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Abstract

Modeling, simulation, and control of the alcoholic fermentation of grape juice into wine
are still not a totally resolved problem. A model that makes it possible to predict
alcoholic fermentation development would be a valuable instrument to its technical
and economical implications. Considering the field of bioprocess used in food produc-
tion at the industrial scale, the chapter will be centered on models applicable to oenol-
ogy. On the first part, the chapter proposes the different approaches that have been
taken: “knowledge-based” models, non-physiological mathematical descriptions,
behavior prediction models, and empirical models. The second part will deal with a
nonlinear model for white wine alcoholic fermentation process which, besides the
detailed kinetic model, involves equations corresponding to the physiological phases of
yeast cells, the inhibitory effect of ethanol, heat transfer equations, and the dependence
of kinetic parameters on temperature.

Keywords: modeling, simulation, advanced control of technological process

1. Introduction

If the twentieth century belonged to electronics and computer science, the twenty-first century

would belong to biology and biotechnologies [1]. Bioprocesses are the foundation of life and

especially of human health. Therefore, on an international scale, there are studies being

conducted in order to find ways of improving the food safety quality.

A new science was born at the turn of two centuries of technical and scientific revolution:

bioinformatics. The methods and the concepts of computer science began to hold the interest of

many biologists, especially to the molecular biology specialists [2]. These methods are essential

for various problems such as the analysis of evolutionary processes, the complex molecular

structures shaping, and the simulating of some biological aspects. Researchers are currently
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overwhelmed by the enormous data quantity that comes from the multiple projects belonging

to genomics, transcriptomics, proteomics, and metabolomics. The necessity of using comput-

erized methods in manipulating and assembling these extremely complex high-level data is

obvious. But the great challenge lies not only in the genetic sequencing and cartography but

especially in understanding what do transcriptomics, proteomics, and metabolomics mean,

when associated with certain life conditions and with a certain hereditary program at a given

time. The identification of the structure and function of the proteins that were biosynthesized

by the organisms, the complex mechanisms that allow the development of life, is therefore

required. In order to achieve this, theoretical informatics—through some of its domains, which

have reached a certain level of maturity, formal languages, data structures, and artificial

intelligence—offer viable theoretical models.

At the same time, the beginning of our century is righteously marked by biology, determined and

largely conditioned by the revolution within the biological sciences [1]. Therefore, modern

biology begins to determine the main directions of some interdisciplinary developments, con-

stantly calling on the discoveries of chemistry, physics, mathematics, and engineering. A new,

promising branch of science was born at a specific meeting point: bioengineering. Bioengineering

especially has developed in connection with biotransformation processes (biosynthesis-

biodegradation), in order to obtain antibiotics, enzymes, vitamins, amino acids, organic acids,

bicarbonates, biopolymers, as a result of the cooperation among microbiologist, biochemist,

chemical, food industry and mechanical engineer, operator and computer scientist, in a domain

which is calledMicrobial Engineering and Biochemical Engineering [3]. Food safety and its quality is

a primary field in European and global policy and legislation of the twenty-first century because

it concerns the required conditions for a healthy population. The key issues for improving the

biochemical and micro-biochemical safety and the quality of food reside in knowing, under-

standing, and leading the bioprocess used in food production as well as possible [4]. The volume

of bioprocesses in the technical development and implementation of the processes of obtaining

new food products and a significant number of non-food items based on microbiological pro-

cesses and enzyme technology have grown significantly in the last years.

It is very difficult to monitor, design, and control a bioprocess [5]. For example, in the last years,

an impressive number of kinetic models were developed only for fermentation processes and the

various phenomena that influence fermentation kinetics were taken into account. That is why

these models needed the estimation of a large number of sizes, which are often very hard to

identify [6–8]. A series of artificial intelligence-based control and optimization models and

techniques were also developed (fuzzy and neuro-fuzzy techniques) [9–12]. These models

allowed a more realistic definition of some model sizes, which carry a high degree of uncertainty.

The mathematical model of a biotechnological process is generally represented using differen-

tial equation systems, which are obtained by writing, for each component, the mass and

energy balance equations. In these equations, the components or the concentrations of the

components involved in the reactions that take place in the bioreactor appear. The dynamics

of the temporal variation of each component is expressed by two types of phenomena. First,

there are chemical and biochemical reactions that transform some components into some
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others. Second, there is the mass transfer, caused by the liquid or gas interchanges between the

reactor and the environment or with other reactors. In this context, the mathematical model of

a bioprocess is a mathematical description of two types of phenomena, in which chemical and

biochemical reactions generate the kinetics of the bioprocess, while the mass transfer phenom-

ena define the transport dynamics.

Another important aspect in connection to the control of the bioprocesses is the lack of trans-

ducers and on-line biosensors, specific to biochemical and micro-biochemical sizes, that char-

acterize these kinds of processes [13, 14]. Attempts of obtaining these biosensors are made [11,

15, 16], but the research is far from being finished.

At the same time, the general model of a bioprocessor can provide a series of structural

properties which might be useful for the resolution of some identification, state estimation

(state observers development), or bioprocesses leading problems. The need for the state

observers is imposed by the absence of reliable and cheap biosensors, capable of making on-

line measurements of the biochemical and biological variables, used in implementing some

convenient methods of monitoring and leading biotechnological processes [1]. The acquisition

of biomass, sublayer, and the metabolism products are made through lab analysis; this method

makes the leading of the bioreactors difficult (as for the direct adjustment of these sizes). The

lab analysis requires taking a sample from the contents of the bioreactor, and this represents a

higher risk of contaminating the culture. Also, lab models for determining the number of

microorganisms, the concentration of the sublayer, as well as the concentrations of metabolism

products are quite imprecise, thus generating uncertainties in appreciating the evolution of the

abovementioned sizes. These problems are strongly amplified in the industrial environment,

especially because of the lack of adequate equipment and sufficient staff in order to realize

quality measurements in the lab. Normally, under these conditions, there are maximum three-

four reliable analyses during the unfolding of a biotechnological process.

