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Abstract

Understanding the transboundary movement of microorganisms is a significant public
health issue. It is possible that large amounts of various bacteria existing on the earth’s
surface are spreading across borders through migratory birds, but their identities and
rates of migration have yet to be elucidated. Although modern bacteriology has
advanced based on culture technology, many environmental bacteria may be in a “via-
ble but nonculturable” state. To date, various novel culture-independent detection
methods have been developed, including next-generation sequencing (NGS) technology
that enables high-throughput sequencing and in-depth gene analysis independent of
culture. By using NGS to comprehensively analyze the intestinal microbiota of migra-
tory birds, research on bacterial and viral communities traveling over long distances has
entered a new era, providing a new insight for the analysis of the livestock industry,
agriculture, and human health risks. Here, we describe the current state and future
outcomes of studying intestinal microbiota associated with migratory birds.
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1. Introduction

Understanding the transboundary movement of microorganisms is a significant issue regard-

ing health, sanitation, and ecological conservation. Birds are susceptible to many microbial

diseases that are common to humans and domestic animals [1]. The unprecedented spread of

West Nile virus in North America in 1999 has raised concerns over the transport of pathogenic

viruses by migratory birds [2]. Recent sporadic outbreaks of avian influenza have caused

masses of avian deaths, and it is strongly suspected that the source of infection in East Asia is

the feces of migratory birds. In 2014, studies revealed that the influenza virus of the Antarctic

penguin had spread to migratory birds via the fecal-oral route and was highly likely to have

infected horses on continents more than a few thousand kilometers away [3].

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Waterfowls such as ducks, geese, coots, and cormorants can play a role in the environmental

dissemination of Giardia cysts and Cryptosporidium oocysts [4]. Migratory birds are also thought

to be one of the mechanisms responsible for the wide geographic distribution of various human

pathogenic protozoans.

Organized and periodic surveillance methods of bacterial pathogens are not as efficient as

those for the highly pathogenic avian influenza. Avian cholera, caused by Pasteurella multocida,

occurs sporadically in various parts of the world, including North America and Europe, where

migratory birds are also implicated as a vector [5]. Many human enteric pathogenic bacteria

have been isolated from wild birds [6]. Additionally, studies reported that antibiotic-resistant

bacteria travel long distances through migratory birds [7]. Therefore, migratory birds carry a

wide range of viruses, bacteria, protozoa, fungi, and other microorganisms that may be

transmitted to humans [8].

Attempts have been made to clarify the microbiota contained within migratory birds’ feces

using new culture-independent genetic-based methods such as next-generation sequencing

(NGS). Research on the spreading of bacterial populations over the vast distances has led to

the elucidation of the roles of migratory birds regarding human health risks. Further studies of

the spatial and temporal distribution of pathogenic bacteria in wild birds will enhance the

assessment of their roles, thereby enabling the prediction of potential outbreaks based on

migratory patterns. NGS is useful for the understanding of bacterial diversity and the discov-

ery of novel bacteria [9]. This review considers the potential role of wild birds in the transmis-

sion of intestinal microbiota and our current knowledge of microbiota associated with

migratory birds using NGS technologies.

2. Intestinal microbiota in wild birds

The majority of information regarding enteropathogens in wild birds has been ascertained by

applying traditional microbiological techniques [10–12]. Research on the fecal flora of wild birds

in a few well-studied species has focused on the prevalence of enteropathogenic bacteria that are

most likely zoonotic. Representative species that are often found in diseased wild birds include

Salmonella enterica serotypes Typhimurium and Enteritidis, Escherichia coli, Campylobacter jejuni,

Pseudomonas aeruginosa, Pasteurella multocida, Clostridium botulinum, and Listeria monocytogenes.

The carrier birds are often diverse species, including house sparrows, brown-headed cowbirds,

white-throated sparrows, tufted ducks, crows, pheasants, pigeons, hook-bills, finches, free-living

flamingos, quails, pheasants, red grouse, and waterfowl [1, 6, 8].

