation

This section discusses some recursive approaches to estimate states, parameters and covari-
ances of a general system. The KF as the optimal linear estimator for linear dynamic systems is
presented. Nonlinear extensions of the KF are discussed, as well as an extension for parameter
estimation. A recursive Gauss-Newton method for parameter estimation is also presented in
this section. Finally, the last subsection discusses the SB-aSRUKF, which is the main topic of
this chapter, and the SMs that are used for excitation monitoring.

2.1. Kalman filter (KF)

The KF is the most widely applied algorithm for state estimation on linear dynamic systems
that are corrupted by stochastic noises (e.g. Gaussian noise). It uses a parametric mathematical
model of the system and a series of (noisy) measurements from, for example, sensors to
estimate the system states online [4]. In general, the state distribution of a system can be
approximated by random variables (RVs). The main operation of the KF is the propagation of
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the mean and covariance of these (Gaussian) RVs through time. The KF is an optimal linear
filter for these types of systems [7, 9]. It is a recursive algorithm, which enables new measure-
ments to be processed as they arrive to correct and update the state and measurement esti-
mates.

In general, a linear discrete-time system corrupted by additive noises can be written as follows:

Xp = Axy_1 + Buy_1 + wy, )
Y, = Cxy + Duy + vy,

where x; €R™ is the system state vector at discrete time k, and uy € R™ and y, € R corre-
spond to the system input and measurement vectors, respectively. The matrices A € R™*",
BeR™ ™", CeR"™ "™ and DeR™" " are often called system, input, output and feedforward
matrices, respectively, and describe the system behaviour. The random variable vectors wy and
vk represent the process and measurement noises. These are considered white Gaussian, zero

mean, and uncorrelated and have covariance matrices Q, and Ry, respectively, as

wie -~ N(0,Qy), 2)

vk ~N(0, Ry).
The KF iterative nature can be separated in two main steps: the process update and the correction
step. In the process update, based on the knowledge of the system dynamics, the state estimate
(J?lf_l)1 from the previous time step (k — 1) is used to calculate a new estimate at the current time
(k). This step does not include any information of the system measurements and the resulting
state estimate is called a priori estimate (x; ). In the correction step, the a priori estimate is
combined with the current system measurement (y,) to improve the state estimate. This estimate
is called the a posteriori state estimate (x;). The vectors ¥, and X, estimate both the same
quantity, but the difference between them is that the last one takes the measurement (y,) into
account. A Kalman gain matrix (Ky) is calculated at every discrete step and weights the influence
of the model and the measurements on the current state estimate. This gain is calculated using
the system matrices and the process (Q,) and measurement (Ry) covariances. More information
about the KF equations and generalizations can be found in [4, 7, 9].

The KEF is a linear optimal estimator, but it assumes that the system model and noise statistics
are known. Otherwise, the filter estimates can degrade. Tuning the performance of the filter
implies primarily adjusting the process and measurement covariance matrices to match the
(unknown) real-system noise statistics. In practical implementations of the KF, the filter tuning
is performed online, and empirical values are normally used. Extensive research has been done
in this field to estimate the noise covariances from data (see [17-20] and references therein).

As mentioned before, the KF is the optimal linear estimator, which estimates states of a linear
dynamic system using the inputs, measurements and a parametric mathematical model of the
system. Even though many systems are close enough to linear and linear estimators give

'The hat ™ over a vector represents the estimate of the vector, for example, X describes the estimate of the state vector x.
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acceptable results, all systems are ultimately nonlinear. Extensions of the KF have been
presented in the last decades to deal with nonlinear systems. Some examples are the EKF and
the sigma-point Kalman filters (SPKFs).

2.2. Nonlinear filtering

The EKF and the UKF (a SPKF type) are derivatives of the KF for nonlinear systems. The EKF was
originally proposed in [8] and is the most commonly applied state estimator for nonlinear systems.
However, if the system nonlinearities are severe or the noises affecting the system are high, the
EKF can be difficult to tune, often gives wrong estimates and can lead to filter divergence easily.
This is because the EKF uses linearized system and measurement models at the current estimate
and propagates the mean and covariance of the GRVs through these linearizations. The UKF was
presented in [10] and addresses the deficiencies of the EKF linearization providing a direct and
explicit mechanism for approximating and transforming the mean and covariance of the GRVs.