The estimation of sizes of the biotechnological process is considered to be a way of avoiding the

various drawbacks connected to the acquisition of data from the bioreactors. The state estimator

(also known as software sensor or observer in specialized works) is an algorithm used for

determining some measurements of the process, which are not measurable in real time, based

on other accessible measurements as related to their acquisition.

An essential problem, specific to industrial scale food industry bioprocesses, is the fact that the

technological background results are very variable [1]. In many cases, the variability of raw

materials used in the industrial processes leads to a non-reproducibility of the charges. Taking

into consideration these aspects, the use of the technical operator’s experience for leading the

process is recommended, and it is possible by systems based on system expert type of knowledge.

Also, heat transfer aspects led to the development of models and automatic control techniques

regarding the optimization of the thermal regime of the bioprocessors [17].

All these research and achievements are proper to the examined bioprocesses and usually have

a low degree of reproducibility. A generalization has not been achieved at the moment; it is

very difficult to achieve and this can only be made to a certain extent.
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Another aspect is the improvement of the technological performances concerning the energy

consumption. As a result, optimizing the energy consumption through the introduction of

advanced leading systems leads to a conservation of fossil fuels. It can be affirmed that,

indirectly, a bio-economy is being advocated for. In Bio-economy versus biodiversity, Hall [18]

says “The bio-economy agenda is especially attractive to fossil fuel companies who want to be

seen pursuing an exit- from-oil strategy; and to biotechnology companies desperately in need

of a Trojan horse to provide safe passage for risky and unpopular new technologies.”

After a brief introduction regarding the modeling of bioprocesses, on the first part, the chapter

proposes the different approaches that have been taken: “knowledge-based” models, non-

physiological mathematical descriptions, behavior prediction models, and empirical models.

The second part will deal with a nonlinear model for white wine alcoholic fermentation

process which, besides the detailed kinetic model, involves equations corresponding to the

physiological phases of yeast cells, the inhibitory effect of ethanol, heat transfer equations, and

the dependence of kinetic parameters on temperature.

2. Current stage in fermentation processes modeling

2.1. The biotechnological processes modeling

A biotechnological process implies a development (growth) of a microorganism population (culture

medium), biomass, in a bioreactor (vessel) by the consumption of some nutrients (carbon, nitro-

gen, oxygen, vitamins, etc.) that represent the substrate, if the physical and chemical conditions

(temperature, pH, aeration, etc.) are favorable. Customarily, the microorganisms' growth takes

place in a liquid medium (aqua). It is obvious that in a bioreactor many biochemical and

biological reactions take place simultaneously. Each elementary reaction is, usually, catalyzed

by a protein (enzyme) and can form a specific product or a metabolite. The aim of such a culture

can be

- biomass producing ( bacteria, yeasts, etc.);

- producing a principal component (amino acid, medicines, marsh gas, etc.);

- biological decontamination (biological consumption of the pollutant substrates by the biomass).

Because the microbial mechanism of growth that involves alive organisms is very complex, a

detailed modeling is not possible or is very complicated. Usually, the bioreactor assumes a

perfect stirred and is described by a number of macro-scope variables, such as biomass,

substrate, product, oxygen concentrations, pH, temperature, etc. Function of the fermentation

type could also be defined by another concentration.

The mathematical model of a bioreactor depends on its operating mode. In this way, in

practice, for these types of bioreactors three operating modes could be defined:

• Batch mode—A batch bioreactor is a reactor with a cyclical operating, without feed, and

exit flows. The entire quantity of substrate and nutrients, with a small quantity of
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biomass, is introduced in the bioreactor at the beginning of the fermentation. During the

fermentation, the bioreactor will not be fed with any substrate and the process will be

completed after the substrate has been sufficiently consumed. The result is that the entire

quantity of biomass is collected, from which then the desire product will be extracted. The

possibilities of process control in this case are very limited and could be resumed with

some physical variables: temperature, pH, energetically consumption, length of fermenta-

tion, and so on.

• Fed-batch mode—The fed-batch bioreactors type or with semi-continuous operating is a

reactor with cyclical working, with a continuous or intermittent feeding and without an

exit. In the vessel, both a small quantity of substrate and a biomass are initially intro-

duced. Then, during the fermentation process, and in the function of the microorganisms’

necessities, the reactor will be fed with a controlled flow of substrate. Therefore, the

possibilities of process control of this kind of bioreactors are more diverse than that of

the batch type. Aside from the physical variables, the biological variables: substrate

concentration, biomass concentration, and so on, can also be controlled.

• Continuous mode—This mode is more efficient from the economical point of view and the

bioreactors are stirred, with continuous operation, eventually with separation and recycling,

as well as the gas-liquid bioreactors, used especially in the industry for obtaining a great

volume of biomass (i.e., unicellular proteins) or for the biological treatment of residual

water. In such a reactor, the biomass is evacuated with a flow equal with that of the substrate

feeding.

The mathematical model of a biotechnological process is formed by an equation system in

which the components or the concentrations of components implied in reactions that take

place in bioreactor appear, equations which are obtained by writing, for each component, the

mass and energetic balances. The dynamic or variation in time of the quantity of each compo-

nent is expressed by two phenomena. Primarily, there are chemical, biochemical, and biologi-

cal reactions which transform certain components in others. Secondarily, mass transfer due to

the liquid and gas interchanges between the reactor and the environment or with other bio-

reactors exists. Within this context, the mathematical model of a bioprocess represents a

mathematical description of two types of phenomena, where the chemical, biochemical, and

biological reactions cause the bioprocess kineticswhile the mass transfer phenomena define the

dynamics of transport.

If the process is passed off in a reactor with perfect stirring, which means a reactor in which the

culture medium composition is supposed to be homogeneous, the dynamics of the two types

of phenomena can be represented by a unitary description, by differential equations system

which involve the reaction components concentrations, as well the pH, temperature, and so on,

variables which can be organized like a state vector. There are also bioreactors without perfect

stirred and in which a set of concentration gradients, temperature, pressure, and so on, appear.