Many classical methods such as microscopy, culture, or serology have been used to detect and

isolate pathogenic protozoa or fungi from excreta of migratory birds. Candida albicans and

Candida tropicalis, which can become pathogenic in immunocompromised individuals, have

been isolated from excreta of migratory gulls and geese [13]. Toxoplasma gondii has been

isolated from many migratory species including ducks and raptors. Eimeria spp., which cause

severe intestinal coccidiosis, are distributed by geese and diving ducks. These infections are

mainly caused by oral ingestion of oocysts excreted from feces. The oocysts of Cryptosporidium

baileyi, an intracellular enteric coccidian parasite that can cause gastrointestinal and respiratory
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tract disorders in birds, have been found in excreta of migratory gulls and Canada geese. Thus,

waterfowls can disseminate intestinal protozoan parasites in the environment [4].

Representative virus species that often cause fecal-oral disease transmission in wild birds

include Influenza A virus (found in species of ducks, geese, gulls, terns, shearwaters, guillemots,

shorebirds, and passerines), Newcastle disease virus (found in many species of free-living

birds), anatid herpesvirus 1 (found in many species of anseriform such as ducks, geese, and

swans), and aviadenovirus (found in migratory anseriform species) [6, 8].

As vectors of enteropathogens, wild birds have been associated with global outbreaks of

water-borne and food-borne diseases. For example, outbreaks of infectious diseases have been

attributed to fecal water supply contamination by wild birds [14]. Birds were strongly

suspected as a source of enteropathogens for livestock when infected birds were found forag-

ing on the livestock feed, and domestic cats have been known to contract enteropathogens by

feeding on infected dead birds [15]. The incidence of infectious diseases in humans has also

been linked to the handling of dead wild birds [16].

3. Methodology

Traditionally, studies on microbial community composition have been based on culture-

dependent methods [17]. When classifying and identifying bacteria, a combination of simple

methods has helped to distinguish bacteria based on morphology, dyeability, and biochemical

properties. Since automated devices have been developed, it is possible to assure the quality of

microbial-based data in pharmaceutical fields and diagnostics fields as standards. When in

need of more specific classification, sequence decoding for a specific gene or DNA fingerprint-

ing is carried out. When determining bacterial species, it is a standard practice to analyze the

16S rRNA gene.

However, traditional culture methods underestimate bacterial populations because many

environmental bacteria cannot yet to be cultivated by conventional laboratory techniques

[18, 19]. Traditional microbiological methods of detection, enumeration, and identification

using culture methods are often time-consuming and labor-intensive. These practical consider-

ations often limit the extent to which microbiological tests are routinely applied to community

analysis.

Various approaches have been developed to identify microorganisms in natural samples

without the requirement for laboratory cultivation [20–23]. Since the latter half of the 1990s,

direct sequencing approaches for 16S ribosomal RNA gene amplicon have been popularized.

In these methodologies, DNA is extracted directly from the sample without culturing the

bacteria. Target DNA is amplified by polymerase chain reaction (PCR) using a universal

primer set targeting a conserved region of the 16S rRNA gene or a genus-specific primer, and

then sequencing follows to identify the bacterial community members. Because the amplicons

are mixed molecules derived from numerous complex bacterial species, PCR products should

be separated using denaturing gradient gel electrophoresis or a clone library method in

combination [24, 25]. With these methods, the number of bacterial clones that can be screened

at one time is limited from several tens to thousands and proves to be labor-intensive.
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In this decade, a comprehensive analysis of gene sequences using next-generation sequencing

(NGS) has spread rapidly [26, 27]. The NGS is a powerful technology capable of concurrently

determining nucleotide sequences for tens of millions to hundreds of millions of fragmented

DNA strands. Originally, NGS was used for high-throughput sequencing of a single biological

genome, but now it is possible to perform high-speed processing, allowing multiple samples to

be sequenced simultaneously. Therefore, a wide variety of applications have been proposed for

NGS. The price of NGS contract analysis service also has declined greatly in the past few years,

making it easier to use so that it is now more useful for research on genetic diseases, clinical

diagnoses, relationships between human intestinal flora and diseases, analyses of environmental

bacterial community composition and succession in both time and space, and searches for useful

microorganisms in various environments. Metagenomic methods provided by NGS technology

have facilitated a remarkable expansion of our knowledge regarding uncultured bacteria [28].