In general, a discrete-time state-space model of a nonlinear system can be described by

X = f (%1, Ok—1, 1) + Wi—1, 3)

Y, = h(xk, Oy, uk) -+ vy,
where 0, € R is the (unknown) parameter vector and f and h are arbitrary vector-valued
functions usually called system and measurement functions. As a KF derivative, the UKF aim
is to minimize the covariance of the state estimation error to find an optimal estimation of the
state true dynamic probability density function (pdf). The main component of this filter is the
UT. This transformation uses a set of appropriately selected weighted points to parameterize
the mean and covariance of the pdf. Two steps characterize also the UKEF. In the process
update, the sigma points are calculated and then propagated through the nonlinear system
functions to recover the mean and covariance of the new a priori estimates. The estimated
measurement () is calculated in the correction step and together with the actual measure-
ment are used to correct the a priori estimate. This results in the a posteriori state estimate.
While the UKF matches the true mean of x; correctly up to the third order, the EKF only
matches up to the first order. Both filters approximate the true covariance of x; up to the third
order. However, the UKF correctly approximates the signed of the terms to the fourth power
and higher meaning that the resulting error should be smaller [7, 9].

The nonlinear extensions of the KF can also estimate the unknown parameters of a system. The
UKF was extended for joint state and parameter estimation in [24]. In this case, the system state
vector x; was extended by including the unknown parameters 0 to obtain a joint state and

parameter vector as
- Xk
- (3)

remaining 0y = 0x_; during the process update.

Square-root (SR) filtering increases mathematically the precision of the KF when hardware
precision is not available. In [25], an SR version of the UKF was presented, which uses linear
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algebra techniques such as the QR decomposition and the Cholesky factor [26] to calculate the
SR of the estimation error covariance. The SR form improves the numerical stability of the filter
and guarantees positive semi-definiteness of this covariance. Additionally, the computational
complexity for state and parameter estimation is reduced [25].

2.3. Recursive prediction-error method

In this section, the recursive prediction-error method (RPEM) is briefly discussed. This method
is extensively analysed in [11, 12] and uses a parameterized predictor that estimates the system
outputs at the current time step. The resulting predicted system output is then compared to the
actual system measurement, and the predictor parameters are corrected such as that the
prediction error is minimized.

The quadratic criterion function defined as
1
\@wgziﬁw@A4qw@ (5)

is minimized using the stochastic Gauss-Newton method in order to obtain the predictor
parameters. The prediction error e;(0y) at the discrete time k is described as

ex(Ox) =y — Y,(6x), (6)
where y, corresponds to the actual system measurement, ¥, (0y) refers to the parameterized

predictor output using parameter set 0 and A is a user-defined weight factor.

The recursive solution that minimizes the quadratic criterion function in Eq. (5) is given by the
following scheme:

A=A 1+ (1 - /\) (ekeg — Akfl)/

dy dyr
S = AA; + /\yk Or_1 Ayk ,
dOi_4 dOy_4
dy,
Ly =0 1— k Sk_l, (7)
dOi_
dy dy,
@V:<Fw—u Jk>®b%%w—u ]k>ﬁw+uA@L
Or1 dOy_q

@k = ak_1 + Lkek.

The user-defined parameter 0 < A<1 is often called the forgetting factor. The matrix Ay is
calculated using the prediction error. This matrix is used to calculate Sy, where the derivative
ay,
do;
multiplied by the innovation error to update then the parameter estimation. It should be noted

of the output w.r.t. to the unknown parameter vector ( ) appears. The gain vector Ly is

: o~ dy . .
that besides the matrix y, = e an parameters, vectors, and matrices are defined after an
k-1

initialization. The matrix 3, can be calculated modifying a KF derivative.
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The selection of the forgetting factor essentially defines the measurements that are relevant for
the current estimation of the parameter predictor. The most common choice is to take a
constant forgetting factor for systems that change gradually. Other criterions for selection of
this factor and the convergence of the RPEM are discussed extensively in [11, 12].

2.4. Sensitivity-based adaptive square-root Kalman filter

This is the main section of this chapter. The earlier sections were written to provide the needed
methods for this section, and the later sections are written to analyse and test the performance
of the filter described in this section.

The aSRUKE is discussed in this section. This filter combines the SRUKF and the RPEM. While
the KF derivative estimates the system states and measurements, the RPEM calculates the
unknown parameters and covariances.