Such types of bioreactors are tubular, bioreactors with fix layers, and so on. These reactors are

described by mathematical models which contain partial derivate equations, where, in the

excepted the temporal variables, at least a spatial variable will appear.
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The modeling of a biotechnological system can be done progressive. It begins with the infor-

mation that could be easily obtained, namely the reaction of the components involved in the

bioprocess, the reactions which take place in the bioreactor and the liquid or/and gas intercon-

nections of the system, elements which define the reaction schema and the system architecture.

With these information, the general structure of the model is settled out. The general model of the

bioprocess can wise up a set of structural properties useful for solving some issues concerning

the state estimation or the control of the bioprocesses.

2.2. The reaction kinetics modeling

2.2.1. The kinetic of microorganisms growing

The kinetic of microorganisms' growth (Figure 1) is necessary from the point of view of

knowing the process phases (Table 1), the duration of these phases, the factors which influence

them in order to choose then the type of vessel, and the process control mode for the bioreactor.

2.2.2. The types of kinetic models

The phenomena that take place in a bioreactor are complex and coupled. The complexity is

given by the heterogenic medium three phases (solid, liquid, and gas), in which the biosynthe-

sis process takes place; the three phases medium is in a dynamic evolution and has a nonlinear

character. The processes are coupled among them, an operational variable (the feed flow with

substrate, the pressure, the temperature, the stirred, etc.) or the way in which the oxygen

reaches at the microorganisms, are important both individually and for the whole microorgan-

isms, for the biomass process control [19].

I II III IV V VI VII 

0.4 

0.6 

0.8 

1.0 

0.0 

0.4 

0 2 4 6 8 24 26 28 

Time, [h] 

O
p
ti

ca
l 

d
en

si
ty

, 
[A
U

] 
S

p
ec

if
ic

 r
at

e 
o

f 
g

ro
w

in
g

, 
[h
-1

] 

Figure 1. The microorganisms number evolution versus time.
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In Figure 2, the main phenomena are presented, the interactions and variables which influence

the kinetic behavior of the population cells. The two systems, the biological system

(represented by the microbial population) and the physical and chemical system (external

medium), are in close correlation; the cells consume nutrients and transform the substrate in

reaction products. The cells generate heat which warms the medium, and the medium temper-

ature influences the cell behavior.

Phase Characterization Observations

I. Latent

(adaptation)

The regeneration processes of the hyphes or the

germination of the spores, the function of the

inoculums type take place.

Generally, this phase has a reduced practical

importance. For this reason, in order to eliminate this

phase, more generation of cells are cultivated on the

respective medium aiming to accustom the cells with it.

II. Beginning

of growth

The volume of the cells grows fast.

III.

Exponential

growth

The specific growth rate μ is constant and the

biomass growth is exponential.

This phase presents a practical importance when we

have the obtaining of biomass in view. The metabolical

activity from the exponential phase is in fact the primary

metabolite; it corresponds with trot phase.

IV.

Deceleration

growing

The specific growth rate μ comes down. It appears when the feed with an essential nutrient

becomes insufficient or an element necessary for growth

has been run out or intermediary substances have been

accumulated in the medium.

V. Stationary The microbial cells reach a maximum

concentration, the proportion between alive

and death cells number remains constant. The

quantity of limiting nutrient influences this

quantity of biomass, named total production.

The secondary metabolism is typical for the stationary

phase; it corresponds to idiophase.

VI. Decay The cells die, the autolysis takes place, and the

quantity of biomass comes down.

At one point, it is possible that an easy growth of

biomass takes place, due to the alive cells' consumption

of the nutrients. The nutrients have been delivered by

the lysated cells. For a valorous culture, the decline

phase must be eliminated.

Table 1. The microbial population growing phases (adapted from [19]).

Figure 2. The main phenomena, interactions, and variables which influence the kinetic of the microbial populations.
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The mechanical interactions are due to the hydrostatic pressure and to the flow effects of the

medium on the cells and also to the medium viscosity changes, caused by the cells accumula-

tion and/or by the cellular metabolites.

The medium is a multi-composition system that must contain the necessary nutrients for the

growth of the microorganisms (carbon, nitrogen sources, mineral salts, vitamins, growing

factors, oxygen, etc.) and in which different products of cellular metabolism (primary and

secondary metabolites) are accumulated while the cells grow on.

In solution reactions that could modify the structure of the final products (i.e., the penicillin

hydrolyses) could take place.

Often, the cells consume or produce components that could influence the medium acidity and

the interrelation between cell needful and acid-base equilibrium determinates the medium pH,

which, in turn, influences the cells’ activity and the transport processes.

During the cellular reactions, the medium temperature, pH, ionic strength, and rheological

properties can change in time.

A complex model of a bioreactor is multi-phases; it consists of a medium with solid particles

among which liquid and gas particles (at the surface being the microbial culture) are dispersed or

from a liquid medium in which gas bulls are dispersed. An example of three phases model, with

two physical phases, gassy and liquid phases and a biotical one—the microorganisms culture, is

presented in Figure 3, model which could be considered a model of a fermentation process.

Because of the great volume of bioreactors, of the higher viscosity and of the non-Newtonian

nature of medium, in most cases, the technological conditions from vessel can vary from point

to point.

Every individual of microbial population is a complex component of the system, frequently non-

homogeneous, even at the level of a single cell. Many independent biochemical reactions take
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place simultaneously in every cell, which involves an internal complex control; this control

allows the cell to adapt its activity and even to the biochemical type reaction in function of the

external medium.

The dissimilarity among the cells is given by the variation in time and space of the cells’ age

(some cells are just born while others are dying or dividing); the cells with different ages are

often characterized by various types of activities and metabolical functions.

In the cultivation for longer period, many spontaneous mutations of some individuals of cells

population may appear.