A more recent detection method, quantitative real-time PCR, is known for its excellent accu-

racy and sensitivity when detecting known zoonotic pathogens [29]. On the other hand, it is

difficult to identify target pathogens that are not previously known with this method, and

often too many samples must be handled simultaneously for it to be convenient. A compre-

hensive analysis by NGS enables us to comprehend a whole picture of the bacterial community

contained in a sample, so it is possible to carry out further analysis with specific pathogenic

bacteria based on the taxonomic information obtained by NGS.

4. Variable region of the 16S rRNA gene

The 16S rRNA gene sequence was first used in 1985 for phylogenetic analysis [30]. Because it

contains both highly conserved regions for primer design and hypervariable regions to iden-

tify phylogenetic characteristics of microorganisms, the 16S rRNA gene sequence became the

most widely used marker gene for profiling bacterial communities [31]. Full-length 16S rRNA

gene sequences consist of nine hypervariable regions that are separated by nine highly con-

served regions [32]. Limited by sequencing technology, the 16S rRNA gene sequences used in

most studies are partial sequences. Therefore, the selection of proper primers is critical for

studying bacterial phylogeny in various environments [32].

Recent studies utilizing high-throughput technology also have demonstrated that the use of

suboptimal primer pairs results in the uneven amplification of certain species, causing either

an under- or overestimation of some species in a microbial community [32, 33]. Integrated

bioinformatics tools were used to evaluate the phylogenetic sensitivity of the hypervariable

regions compared with the corresponding full-length sequences. Results showed that using a

combination of V4–V6 regions represented the optimal subregions for bacterial phylogenetic

studies of new phyla [34].

5. Flyway

Bird migration is the regular seasonal journey undertaken by many species of birds. Bird move-

ments occur as a response to changes in food availability, habitat, or weather. Approximately 1800
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of the world’s 10,000 bird species are long-distance migrants [35]. The bar-tailed godwit, Limosa

lapponica, undertakes one of the avian world’s most extraordinary migratory journeys. Recent

research revealed that some individuals had made nonstop flights over 11,000 km, the longest

continuous journey that has ever been recorded for a bird [36].

Many species migrate along broadly similar, well-established routes, known as flyways.

Recent research has identified nine such pathways: the East Atlantic, the Mediterranean/Black

Sea, the West Asia/East Africa, the Central Asia, the East Asia/Australasia, and four flyways in

the Americas [37]. The most common pattern involves flying north in the spring to breed in the

temperate or Arctic summer and then returning south in the fall to warmer wintering grounds.

Migration is often annual and is linked closely with the cyclic pattern of the seasons. Migration

is most evident among birds, which have a highly efficient means for traveling swiftly over

long distances.

The East Asia/Australasia flyway extends from Siberia and North America to the southern

limits of Australia and New Zealand. It encompasses large parts of East Asia, all of Southeast

Asia, and includes eastern India and the Andaman and Nicobar Islands. The scale of avian

movements along the flyway is awesome, with over 50 million migratory birds using the route

annually [38]. Bacterial community compositions in migratory birds from the East Asia/Aus-

tralasia flyway are described in the section below.

6. Bacterial community composition in migratory birds

A comprehensive analysis of the bacterial community structure in migratory birds using

culture-independent methods is introduced below.

6.1. Confirmation of avian host

For field samples, it is important to confirm that the specimens are derived from the desired

avian host. Mitochondrial DNA (mtDNA) sequences from avian hosts are ideal for this pur-

pose because they provide phylogenetic information and a high copy number in host cells.