In this filter, the innovation error in Eq. (6) is calculated and minimized using the recursive
scheme presented in Eq. (7) in order to estimate the unknown system parameters and covari-
ances. Besides the matrix yk, all parameters, vectors, and matrices of the recursive scheme are

defined. The derivative of the estimated measurement (y,) w.r.t. the vector 0r1) containing
the unknown values of parameters and covariances needs to be calculated. This matrix is also
called the output sensitivity and describes the influence of a variation of a parameter on the
system output. The output sensitivity can be obtained using a KF derivative.

The equations of a SRUKF are then extended in order to calculate the output sensitivity. To
simplify the reading flow, the following definitions are presented:

1

w'=u""=———~, i=1,...,m=2n,, /\:azn + K),
1 1 2(nx+/\f) X f ( X )
As
wt=——-1 wS =w"+ (1 —a?+B8), = /1. + Ay,
B = 1) b=wg + ( Bl =y (8)
my =1y, my =1y, I =2n,+1,
w = (wf,...,wS,), w"=(wy, .., wh), C =wt Qmi,

where w!"“ are a set of scalar weights, a determines the spread of sigma points around the
estimated state Xy, p incorporates information about the noise distribution (e.g. § = 2 assumes
that the system is affected by Gaussian noise), and « is a scaling factor, which can be used to
reduce the higher-order errors of the mean and covariance approximations [9]. The Kronecker
product [27] is described by & .

The process update step of the aSRUKEF is presented in Table 1. After the filter initialization,
the sigma points (Xj_1) that describe the pdf of the state estimate are calculated using the UT.
At the same time, the sigma-point derivatives (Py_1) are also obtained. The sigma points and
its derivatives are propagated through the system function and the system derivative function,
respectively, to obtain the a priori state estimate (x; ) and the a priori state estimate sensitivity

()Ac' ¢ )- Considering additive process noises, the SR factor of the estimation error covariance
(84 1) is calculated using the QR decomposition (qr()) and the rank-one update to Cholesky

83
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aSRUKF  Initialization %o — X €R", B — O R, Syyi— djg'k' @) = @, R0
k
APy i dpyy k dSyy k
= —, = —, S. =—", Ay =0€RY* M,
Pxx, k d ek Pyy, k de xx.k dﬂk k

T X
Pxx,l) = Sxx,USxx,U = Pxx, init € R™ ’
Pxx/ﬂ = Sxx,O =0€e R”xxnx“”/ Pyy,() = Syy,O =0eR"w*Mm

SRUKF  Sigma points Xio1 = (Xx-1,1, -0 Xio1,1) = (X 1 %k-1 @ M1 + Sss k-1Xk—1 & M1 — NSxx,k—1)

Sigma-points b = f(Xk—l«, @k_l ) uk&)

propagation
SM Sigma-point dax dax ~ = =
ot D= (Dpp1jsn D) = J’f&...7#:( X1, @ My + 1Sxi1 Xi1; @ My — 1S, _)
derivatives 1 = (et sy P ) @, do,, X1, k-1j @ M+ 1S k-1, j X k-1,j @ M1 — 1Oxx k-1,
with
Y _ dxg
X1 = aor
e ‘ 5 5
Sen51t1v1t?z q)z]_iz % D # )
propagation i X1, 05 "X 1,054

. ~ oo T
SRUKF A priori state X = X (w™)
estimate

SR estimati'on S;x,k = qr<( NG (X’l“zznmk — f;) Sok )),
error covariance
S, x = cholupdate (S;X,k7 \/|ws] (Xg/k - J?,:) , sign(wg))

SM A priori o /X\]z s (Ing ® (wm)T)
state sensitivity

eDs:rri:\,:ttiinf ziror ;svi}]i - treshapeM((I”” ® ATS’ S;*fk> (P;"’k >s>'
Ais,, = (S;x/k I + (I”‘ ® S;x,k)NOt\)))g(m) and
i = (P =X, @m) (1" © (W) OX; -5, @m)"))
SWLOK -5 @me) (Tl ® (@~ F, @m) )+

inwhich 7y = (I°,Tv, ..., Ty, ), and T = (07,07, 1').