Analyzing all these aspects, it becomes obvious that, in practice, a kinetic model that may

include all the phenomena and interactions of the system cannot be formulated, a first simpli-

fication concerning the medium being necessary. It is considered that even a single component

of medium, which is in quite great quantities, can influence the microbial growth of the

medium. Sometimes, it could be necessary to include other components of medium such as

the products with inhibitory role, which are accumulated in medium, in order to obtain a

suitable description of the kinetics of the cells population.

2.2.3. The unstructured kinetics models

2.2.3.1. Models based on Monod equation

From the kinetics point of view, in order to construct a model it is necessary to study the rates

and mechanisms of the physical, biochemical, and microbiological processes, in which micro-

organisms are involved (growing, cellular cycle, the components produced by reaction, the

medium effects, and the biological interactions).

The specific growth rate, μ, represents the variation in time of the microbial cells concentration in

synthesis medium:

1

X
�
dX

dt
¼ μ (1)

or in integrating form:

X ¼ X0 � e
μ�t (2)

where X represents the microbial cells concentration in biosynthesis medium [mol/m3];

X0 is the steady-state operation point of microbial concentration [mol/m3];

t is the development time [s];

μ is the specific growth rate in exponential phase, [s�1];

The specific growth rate depends, among other elements, on the limiting substrate concentra-

tion (i.e., the glucose concentration), S, taking place after the following equation:

μ ¼
μmax � S

KS þ S
(3)
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with the name Monod equation where S is the limiting substrate concentration (glucose

concentration); μmax is the maximum specific growth rate, achieving when S>>Ks and the

concentration of all the nutrients is unchanged; Ks is a constant which has a concentration

dimension and represents the value of limited nutrient concentration at which μ ¼ 1
2 � μmax.

The values of the two variables depend on the microorganism, on the work conditions (pH and

temperature), and on the substrate complexity. The typical curves of biomass evolution and

substrate consumption in time are presented in Figure 4, for a batch fermentation system. The

value of substrate concentration S was pointed out for which μ ¼ 1
2 � μmax.

Ks can be considered a measure of the microorganisms affinity against substrate:

- a small value of Ks indicates a great affinity, the microorganisms can grow in conditions of

very small substrate concentrations (small dilution at continuous processes);

- a great Ks indicates a small affinity for the substrate, the microorganisms growth takes place

slowly, even if the substrate concentrations are great.

The specific forming rate of the metabolism product:

qp ¼
rp

X
(4)

where

rp ¼ k1 � Xþ k2 � rx (5)

is the forming rate of metabolism product mol= m3 � s
� �� �

; X is the biomass concentration; rx is

the growing rate of cellular mass mol= m3 � s
� �� �

; k1 is the proportionality factor between the

forming rate of product and biomass concentration molproduct= molbiomass � sð Þ½ �; k2 is the

proportionality factor between the forming rate of the product and the growing rate of the

cellular mass molproduct=molbiomass½ �.
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Figure 4. The evolution of biomass and substrate consume versus time, for a fermentation in batch system (a); for the
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Introducing Eq. (5) in Eq. (4), the specific rate of metabolism product can be determined:

qp ¼ k1 þ k2 � μ (6)

where μ ¼ rx=X.

The forming rate of the product doesn't depend on the biomass X but on the growing rate of

the cellular mass rx at the obtained primary metabolites (ethanol, acetic acid, gluconic acid,

butyric alcohol, acetone, etc.). Therefore, k1= 0 and Eq. (5) become

rp ¼ k2 � rx (7)

In case of obtaining secondary metabolites, rp depends only by biomass X:

rp ¼ k1 � X (8)

If the development of microorganisms is limited by the concentration of a biosynthesis medium

component, the microorganisms quantity that is formed is proportionally with the used quantity

of substrate. Therefore, the efficiency coefficient for biomass producing can be defined:

Y0
xs ¼

dX

dS
¼

mols of biomass produced

mols of substrate consumed for biomass producing
(9)

and the efficiency coefficient for metabolite producing:

Y0
ps ¼

dP

dS
¼

mols of metabolism produced

mols of substrate consumed for metabolism producing
(10)

In aerobic conditions, at the biomass forming, the rate consume of substrate is

�rs ¼
rx
Y0
xs

þ
rp

Y0
ps

þms � X (11)

where ms is a forming coefficient molsubstrate= molbiomass � sð Þ½ �, specific for microorganism.

With the growth in the anaerobic conditions, the energy necessary to cell is obtained by the

substrate transformation in reaction products; therefore, the metabolism products forming is a

consequence of biomass growing:

�rs ¼
rx
Y0

xs

þms � X (12)

For S>0, the forming rate of metabolites in anaerobe conditions is

rp ¼
Y0
ps

Y0
xs

� rs þmp � X (13)

where mp is a coefficient that describes the product forming during the growth

molsubstrate= molbiomass � sð Þ½ �. This coefficient can be determined from ms on the basis that the
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reaction of the stoichiometric coefficients substrate consumed formed product. From Eqs. (5)

and (3), the k1 and k2 coefficients could be obtained in anaerobic conditions.

The total efficiencies of biomass and metabolic products are used in practice.

During the aerobic processes, considering Eqs. (5) and (11), the result is

Yxs ¼
rx
�rs

¼
rx

rx
Y0
xs
þ

rp
Y0
ps
þms � X

¼
μ � X

μ�X
Y0
xs
þms � X

¼
μ

μ

Y0
xs
þ

k1þk2�μ
Y0
ps

þms

(14)

At the specific growth very high rates, Yxs=Y’xs

Yps ¼
rp

�rs
¼

rp
rx
Y0
xs
þ

rp
Y0
ps
þms � X

¼
k1 � Xþ k2 � rx
μ�X
Y0
xs
þms � X

¼
k1 þ k2 � μ

μ

Y0
xs
þ

k1þk2 �μ
Y0
ps

þms

(15)

For the anaerobic processes:

Yxs ¼
rx
�rs

¼
rx

rx
Y0
xs
þms � X

¼
Y0

xs

1þ ms

μ
� Y0

xs

(16)

Yps ¼
rp

�rs
¼

Y0

ps

Y0
xs
� rx þmp � X
rx
Y0
xs
þms � X

¼

Y0

ps þ
mp

μ
� Y0

xs

1þ ms

μ
� Y0

xs

(17)

There is a simplified modality to express the efficiencies with the following equations:

Yxs ¼
X� X0

S0 � S
and Yps ¼

P� P0

S0 � S
(18)

2.2.4. Alternative variants of models are based on Monod equation.

It is expected that the specific growth rate of biomass, expressed by Monod equation, does not

match for all the fermentation processes. Many authors have tried to improve the Monod

model and some examples will be presented in the subsequent part.