Kenzaka et al. [39] amplified avian host DNAs by PCR with primers L5216 (5´-ACTCTTRTT-

TAAGGCTTTGAAGGC-30) and H6313 (5´-GGCCCATACCCCGRAAATG-30) targeting the

NADH dehydrogenase subunit 2 (ND2) gene and determined the sequences to confirm the

avian host feces [40]. The mtDNA sequences from a variety of avian species are available in

DNA database (e.g., GenBank).

6.2. Eurasian wigeon

The Eurasian wigeon (Mareca penelope or Anas penelope) breeds in the northernmost areas of

Europe and Asia. The size of the wigeon is approximately 50 cm in length (Figure 1a). The

global population is estimated approximately 2.8–3.3 million individuals [41]. The species is

strongly migratory, undertaking significant cold weather movements of varying magnitudes.

It leaves its breeding grounds in late summer to arrive in its wintering grounds across Europe

and Asia in October and November. It lives primarily in lakes, rivers, and along coastlines and
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prefers a location near water plants and land plants that it can eat. The number of observed

individuals in Japan has been about 180,000 per year.

Kenzaka et al. collected fresh feces from the Eurasian wigeon that had fallen on plant surfaces

along the southern coast of Lake Biwa (Japan) [39]. From this research, most fecal sample

bacterial communities were dominated by the phyla Firmicutes (51.7%) and Proteobacteria

(45.1%), composing an average of about 97% (Figure 2a). At the family level, on average,

Enterobacteriaceae composition was 37.6%, Bacillaceae was 21.5%, Paenibacillaceae was 16.5%,

Clostridiaceae was 7.5%, and Pseudomonadaceae was 6.3% (Figure 2b). Although there were

individual differences, these families were the dominant groups in all samples collected.

Detected genera that have been reported in association with human pathogenicity are shown

in Table 1. The genera Pantoea, Bacillus, Paenibacillus, Pseudomonas, Clostridium, Escherichia/

Shigella, Helicobacter, and Serratia were found at a rate of more than 0.1% of total sequences.

On the other hand, the genus Campylobacter, which is present in various birds and known as

causative bacteria of food poisoning [42], was detected but composed less than 0.1% of the

bacterial community in 60% of the samples. Compositions for both the genus Listeria, a

zoonotic infectious pathogen-causing listeriosis [43], and the genus Pasteurella, a pathogen of

poultry cholera [5], were less than 0.1% in all of the samples.

6.3. Barn swallow

The barn swallow (Hirundo rustica) has a total length of about 17 cm, and its weight is about

18 g (Figure 1b). The global population is estimated more than 190 million individuals approx-

imately. This species breeds in a wide range of climates and over a wide range of altitudes,

preferring open country like farmland and near water and buildings that provide nesting sites.

The barn swallow is primarily a rural species in Europe and North America, while in North

Africa and Asia, it often breeds in towns and cities [44]. Many swallows migrate to Japan from

Southeast Asia (i.e., Philippines, Malaysia, Indonesia, etc.) and breed near human-living envi-

ronments, such as private houses and the eaves. Swallows mainly feed on insects. After

breeding, they gather at river beds and reed borders, forming group roosts of 1000–10,000 of

individuals, and then return to Southeast Asia in autumn. The number of observed individuals

in Japan is estimated at several hundred thousand birds per year.

Figure 1. Photographs of (a) Eurasian wigeon and (b) barn swallow.
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In Osaka Prefecture (Japan), Kenzaka et al. collected specimens of fresh swallow feces from

under a mating pair’s nest, made at the edge of a private house or artificial building [45].

Figure 2c shows the results of the bacterial community composition analysis (at the phylum

level) found in swallow feces. Most fecal samples were dominated by Proteobacteria (72.1%),

Firmicutes (15.9%), and Tenericutes (5.7%), composing on average about 94% of the bacterial

community. Moreover, the proportion of Bacteroidetes, which is a human gut-dominant bacte-

rial phylum, was about 0.4%. On the family level, Enterobacteriaceae composition was about

53.3% on average, Pseudomonadaceae was 13.6%, Mycoplasmataceae was 5.5%, Enterococcaceae

was 4.8%, Streptococcaceae was 4.6%, Alcaligenaceae was 4.3%, Lactobacillaceae was 1.7%, and

Coxiellaceae was ~1.3% (Figure 2d). Although there were individual differences, any of these

bacterial groups dominated more than 10% in all samples.