T e

covariance

dQ;

a0, 01

Further details of the construction of the matrix AV/(,,) and the elimination matrix £,,) can be found in [28]

Table 1. aSRUKEF: filter initialization, sigma-points calculation and filter process update step. The Kronecker product is
described by @ and () defines the element-wise multiplication. The ( ), operator stacks the matrix columns to form a
column vector.

factorization (cholupdate() %) in which the signum function (sign()) is used to determine the
sign of the first calculated weight factor. If the weight factor results negative, a Cholesky
downdate takes place; otherwise, a Cholesky update occurs. The next step calculates the
derivative of the SR factor of the estimation error covariance (S,, ;). In this step, the function
treshapeM() is used. This function converts a vector of dimension ((1,(1n, + 1)/2)ng x 1) into a
(ny X nyng) matrix with ng lower triangular blocks of size (1, x n,). Additionally, the operator
(), is utilized to stack the matrix columns to form a column vector. Further information about
this step can be found in [28].

“Matlab does not allow the use of cholupdate() in real-time applications; using coder.extrinsic ('cholupdate’), it is possible
to use the function in Simulink but the application does not run in real time. The cholupdate() line can be replaced with

Ch01<<s;x,k>TS;x,k + wp (Xg,k - f;))
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The correction step is shown in Table 2. A new set of sigma points (X, ) and its derivatives
(Dx) can be generated using steps (a) and (b) from Table 2. If the nonlinearity is not severe,
these steps can be skipped. This saves computational effort but sacrifices filter performance.
The (new) sigma points and its derivatives are then propagated through the measurement
function and its derivative, respectively. The resulting points are used to calculate the esti-
mated measurements (Yj) as well as the output sensitivities (y,). These are used within the
RPEM to estimate the system parameters and covariances.

The SR factor of the innovation error covariance (Syy, ), the cross-covariance (Py,, 1) together with
its derivatives matrices (Syy, r, Pxy, k) are calculated in order to obtain the Kalman gain matrix
(K) and its sensitivity (/Cx). The aSRUKEF treats also the measurement noises as additive. The a
posteriori state estimation (x;), the a posteriori state sensitivity X 1) together with the SR factor
of the estimation error covariance (S, k) and its sensitivity (Sx, k) close the loop of the aSRUKE.

Local sensitivity analysis can be utilized to determine if a system input or a system modifica-
tion can excite the system parameters in order to identify them. The a posteriori state sensitiv-
ity from Table 2 (d) can be used to determine the influence of parameters to the system states.
This sensitivity results from the correction step of the aSRUKF. As long as the sensitivity X h
remains below a user-defined threshold, the parameter update from Table 2 (e) can be skipped
to prevent parameter estimation drifts. A time window (N;) can be used to calculate

~+
max(HXk_Nw

ey

) ‘)? : H2> to normalize the sensitivity values. A threshold vector #, is then
defined with values between 0 and 1. The update procedure can be described as

forp =1to ng do

sa=0
forn =1to n, do
dxk, n
sa =sa -+ d;:p ©)

if sa > #,(p) then
update_values = True

The variable sa represents the sensitivity sum w.r.t. a system parameter 6y, over all system
states (Xi 1, ..., Xk n, ). The threshold vector #, should be selected with caution. Too high values
prevent parameter estimation drifts but can increase the convergence time of the filter. More-
over, the parameter excitation can be significantly reduced and the resulting estimation can be
biased. The performance of the SB-aSRUKEF is evaluated in Section 4.

The local state sensitivity can be also calculated as follows (cf. [29]):

dxk _1 dxk_1 i bf

d@k,]' axk 5‘-‘1(7]/ ekil d@k,]' a@k,]- 5C\k71, 6}(71

(10)

This sensitivity computation is compared in Section 4 with a posterior state sensitivity obtained
using the SB-aSRUKFE.
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SRUKF Slgma points X]: — (Xk,l-, -~-7Xk,l) _ (fk*.’x\k— ® my + nsg:x,kk\]; ® my — ns;x,kfl) (a)
Output sigma points Y, = h (Xk—7 0, .. uk)
Estimated measurement Y, = yk(wm)T

SM Sigma-points derivative D = ((Dk,l,ja - ch,l,j) == (;A\{ k,;";(kfj Q my + r]S;x,k,]-.i\:’k,j ® m — 1S, k;) (b)

Output 1'% D +s0
k, A ko ji 0
sigma-points derivative " Ox‘ X By il 0y
Output sensitivity v, = Wi (1 " Q (w ”’)T> with ©
W, = (lpk,1, ceey lIIk,ng)
SRUKF SR innovation error Syyk = qr((/w§ (Y12n,k — Yx) Swrk)),

covariance

Syy,k = cholupdate (Syy,k, V0w (Yo —95), sign(wS))