2.2.4.1. Teissier model

μ ¼ μmax � 1� e
�

S
KS

� �

(19)

A disadvantage of the Monod and Teissier models is that these models do not take into consid-

eration the inhibitory factor of the substrate when it is in excess. Andrews model abolishes this

disadvantage by adding S2=Ki at the denominator of biomass specific growth rate expression.

2.2.4.2. Andrews model

Therefore, a great quantity of substrate inhibits the cells' growth (i.e., glucose in quantities of

>800 mol/m3) and the following equation can be used:
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μ ¼
μmax � S

Ks þ Sþ
S2

Ki

(20)

where Ki is the inhibitory factor and μ0 ¼ μmax 1þ
ffiffiffiffi

KS

Ki

q� �

.

Contois model, which takes into consideration the inhibitory effect of the biomass on the

specific growth rate, is often used [1].

Contois model

μ ¼ μmax

S

Sþ KSX
(21)

Because of the greater concentration of biomass, the biotical phase can be a substantial part

from the total volume of the bioreactor and thus it is difficult to assimilate the substances by

the biomass. Anyway, it is heavy to imagine in which mode the cells' concentration can inhibit

its own growth and, probably, the ability of Contois kinetics to be in concordance with the

experimental data is explained by the toxic effect of some metabolic products.

Another model that takes into consideration the inhibitory effect of the biomass on the specific

growth rate is Luong model:

μ ¼
μmax � S

Ks þ S
� 1�

S

Smax

	 


(22)

where Ki is the inhibitory constant and Smax is the substrate concentration at which the

microorganisms are in a stationary growth phase.

A similar variant of the specific growth rate of Monod biomass in which the substrate S

appears at power n (empirical) is Moser model:

μ ¼
μmax � S

n

KS þ Sn
(23)

On the case of bioreactors with two substrates (S1 and S2), the models with Eqs. (3) and (19)–

(23) are combined. For example:

Monod-Monod model

μ ¼ μmax �
S1

K1 þ S1
�

S2
K2 þ S2

(24)

Monod-Andrews model

μ ¼ μmax �
S1

K1 þ S1
�

S2

K2 þ S2 þ
S22
Ki

(25)

When a metabolic product inhibits the growth, the specific growth rate has the following

expression:
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Jarusalimsky model

μ ¼ μmax �
S

Ks þ S
�

Kp

Kp þ P
(26)

Levenspield model

μ ¼ μmax �
S

Ks þ S
� 1�

P

Pmax

	 


(27)

where Kp represents the concentration of the metabolic product P at which μ ¼
1
2 � μmax and

Pmax is the maximum concentration of the metabolic product with inhibitory action.

The variables of the biotechnological process can also be described in function of the variables

that represent the control variables of the bioreactor (temperature, pH, etc.). The control

algorithms of pH and temperature are often complex because of frequent changes of their

optimal values, during the bioprocess period [1].

The influence of the temperature on the maximum specific growth rate of biomass is impor-

tant: decreasing or increasing with one grade the temperature of the optimal value caused the

beginning of the proteins' denaturing process, which is undesirable process. At the smaller

temperatures then that at which the denaturing of the proteins appears, the maximum specific

growth rate of biomass can be modeled using the Arrhenius equation:

μmax ¼ A � e�
Ea

R�T0 (28)

where Ea is activation energy [kJ/mol]; A—pre-exponential factor; R—universal gas constant

and T0 is temperature [K].

Considering that the proteins were denaturized at a temperature of a chemical reversible

reaction having the free energy ΔGd [kJ/mol] and that the denaturized proteins are inactive,

Roels [20] has proposed a mathematical equation for the maximum specific growth rate of

biomass, equation which is relatively alike with Hougen-Watson equation for catalyses activity

in heterogeneous chemical reactions:

μmax ¼
A � e�

Ea

R�T0

1þ B � e�
ΔGd
R�T0

(29)

where B is a constant.

Topiwala and Sinclair model (for temperature)

μmax ¼
a1 � e

�
Ea1
RT0 � a2 � e

�
Ea2
RT0 � b, if T0

1 ≤T
0
≤T0

2

0 , if T0
< T0

1 or T0
> T0

2

(

(30)

where Ea1 and Ea2 are activation energies;

Ris universal gas constant;

a1, a2, and bare constants.
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Eq. (30) shows that the specific growth rate of biomass is continually growing until a maxi-

mum T0
2, value, at which the microorganisms enter in idiophase and then in autolysis.

The pH influence on the cellular activity is determined by the enzymes sensibility at the pH

changes. Enzymes are active only in a particular interval of pH and therefore the enzymes total

activity of cells is a complex function by medium pH.

Rozzi model (for pH)

μmax ¼ a � pH2 þ b � pH þ c (31)

For complex dependences μ ¼ f S1;…; Sms;P1;…;Pmp;X; pH;T0
;…

� �

, the multiplicative princi-

ple is often used:

μ ¼ μmax � f 1 pHð Þ � f 2 Tð Þ � f 3 Xð Þ �
Y

ms

j¼1

φj Sj
� �

�
Y

mp

j¼1

ψj Pj

� �

(32)

where f1(.), f2(.), φj(.), j=1,…, ms and Ψj(.), j=1,…,mp are penalization functions.

In Table 2, the most used mathematical models in biotechnological processes simulation,

models used in process and optimal control of fermentative industrial processes are presented.