Table 1 shows the major genera with high abundance, namely, Pseudomonas spp., Escherichia/

Shigella spp., Enterobacter spp., Yersinia spp., Mycoplasma spp., Enterococcus spp., Achromobacter

spp., Fusobacterium spp., and Serratia spp. All of these genera include species that are reported as

Figure 2. Relative proportions of bacterial phylotypes in individual fecal samples of barn swallow shown at the

(a) phylum level and (b) family level and of Eurasian wigeon at the (c) phylum level and (d) family level.
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pathogenic to humans. The genus Campylobacter was detected in some samples but at a rate of

<0.1% in only 40% of the samples. The genera Pasteurella and Listeria composed of <0.1% in all

samples. Also, Bacteroides spp., Bifidobacterium spp., and Prevotella spp., which are all commonly

dominant in the human intestine [46, 47], comprised <0.1% in more than 90% of samples.

6.4. Bar-headed goose

Wang et al. examined metagenomic profiling of gut microbial communities in both wild and

artificially reared bar-headed geese in China [48]. The bar-headed goose (Anser indicus) breeds

in the high plateaus of Central Asia in colonies of thousands near mountain lakes and winters

in South Central Tibet and India. This species has been reported as migrating south from Tibet,

Kazakhstan, Mongolia, and Russia, crossing the Himalayas [49].

The authors found that Firmicutes, Proteobacteria, Actinobacteria, and Bacteroidetes were the four

most abundant phyla in the gut of bar-headed geese. In wild bar-headed geese, the predominant

phylum was the Firmicutes, with an average relative abundance of 83.2%. The second most

predominant bacterial lineage, constituting 11.8%, was identified as phylum Proteobacteria,

followed by Actinobacteria and Bacteroidetes, accounting for 2.5 and 0.9%, respectively, of the

relative abundance.

At the genus level, the sequences from the wild samples represented 106 genera. Four major

genera (Streptococcus, Lactococcus, Bacillus, and Enterococcus) belonged to phylum Firmicutes,

Genus Relative proportion (%)a

Eurasian wigeon Barn swallow

Pseudomonas spp. 33.2 <0.1

Escherichia/Shigella spp. 21.1 <0.1

Enterobacter spp. 16.5 <0.1

Yersinia spp. 6.1 17.7

Mycoplasma spp. 5.7 <0.1

Enterococcus spp. 3.1 13.4

Achromobacter spp. 0.4 <0.1

Fusobacterium spp. 0.1 0.2

Serratia spp. <0.1 11.2

Pantoea spp. <0.1 9.9

Bacillus spp. <0.1 9.2

Paenibacillus spp. <0.1 7.2

Clostridium spp. <0.1 4.8

Helicobacter spp. <0.1 0.8

a>0.1% of total OTUs.

Table 1. Relative proportion of OTUs belonged to representative genus in feces samples determined by 16S

metagenomics sequencing.
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the genus Pseudomonas belonged to phylum Proteobacteria, and Arthrobacter belonged to

Actinobacteria. Wang et al. compared the bacterial compositions between wild and artificially

reared populations of bar-headed geese [48]. They found that Bacteroidetes was significantly

more abundant in the artificially reared population compared to the wild population.

They also reported on functional profiling and found that artificially reared bar-headed geese

had more genes related to carbohydrate transport and metabolism, energy metabolism and

coenzyme transport, and metabolism, in general.

6.5. Shorebirds

Ryu et al. examined intestinal microbiota of migrating shorebirds in Delaware Bay (Delaware,

United States) on Atlantic flyway using a 16S rRNA clone library [50]. The authors collected

the pellets from ruddy turnstones, red knots, and semipalmated sandpipers, which use the

Atlantic flyway. The flyway route generally follows the Atlantic Coast of North America and

the Appalachian Mountains.