- i i ~ — T
Cross-covariance matrix Pyt = W;@((y}( ~5,® mz) ( Xi— % ® m2) )

M. DO 5, g (1 0 0L, ) P, i
AIStSyy,k = (Syy,k ®Iny + (Iny ® Syy k)N( )))g( ) and
Py = (P =T @ mo) (I" @ (W) O (Vi G, @ m)"))
W O (Y — 4 ® ma) <T()IHH ® (Pi—y,om T)
Derivative of Cross- Pyt = (q)k _ 2}: ® mz) (Ing ® ((Wf(r)T@(Yk Y. @m T))
T

covariance matrix
WL QX — % @m) (Tl ® (Pi—§, @m)")

SRUKF Kalman gain K, — <pxy,k /s"yfy>/syy,k

A posteriori state estimate f;r =x; + Ky (yk _ yk)
SR estimation error forz =1tony do

covariance Sxx,k = cholupdate <S;X/k7 Uy (:,2),"— )
with Uy = KkSyy,k

SM Kalman gain derivative Kk = Payi/ (I" @ Pyy,k) — (Pay,k/Pyy, k) (Pyy, i/ (I'" @ Pyy k)
A posteriori state sensitivity 2k+ — i'; ~ Ky, + 15" @ (y, —9,)) (d)

Derivative of estimation Sevi = treshapeM((I"” ® Als - ) (Pxx,k);>r with
error covariance update . T * . T
Paxk = Prk = Pay kT () (" ® Ky) = Pry (I @ K)

RPEM  Parameter and covariance Ay = Ay_q + (1 — A)(ere” — A1), (e)
estimation Sy = AAx + 5,0, 177,
Ly =Oc1 7} S,
O = (I" ~ L)@ 1 (I" ~ Ligiy ) /A + LidcL],
ék = ék,l + Lye.

Table 2. aSRUKEF: filter correction step and the RPEM for parameter and covariance estimation.
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The RPEM can be combined with different KF derivatives to estimate system parameters and
covariances. An EKF and a SRCuKF were used to calculate the output sensitivity in [22], which
is then used to estimate the unknown values. More information about the aSRUKF can be
found in [28, 30].

3. Testbeds

In this section, two testbeds are presented and modelled. These modelled systems are used in
Section 4 to test the performance of the SB-aSRUKF. The planar one-link robot system is
presented and extended with a second arm to form a pendulum robot (pendubot). The
pendubot is a chaotic and inherently unstable system.

3.1. Planar one-link robot system

This section describes the planar one-link robot system shown in Figure 1. It consists of a long
rectangular aluminium link driven by a DC motor via a shaft and a one-state toothed gear.

The angular position is measured with an incremental rotary encoder and the motor torque is
determined by measuring the motor current. To simplify the motor model, it is assumed that
the motor current is directly proportional to the armature current and that the motor torque is
proportional to this current by a constant factor. Additionally, the link acceleration is measured
using a micro-electro-mechanical sensor (MEMS) accelerometer attached to the link. The motor
position is controlled by a classical cascade structure with P- and P-feedback controllers for
position and speed.

The corresponding continuous state-space representation of the planar one-link robot system,
where the link angular position and acceleration are measured, can be written as follows:

accelerometer
link1

encoder 1

Figure 1. Planar one-link robot system: structure and functionality.
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x =Ax+b(x,u),
y=c(x,u).

The system states are the link angular position (x; = g,) and the link speed (x, = ¢, ). The input
u corresponds to the motor torque (14 = 7r,). The measurements are the link angular position
(y; = q,) and acceleration (y, = §,). The matrix A and the vector-valued functions b and c are
then described as

0 1 )
A= U, |,
0 —LIv
]tot
0
b(x7u) = Uy maIQ Tm |7
——Larctan(k xp) — sin (x1) +—
T T A
X1
c(x,u) = U Uy malr g Tm |’
——Lxp, — —<arctan(k xp) — sin (x1) +—
]tot ? ]tot ( 2) 2]tot ( 1) ]tot

where [, represents the total inertia including motor, shaft and link inertias. The link friction
is modelled as a dry Coulomb (u4 and k) and viscous friction (u,,). The parameters m,, I, and g
are the link mass, length, and the gravity of Earth coefficient, respectively.