Nr. crt. dX

dt

dP

dt

dS

dt
Model

1. μmax �
S

KsþS

� �

� X qpmax �
S

KspþS

� �

� X � 1
Yxs

� dXdt

� �

� 1
Yps

� dPdt

� �

Monod

Inhibitory effect of the substrate

2. μmax �
Sn

KsþSn

� �

� X qpmax �
Sn

KspþSn

� �

� X � 1
Yxs

� dXdt

� �

� 1
Yps

� dPdt

� �

Moser

3. μmax � 1� exp � S
Ks

� �� �

� X qpmax � 1� exp � S
Ksp

� �� �

� X � 1
Yxs

� dXdt

� �

� 1
Yps

� dPdt

� �

Teissier

Inhibitory effect of the substrate and of one of the metabolism products

4.
μmax �

S
1þKs

S þ
S

KXi

	 


� X qpmax �
S

1þ
Ksp
S þ S

KPi

	 


� X � 1
Yxs

� dXdt

� �

� 1
Yps

� dPdt

� �

Andrews and Noack

5. μmax �
S

KsþS

� �

� exp � S
KSi

� �

� X qpmax �
S

KspþS

� �

� exp � S
KPi

� �

� X � 1
Yxs

� dXdt

� �

� 1
Yps

� dPdt

� �

Aiba

6. μmax �
S

KsþS

� �

� 1� S
Smax

� �

� nx qpmax �
S

KspþS

� �

� 1� S
Smax

� �

� nx � 1
Yxs

� dXdt

� �

� 1
Yps

� dPdt

� �

Loung

7. μmax �
S

KsþS

� �

� 1� P
Pmax

� �

� nx qpmax �
S

KspþS

� �

� 1� P
Pmax

� �

� nx � 1
Yxs

� dXdt

� �

� 1
Yps

� dPdt

� �

Levenspiel

8. μmax �
S

KsþS

� �

� exp �Kp � P
� �

� X qpmax �
S

KspþS

� �

� exp �Kpp � P
� �

� X � 1
Yxs

� dXdt

� �

� 1
Yps

� dPdt

� �

Aiba

9. μmax �
S

KsþS

� �

� KPi

KPiþP

� �

� X qpmax �
S

KspþS

� �

�
Kppi

KppiþP

� �

� X � 1
Yxs

� dXdt

� �

� 1
Yps

� dPdt

� �

Jerusalimsky

10. μmax � 1� P
Pmax

� �

� X qpmax � 1� P
Pmax

� �

� X � 1
Yxs

� dXdt

� �

� 1
Yps

� dPdt

� �

Ghose and Tyagi

11. μmax �
S

KsþS

� �

� 1� Kp � P
� �

� X qpmax �
S

KspþS

� �

� 1� Kpp � P
� �

� X � 1
Yxs

� dXdt

� �

� 1
Yps

� dPdt

� �

Hinshelwood

Table 2. The empirical models most used in fermentation industrial processes simulation.
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2.2.5. A batch bioreactor modeling

A batch bioreactor is a closed system that is fed at the beginning of the process with sterile

medium (with S0 initial concentration) and pure culture of the microorganisms with X0 initial

concentration. The microorganisms will grow up by multiplication, and eventually they will

produce metabolisms products by substrate consummation. Inside the bioreactor, the condi-

tions for multiplication will be established: pH, temperature, oxygen feeding (at aerobic pro-

cesses), and stirring (at processes with liquid substrate).

Suppose that the growth rate of the biomass depends only by the cells' mass, the mass balance

equations could be written for

biomass: dXdt ¼ rx;

substrate: dSdt ¼ rs;

metabolism product: dPdt ¼ rp.

One of the simplest models that respect the previous equation is those of Malthus model:

rx ¼ μ � X (33)

where μ is constant; the equation corresponds to exponential growing phase.

The specific growth rate μ can be described by Monod model:

μ ¼
μmax � S

Ks þ S
(34)

with the application of correction factors at the inhibitory process produce by the substrate or

metabolism product.

With the forming rate of biomass rx (33), the consuming rate of the substrate rs and the forming

rate of the metabolite rp, which have been presented at the kinetics model, could be written by

the following equations:

biomass :

dX

dt
¼ μ � X (35)

substrate :

dS

dt
¼ �

μ � X

Y0
xs

�
k1 � Xþ k2 � μ � X

Y0
ps

�ms � X (36)

metabolism product :

dP

dt
¼ k1 � Xþ k2 � μ � X (37)

The biomass forming

It takes place in the aerobic conditions and in Eq. (36) the factor of metabolism products formed

will not appear:

dS

dt
¼ �

μ � X

Y0
xs

�ms � X (38)
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If the substrate is in excess (in exponential growing phase), this means S>>Ks and the process

issues with maximum growth rate of biomass, the model is more simple. The total efficiency

equation of the biomass, at maximum growth rates and constant forming efficiency of the

biomass, becomes

dS

dt
¼ �

μ � X

Y0
xs

(39)

From Eq. (18) results:

S ¼ S0 �
X� X0

Y0
xs

(40)

By combining the above equation with Eq. (35), the following could be obtained:

μmax � dt ¼
KS þ S0 �

X�X0

Y0
xs

S0 �
X�X0

Y0
xs

� �

� X
� dX (41)

and by integrating it between t = 0, X=X0 and t and X the named Monod integrated equation

will be obtained, by which the biomass variation against time can be determined:

μmax � t ¼ ln
X

X0

	 


þ
Ks

S0 þ
X0

Y0
xs

� ln
X

X0

	 


� ln
S0 �

X�X0

Y0
xs

S0

 !" #

(42)

2.2.5.1. The metabolism products forming

2.2.5.1.1. Aerobic processes

In order to model this type of the processes, Eqs. (35)–(37) will be used. If μ will be considered

constant and if the total efficiencies of the biomass and product will be introduced, the

variation of the substrate quantity will be given by Eq. (36) in which the Y’xs efficiency has

been introduced, which means Eq. (39):

dS

dt
¼ �

μ � X

Y0
xs

(43)

and the equation that expresses the reaction product quantity variation will be obtained from

the total efficiency of the product equation, Y’ps, and Eq. (43):

dP

dt
¼

Y0

ps

Y0
xs

� μ � X (44)

2.2.5.1.2. Anaerobic processes

The equations that characterize the cultivation model in the aerobiosis conditions of the

microorganisms, where the products of the reaction (usually primary metabolites) are formed

always, are the mass balance equations, as follows:
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biomass :

dX

dt
¼ μ � X (45)

substrate :

dS

dt
¼ �

μ � X

Y0
xs

�ms � X (46)

metabolism product :

dP

dt
¼

Y0

ps

Y0
xs

� μ � Xþmp � X (47)

The biomass and metabolism production will be completed when the substrate will be wasted.