The ruddy turnstone (Arenaria interpres) is a small wading bird. The global population is

estimated approximately 460,000–730,000 individuals [51]. The ruddy turnstone breeds in

northern latitudes around the sea. A subspecies occurs in Northern Alaska and in Arctic

Canada, Greenland, Northern Europe, and Northern Russia. In the America, the species

winters on coastlines from Washington and Massachusetts southward to the southern tip of

South America. The red knot (Calidris canutus) is a medium-sized shorebird. The global popu-

lation is estimated approximately 891,000–979,000 individuals [52]. The species has an

extremely large range, breeding from Alaska across the Arctic to Greenland and Northern

Russia. It winters on the Atlantic and Pacific coasts of North and South America, as well as

Northwestern Europe. The semipalmated sandpiper (Calidris pusilla) is a very small shorebird.

The global population was estimated at about 2 million individuals in 2006 [52]. It is a common

breeder in the Arctic and subarctic, from Far Eastern Siberia east across Alaska and Northern

Canada to Baffin Island and Labrador. In the non-breeding season, the species uses coastal

estuarine habitats, wintering on the Pacific coast fromMexico to Peru and on the Atlantic coast

from the Yucatan and the West Indies south to central Argentina. At one particular staging site

in Delaware Bay, thousands of these shorebirds aggregate every spring to refuel for their

migration to the Canadian Arctic.

Of about 4000 16S rRNA clone sequences analyzed from these shorebirds, the bacterial com-

munity was mostly composed of Bacilli (63.5%), Fusobacterium (12.7%), Epsilonproteobacteria

(6.5%), and Clostridia (5.8%). The high abundance of Firmicutes in shorebird excreta was

consistent with other avian studies. At the genus level, three main genera, Bacillus spp.,

Catellicoccus spp., and Lysinibacillus spp., constituted about 60% of the total sequences. The

relatively low abundance of phylum Bacteroidetes and genus Bacteroides in shorebird excreta

also was consistent with other avian studies. Analysis of epsilonproteobacterium-specific 23S

rRNA gene clone libraries showed that sequences were dominated by Campylobacter (82.3%) or

Helicobacter (17.7%) spp. In particular, Campylobacter jejuni, C. coli, and C. lari are known to be

pathogenic species causing human gastroenteritis worldwide. C. lari constituted about 30% of

the total Epsilonproteobacteria clones, but the pathogenic species of C. jejuni and C. coli were not

detected in the feces of the three shorebird species.
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6.6. Bacterial community composition in migratory and nonmigratory birds

Application of NGS for analyzing the intestinal flora of various animals, including humans, is

rapidly increasing. In studies on nonmigratory birds, such as chickens, turkeys, ducks, and

penguins, Bacteroidetes, Firmicutes, Proteobacteria, and Actinobacteria are reported to be high at

the phylum level in all birds [53–55]. In particular, Firmicutes was present in almost all bird

samples, while Proteobacteria and Bacteroidetes were present in about 90% of samples. It has

been reported that Tenericutes was present in about 60% of samples. In the swallow samples, it

was characteristic that Proteobacteria occupied a high percentage of the community, 50% or

more, but the proportions of phylum Bacteroidetes, represented by genera Bacteroides,

Bifidobacterium, and Prevotella, which are widely present in human intestines, were low.

In the case of the Eurasian wigeon, it was characteristic that the proportions of Bacteroidetes,

Actinobacteria, and Tenericutes were lower, which is different from other birds. Also, genera

Bacteroides and Bifidobacterium, which were widely present in human intestine, were low

although the genera which belonged to Firmicutes and Proteobacteria were high.