3.2. Pendubot

This section describes the pendulum robot (pendubot) that is presented in Figure 2. The
pendubot is built adding an under-actuated link to the planar one-link robot system described
in Section 3.1. The actuated joint (g,) is located at the shoulder of the first link (arm) and the
elbow joint (g,) allows the second link (forearm) to swing free. This joint contains only a second
incremental rotatory encoder that measures the angle between the two links.

The system states result as x; = gq;, x2 =4, x3 = q,, and x4 = 4,, where g, and g, are the
corresponding position and speed of the i—joint, respectively. The state-space representation
of the pendubot can be written as

x =Ax+b(x,u),

Yy = (x1,.X3, -X‘:Z)T/

in which
0 1 00
0O 0 00
A= oo 0 11
0 0 0 o
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encoder 2
link 1
encoder 1
gear 2
belt

Figure 2. Pendubot: structure and functionality.
where

(ii) == (ql) =Dlg)" (Tm ) #Ezi%— i) > —D(g)"'C(q.4)d — D(9)"'g(q)-

The viscous and Coulomb frictions are described with the parameters y and p, and the

function d(g,) = pgarctan(k 4,). The matrices D(q) and C(q, ) and the vector g(g) are the
inertial and the Coriolis matrices and the gravity vector, respectively. They are defined as
follows

91+ 92 +293c08 (q,) 9, + 953 cos (q,)

D(q) = /
92 + 93 cos (g,) 9,
‘ _ —4y  —G1— 4,
C(g,4) = S3sin(q,) [ S—F
q1

g(q) =

(94 gcos (q,) + 95 g cos (g, +q,) )
85 g cos (g, +4,) /
where the 3; parameters are defined as
81 = ml3 + (my +mz +my) +7,,

192 = mzlg + m4li +]2/

O3 = (malz + myly) I,
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Sy =mly + (Tnz + ms3 + 7114)l2,

5 = mylz + myly.

The parameters J; and ], correspond to the moments of inertia of link 1 and link 2 about their
centroids. J; includes motor, gear and shaft inertias. The m; and I; parameters are defined in Figure 2.

4. Experiments

In this section, the SB-aSRUKF is tested on the planar one-link robot system and on the
pendubot. Both testbed models were discretized using first-order explicit Euler with a sample
time of 0.2 ms. System states, parameters and covariances were estimated online. The SB-
aSRUKTF is also compared with the joint state and parameter SRUKEF in this section. Sensitivity
analysis is also discussed.

4.1. State sensitivity analysis and parameter and covariance estimation

Sensitivity analysis (SA) was performed on simulation using the planar one-link robot system.
The system parameters were identified offline on the real testbed using Prediction-Error
Method. The parameters defined as

- . .~ T
0 e <]tot 0y malzk) — (55910 %kgm? 005N m=% 027Nm 01lkgm 10-=5),

were used for the simulation. Noise distributions with the following covariance matrices

Q =diag((10 5107%))°,
R = diag((51077 5)),

were added to the simulation to incorporate model and measurement uncertainties. An s-
curve profile was considered as a desired link angular position.

The following system states, parameters and covariances were estimated:

X1 =q, — link position,

xp =¢q, — link speed,

0. =q,; — process covariance value (related to the link ang.pos.),
01 = u, — viscous friction coefficient,

02 = uy — Coulomb friction coefficient,

03 =]t — inverse inertia.

"The function diag(v) transforms the v € R" vector into a (n x n) square matrix with the elements of v on the diagonal of
the matrix.
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The remaining tuning factors for SB-aSRUKF were set as
Q =gy, =510, R=diag((5107 210')),
a=008 =2 x=3-n A=0.999

Prinit = I>, @iy = diag((5107® 107" 10°® 107* 10°%)).

The values of ®init tune the parameter and covariance estimation, and the index order is the
same as the above-defined 0, values. This means that the first value tunes the estimation of 6,
(process covariance value), the second value tunes 0, (viscous friction coefficient) and so on.

The filter initial system states were set to zero and the initial system parameters were set as the
true values multiply by a random factor between 0 < Ofctor,i <10 as

Xinit = 0,

Oic = (210 *rad® 15(1/]e) 31, 84 0.25<ﬁ1a72)>T.

In order to test the sensitivity-based section of the filter, the link angular position was held at
g, = /2 after ca. 11 s for about 4.5 s. At the same time, the system parameters i, {i , and 711,
were quadrupled.