In case the specific growth rate remains constant, simplifications can be made. Keeping tabs of

total biomass and metabolism products efficiencies, Eqs. (46) and (47) become

dS

dt
¼ �

μ � X

Yxs
(48)

dP

dt
¼

Yps

Yxs
� μ � X (49)

which are identical with the equations that describe the aerobic fermentation. Unfortunately,

during the anaerobic fermentation the biomass growth rate is inhibited by the metabolism

products and the model becomes more complex. An example is the inhibition of the biomass

growth in an alcoholic fermentation by the concentration of formed ethanol:

μ ¼
μmax � S

Ks þ S
� 1�

P

Pmax

	 


(50)

where Pmax represents the maximum concentration of ethylic alcohol at which the biomass

production is stopped.

2.2.5.1.3. Energetically model for the batch bioreactor

The balance energy for reaction medium and bioreactor's jacket can been written as

ΔHr � dSdt
r � cp

�
KT � AT

V � r � cp
T0

� T0
ag

� �

¼
dT0

dt
(51)

Fag

Vag
T0
agi � T0

ag

� �

þ
KTAT

Vag � rag � cpag
T0

� T0
ag

� �

¼

dT0
ag

dt
(52)

where ΔHr is the reaction heat of the fermentation [J/mol of the produced alcohol]; KT is the heat

transfer coefficient [W/m2.K] ; AT is the heat transfer area [m
2]; r, rag is the density of the mass of

the reaction, respectively, of the cooling agent [kg/m3]; cp, cpag is the heat capacity of the mass of

the reaction, respectively, of the cooling agent [J/kg.K]; V, Vagis the fermentationmedium volume,

volume of the jacket [m3]; Fag is the flow of the cooling agent [m3/h]; T0 and T0
agare the temper-

ature of the fermentation medium and temperature of the cooling agent in the jacket [K].
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3. Study case—modeling of a white wine alcoholic fermentation process

Wine making is a complex ecological and biochemical process involving many interactions

such as grape variety, microbiota, and several technological operations. The process' variables

are often controlled empirically and traditionally. There are some factors that strongly affect

the alcoholic fermentation. The most important ones are fermentation temperature, grape juice

composition, anaerobic conditionsdue to CO2 production, low media pH, sulfur dioxide con-

centration level, selected yeasts inoculation, and interaction with other microorganisms [21].

The models developed for these cases consequently have various domains of applications but

none of them include the whole oenological aspects of the process. The majority of the models

are of “knowledge-based” models type and they take into consideration a great number of

phenomena that have an important effect on the kinetics of the process fermentation [22].

This part of the chapter proposes a complex nonlinear wine fermentation model based on

previous researches by the author [23–25].

3.1. Experimental conditions

To evaluate the total fermentation yield losses under different operating conditions, four exper-

iments were carried out and based on the data obtained within these experiments, a mathemat-

ical model was proposed. The strain and the culture medium, the equipment and the

experimental conditions together with the measurements of the fermentation parameters were

presented by Sipos and coworkers [23–25]. For the experiments, the Saccharomyces cerevisiae

YEPD wine yeast was used, being seeded on a culture medium with the following composition:

5 g/L KH2PO4, 2 g/L (NH4)2SO4, 0.4 g/L (MgSO4)
.7H2O, 1 g/L yeast extract, 50 g/L glucose, and

Mauzac must (sterilized through flash pasteurization). The sugar content of the grape must was

supplemented with sucrose up to 180 g/L and 40 mL/h tiaminol was added. The SO2 content

reached 50 mg/L and the pH was adjusted at 3.8 mg/L H3PO4. Both the fermentation medium

and the bioreactor were autoclaved for 20 min at 393 K. A New-Brunswick continuously stirred

bioreactor equipped with pH and temperature sensors was used.

The following operating conditions were as follows: working volume, 8 L; temperature, 291

and 301 K; stirring speed, 150 rpm; pH, 3.8; influent glucose concentrations, 180 and 210 g/L;

without aeration, the necessary oxygen was dissolved in must.

3.2. The mathematical model

The mathematical model of the alcoholic fermentation process was determined on the basis of

the approach of the zone modeling principle, taking into consideration the evolution of the

viable biomass (Xv(t)). Based on the analysis of the phenomenological aspects of the alcoholic

fermentation process, the evolution of Xv(t) was divided into three parts (Figure 5) as follows:

• latent phase (1);

• growing phase (2);

• decay phase (3).
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Table 3 presents the equations of the model. The parameters are adjusted through the

nonlinear programming method, which compares the model predictions with experimental

data and minimizes the errors.

Tables 4 and 5 present the list of the variables and parameters of the mathematical model.
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Figure 5. Evolution of the viable biomass concentration Xv(t).