Figure 3 shows the relative proportions of bacterial phylotypes in intestinal microbial communities

of the Eurasian wigeon, the barn swallow, other birds, and mammals registered in DNA database

GenBank. Figure 4 shows the results of principal component analysis comparing the similarities

between the intestinal microbial communities of the migratory birds with other birds and

Figure 3. Relative proportions of bacterial phylotypes shown at the class level in gut samples of migratory birds and

others.
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mammals registered. It is highly likely that migratory birds may eat different foods from individual

to individual, so differences across individuals are large compared to poultry; however, compared

with other organisms (□, ■ in Figure 4), individual intestinal microbiota from the Eurasian wigeon

(▼) and the swallow (○) were relatively similar. In particular, intestinal bacterial composition was

found to be greatly different frommammals, such as swine, beef cattle, and dairy cattle (■). It seems

that each intestinal bacterial community is formed by the food consumed, whether it is an insect

meal, an herbivorous meal, an omnivorous meal, a carnivorous meal, and so on.

7. Protozoa and fungi in migratory birds

For comprehensive analysis by NGS of eukaryotic parasite, 18S rRNA gene, 28S rRNA gene, or

cytochrome c oxidase I (COX1) gene on mitochondrial DNA has been used. The universal

primers can amplify species across a broad variety of taxa, making them a time- and cost-

effective alternative to group-specific primers. Using multiple markers may provide a broader

taxonomic resolution of biological communities including diet. The diversity of sequences that

can be detected by universal primers is often compromised by high concentrations of DNA

templates of some groups. Moreover, up to 90% of the sequences obtained from NGS can be

Figure 4. Principal component analysis of class abundance data from migratory birds and others.
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less-degraded host DNA [56]. If the DNA within the sample contains a small number of inter-

esting sequences in relatively high concentrations of non-interesting sequences, less sequences

are often not amplified. In this case, the use of annealing inhibiting primers which overlap with

the 30 end of one of the universal primers is effective [57]. The inclusion of primers to block host

DNA amplification can increase the number of nonhost sequences significantly.

As fungi contained in the intestinal tract of seabirds, Blastocladiomycota, Chytridiomycota, Entomo-

phthoromycotina, Ascomycota,Mucoromycotina, and Basidiomycota have been detected [58, 59]. Nebela

spp., Alveolata, Stramenopila, Rhizaria, Amoebozoa, Excavata, Choanoflagellatea, Glaucophyta,

Cryptophyceae, Chlorophyceae, Trebouxiophyceae, Ulvophyceae, Prasinophyceae, and Mamiello-

phyceae have been detected as protozoa contained in the intestinal tract of seabirds.

8. Conclusion and future perspectives

The use of culture-independent methods for studying bird-associated microbial communities

could prove invaluable in the expansion of our current knowledge. NGS targeting the 16S

rRNA gene allows comprehensive clarification of the sampled bacterial communities and their

associated movement with migratory birds. This methodology also is clarifying the details of

bacterial communities, which are moving long distances with migratory birds. Since the 16S

rRNA gene differs from 1 to 16 in the number of copies per cell depending on genus [60], the

relative proportion obtained by NGS does not necessarily agree with the ratio of actual

community composition, but the dominant populations can be ascertained. Applications of

NGS will lead to a better understanding of the whole picture of the bacterial communities in

migratory birds. Narrowing down the target bacteria using NGS will enable us to identify

unknown pathogens or reveal the potential migration status of known pathogens that have not

been noticed thus far due to methodological constraints.

The dynamics of individual pathogenic bacteria and drug-resistant bacteria need to be exam-

ined in detail in the future. By conducting community composition investigations in parallel

with functional investigations (e.g., drug resistance), these methods will lead to an under-

standing of the mechanisms by which multidrug-resistant bacteria spread around the world.

Addressing the current implications of birds as potential vectors of pathogenic bacteria is of

great interest. Analysis of the indigenous bacterial flora of migratory birds may highlight the

importance of human hygiene and the environmental significance of microbial transfer associ-

ated with natural avian migratory patterns. When wild birds are vectors of disease, it is

important to identify the true source of the infectious organisms. NGS, being a culture-

independent method, will facilitate further understanding of the complexities and interactions

of the genera inherently present in the avian gut and of those acquired from the environment.
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