Figure 3 compares the a posteriori state sensitivity calculated using the SB-aSRUKF and the
state sensitivity using Eq. (10). The first diagram shows the estimated and true link angular
position of the planar one-link robot system. The following diagrams present the normalized

SA related to the link angular speed (al) and corresponding to the inverse inertia, viscous and
Coulomb friction coefficients, and the link mass and length parameter. While the state sensi-
tivity calculated using Eq. (10) was affected directly by input noises, the a posteriori state
sensitivity provided an almost noise-free estimation. While the SAJ, .} maxima were related
with the acceleration (speed-up and brake phases), the SAu,, maxima coincided with the link
maximal speed. The SAm,l, was only zero while the arm was crossing the 0 rad position and
the SAp, was the sensitivity value more affected by the system noise. This is caused because
the maximal change rate of arctan() occurs when the argument is near zero. When the link
speed is zero, the added noise varies near this value and its effect is amplified by arctan().

Figure 4 shows the state, parameter and covariance estimation of the planar one-link robot
system. The aSRUKF was used in two configurations: SB-aSRUKF utilized SA to monitor the
system excitation while aSRUKF did not. After the initialization, the two estimators needed
almost the same time to converge to the offline identified values. The parameters estimated
using the SB-aSRUKF did not diverge while the link position was held. Because two of the
estimated parameters using the aSRUKF diverged, this filter needed more time to converge
after the stop phase. The two filters were able to estimate the link mass and length parameter
during the stop phase. While the viscous and the Coulomb friction coefficients and the inverse
inertia estimated with the SB-aSRUKF remained constant during the stop phase, the aSRUKF
was able to estimate the Coulomb friction with bias (before ., diverged). Because of the added
noise, the parameter was excited and could be identified. This can be seen in the fourth
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Figure 3. Sensitivity analysis (SA): comparison between the a posteriori state sensitivity obtained using the SB-aSRUKF
and the resulting using Eq. (10). The desired link position was set as an s-curve between —7/2 and 7t/2. The link position

was held at 71/2 after ca. 11 s for about 4.5 s. The parameter sensitivities are related to the link angular speed (x» = al).

diagram of Figure 3. These SA values remained under the threshold used on the SB-aSRUKF
and were filtered. The parameter estimation stayed then constant. It should be noted that the
diagram corresponding to the viscous friction coefficient is zoomed to present the parameter
change, and the oscillations of the aSRUKEF are cut. These reached up more than 50 times the
parameter true value.

The SB-aSRUKF was able to estimate the parameters and covariance of the proposed testbed.
The online estimations converged to the offline identified values without bias. The sensitivity-
based approach used as a system excitation monitor prevented parameter estimation drifts
and did not modify the convergence time of the filter.

4.2. Comparison between SB-aSRUKF and joint state and parameter SRUKF

The SB-aSRUKF and the joint SRUKF were compared on the pendubot for state and parameter
estimation. The SB-aSRUKEF identified also covariances.

The system parameters were identified offline and used for the simulation as
_ A AT
Otrue = (,91 9,959, 95) — (0.339kgm? 0.0667kgm? 0.0812kgm? 0.717kgm 0.146kgm)’,

~ ~ o~ T S S S
(s fa o k) = (009NmM— 0226Nm 0.03Nm—— 10—},
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Figure 4. Planar one-link robot system: parameter and covariance estimation. The SB-aSRUKF uses SA to monitor the
system excitation. The initial parameter Oi,;; was randomly selected. The link position was held after ca. 11 s for about
4.5 s, and simultaneously the system parameters i, [i4, and i1, were quadrupled.

An s-curve profile was selected as the desired position of the first link. The following states and
parameters were estimated online:

X1 =1
X2 = {,
X3 =1,
X4 = (),
0a = 41
Ob = 433
N, ..., 95

— link 1 position,

— link 1 speed,

— link 2 position,

— link 2 speed,

— process covariance (related to the link 1 ang.pos.),
— process covariance (related to the link 2 ang.pos.),
— pedubot minimal set of parameters.

The values 0, and 0}, which correspond to the process covariance values, were only estimated
using the SB-aSRUKEF. The viscous and Coulomb friction coefficients were identified offline
and remained constant for both filters.