Current phase Model equations

Kinetic model

Latent phase [23, 24] tlat ¼
a
T0 þ b

Exponential growing phase [1]
- biomass: dXdt ¼ μmax �

S
KSþS

� �

� e�Kp �P � X; μmax ¼ A1 � e
�

Ea1

R�T0 � A2 � e
�

Ea2

R�T0

- alcohol: dPdt ¼ qpmax �
S

KSPþS

� �

� e�Kpp �P � X

- substrate: dSdt ¼ � 1
YXS

� dXdt

� �

� 1
YPS

� dPdt

� �

Decay phase [23–26] - biomass: dXdt ¼ f � X � k; k ¼ A � e�
Ea

R�T0

- alcohol: P ¼ P0 þ η � S0 � Sð Þ

- substrate: dSdt ¼ �k � Sα � Pβ

All phases - carbon dioxide concentration:
dCCO2

dt ¼ g � CCO2
� k � S

KSPþS � ln k � S
KSPþS � t

� �

Energetic model

All phases [23, 26] - for the bioreactor:
ΔHr�dSdt
r�cp

� KT �AT

V�r�cp
T0 � T0

ag

� �

¼ dT0

dt

- for the bioreactor’s jacket:

Fag
Vag

T0
agi � T0

ag

� �

þ KTAT

Vag �rag �cpag
T0 � T0

ag

� �

¼
dT0

ag

dt

Table 3. The model of the alcoholic fermentation process.
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X Biomass concentration g/L

S Substrate concentration g/L

P Alcohol concentration g/L

k Kinetic constant 1/h

A Pre-exponential factor in Arrhenius’ equation 148 (calculated using experimental

data)

1/h

Ea Activation energy 21,424 (calculated using experimental

data)

J/mol

A1 Pre-exponential factor in Arrhenius’ equation 9.5 �108 a 1/h

Ea1 Activation energy 55,000a J/mol

A2 Pre-exponential factor in Arrhenius’ equation 2.55�1033 1/h

Ea2 Activation energy 220,000a J/mol

R Universal gas constant 8.31 J/mol.K

T0 Temperature in bioreactor 291 and 301 K

Ks Substrate limitation constant 0.2a g/L

d Pseudo-constant of the biomass 1.67 (calculated using experimental

data)

f Pseudo-constant of the biomass 0.34

α Pseudo-order of the substrate 0.69b

β Pseudo-order of the alcohol 0.32b

η Efficiency in alcohol of fermentation reaction 48b %

S0 Steady-state operation point of substrate 180 g/L

P0 Steady-state operation point of alcohol 0 g/L

t Time h

μmax Maximum specific growth rate 1/h

KP Alcohol limitation constant 0.14c g/L

qpmax Maximum specific alcohol production rate 1.02c g/

g�cells.h

KSP Constant in the substrate term for ethanol production 1.68c g/L

KPP Constant of fermentation inhibition by ethanol 0.07d g/L

YXS Ratio of cell produced per glucose consumed for growth 0.607d g/g

YPS Ratio of ethanol produced per glucose consumed for

fermentation

0.435c g/g

a[6, 27, 28]
b[26]
c[29]
d[16]

Table 4. Variables and parameters of the kinetic model.
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3.3. Result and discussion regarding the mathematical model simulation

The nonlinear mathematical model of the batch fermentation process (Table 3) used in this

work contains the following equations:

• an equation for the latent phase of fermentation that describes the dependence of the

phase time of the process temperature;

• the model proposed by Aiba [1] for the growing phase with the three equations of

biomass, alcohol production, and substrate consumption;

• the model presented by Bovée-Strehaiano [26] for the decay phase with two equations:

one for the substrate consumption and the other for alcohol formation;

• an equation that describes the biomass behavior along the phase no. 3 (the model pro-

posed by Sipos in [23–25]);

• an equation that describes the carbon dioxide concentration behavior along all the phases

(the model proposed by Sipos);

• an energy balance model in which the rate of change of the medium’s temperature

(dT0/dt) is a result of the balance between the rate of the heat generation due to ferme-

ntation and the rate of the heat transfer to the cooling medium inside the bioreactor

jacket.

The model proposed by Aiba [1] includes the inhibitory effects of the fermentation product

(alcohol). In the growing phase, the value of the maximum specific growth rate of the biomass

KT Heat transfer coefficient 3.6�105 a J/ m2.K.h

AT Heat transfer area 0.8b m2

Fag Flow of cooling agent 0.01b m3/h

Vag Volume of the jacket 0.2b m3

V Volume of the mass of reaction 1b m3

T0
agi Temperature of cooling agent entering to the jacket 278b K

ΔHr Reaction heat of fermentation �98465c J/mol

r Density of the mass of reaction 1100b kg/m3

rag Density of cooling agent 999.8a kg/m3

cp Heat capacity of mass of reaction 3391b J/kg.K

cpag Heat capacity of cooling agent 4217a J/kg.K

T0
ag Temperature of cooling agent in the jacket K

a[17]
bexperimental data
c[30]

Table 5. Parameters of the kinetic model.
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corresponds to the real one. The non-physiological model proposed by Bovée and Strehaiano

[26] was chosen because it accurately describes the substrate consumption and the evolution of

the alcohol concentration in the growing and decay phases. This model proposes the use of a

semi-empirical model in which the velocity of sugar consumption is described by a chemical

law that depends on substrate and product contents. The parameters of the model are adjusted

by means of nonlinear programming methods, which compare model predictions with exper-

imental data and minimize errors [23–25]. The Bovée and Strehaiano model is capable of

predicting the fermented sugar (and thus thermal planning) within an error of 3.3% [25]. Thus,

the model offers a good qualitative and quantitative description of the behavior of the alco-

holic fermentation process.

Figures 6–8 show the simulation results of the model presented in Table 3 considering the

following initial values: the initial substrate concentration was 210 g/L and the fermentation

temperature was 301 K.

The equation of the latent phase is valid for a time interval [0, 100 h] and the model has

been tested for a grape juice variety with an initial concentration of the substrate varying

between 180 and 210 g/L, a fermentation temperature between 299 and 303 K and without

aeration.

Figure 6. Evolution of glucose and alcohol concentrations; a comparison between experimental values (o—glucose and +

—alcohol) and simulation results (continuous lines).
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Figure 8. Comparison between the carbon dioxide concentration simulation results (continuous line) and experimental

data (o).

Figure 7. Comparison between the biomass simulation results (continuous line) and experimental data (o).
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