To simulate model and measurement uncertainties, noise distributions with the following
covariance matrices were added to the system for the simulation:

Q = diag((2:107"° 1.51077 2107 15107)),
R = diag((5-107 5107 1)).
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The tuning parameters for the joint SRUKF were chosen as
Q, = diag((2:1071° 15107 2107 15107
1077 1077 1077 51071 10710)),
Ry, = diag((51077 51077 10)),
a=085 =2 «k=3-—n,—n,

Py, =diag((1 1 1 1 107 10° 10° 5 1)),

and the parameters for the SB-aSRUKF were set as
Qy, = diag((15107 15107)), Puo, =1,
Ry, = diag((5-1077 51077 10)),
a=085 p=2 x=3-n, A=0.999

@it = diag((10® 107 107 107 107 51071 1071)).

5
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Figure 5. Pendubot: state estimation using the SB-aSRUKF and joint SRUKF. Both filters followed the dynamic of the true
system states without any significant bias.
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The filter initial system states were set to zero and the initial system parameters were set as the
true values multiply by a random factor between 0 < Ogyctor,i <5 as

Xinit = 0,
N —~ W T
Ounit, = (1,5 §,138,158;29,2 95> ,
T
Oinit, = (2:107rad®> 210 %rad® (Oimy,)" ) -
The first four values of Py, tune the initial state estimation, while the last ones the parameter
estimation. The first two values of ®;,;; tune the estimation of the covariance values 0, and 6,

while the last values follow the index order of 9; defined in Section 3. It should be noted that
the settings related to the state and parameters estimation were equally tuned for both filters.

The state estimation of the pendubot is presented in Figure 5. The SB-aSRUKF was slightly
faster to reach the true system states (cf. diagrams 1 and 4) and after ca. 5 s both filters followed
the dynamic of the true system states without any significant bias.

o true values . ?D T i———"
E 5 SRUKF £ ot
& ——— SB-aSRUKF 22 M
T4t 11 ¥28 1)
ES 3T 4 é’: or
: .?Eé’ 6 | Moo ]
21 |
$=g 3 ﬂ
=< 2
- S A = B [V
o pe—— e
% 0
5&*&" 1 : =
28 3
5% 0
388
BT O
e
- !l e - _'E 0
0 5 10 15 20 0 5 10 15 20
time (s) time (s)

Figure 6. Pendubot: parameter and covariance estimation using the SB-aSRUKF and joint SRUKF. The SB-aSRUKF was
configured to estimate the system parameters 9; to 95 and the process covariances corresponding to the link positions.
The joint SRUKF estimates only the system parameters. It should be noted that the diagram scales for parameters 94 and
95 are different between the filters.
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Figure 6 shows the parameter estimation of the pendubot for both filters. Using the same
tuning parameter set, while the SB-aSRUKF estimated the 9; to 95 parameters without bias,
the joint SRUKEF estimated 9; to 93 with slight bias, and it was not able to estimate 94 and 5.
These two parameters did not converge to the true system values. It should be noted that the
diagram scales corresponding to parameters 94 and 95 are different between the filters. The
parameter initialization and the tuning settings for the two filters were the same. The SB-
aSRUKEF outperforms the joint SRUKF for the parameter estimation of the pendubot.

5. Conclusions

In this chapter, some approaches for state, parameter and covariance estimation were discussed.
Moreover, a sensitivity-based adaptive square-root unscented Kalman filter (SB-aSRUKF) was
discussed and its performance was analysed. This filter estimates system states, parameters and
covariances online. Additionally, sensitivity models were presented and used as system excita-
tion monitor to prevent parameter and covariance estimation drifts while the system excitation
was not sufficient.

Two testbeds based on an axis serial mechanism were modelled and used for testing the
performance of the filter. Two experiments were performed in simulation on these two
testbeds: a state sensitivity analysis and a comparison between the joint state and parameter
square-root unscented Kalman filter (SRUKF) and the SB-aSRUKF. Simulation results show
that the SB-aSRUKF outperforms the joint SRUKF with the same tuning configuration. While
the joint SRUKF did not estimate two of the five parameters correctly, the SB-aSRUKF identi-
fied all the parameters. Moreover, the estimation of covariances reduces the parameter estima-
tion bias. Configuring the right excitation thresholds for the system excitation monitor in
Eq. (9) prevented parameter estimation drifts, while the input was not persistently exciting
and did not only increased but also in some cases reduced the convergence time of the filter.
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