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Abstract

Elastic constants and homogenized properties of two monoclinic structures (gypsum and
tobermorite) were investigated by first-principles method. The gypsum (chemical formula
of CaSO4•2H2O) is an evaporite mineral and a kind of hydration product of anhydrite.
Besides, the 11 Å tobermoritemodel (chemical formula: Ca4Si6O14(OH)4�2H2O) as an initial
configuration of C-S-H structure is commonly used. Elastic constants are calculated based
on density functional theory (DFT), which can also contribute to provide information for
investigating the stability, stiffness, brittleness, ductility, and anisotropy of gypsum and
tobermorite polycrystals. In addition, based on elastic constants (13 independent con-
stants) of themonoclinic gypsum crystal, the elastic properties of polycrystals are obtained.
The bulk modulus B, shear modulus G, Young’s modulus E, and Poisson’s ration ν are
derived. Therefore, it is fairly meaningful to study the elastic constants to understand the
physical, chemical, and mechanical properties of two monoclinic structures. Elastic con-
stants can be used as the measure criterion of the resistance of a crystal to an externally
applied stress. The calculated parameters are all in excellent agreement with reference.

Keywords: DFT calculation, single crystal, nano scale, elastic constants,
homogenized moduli

1. Introduction

The density functional theory (DFT) is commonly used to study the crystal structure, lattice
energy, the equation of state, the electronic bandgap, and vibration spectra properties [1].
Based on the kinetic energy density functional of Thomas [2] and the exchange-correlation
effects of Dirac [3], DFT has been greatly developed by Kohn and Sham (KS) [4], who have
established the fundamental approximation theorem on the functional status to describe real
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systems by electronic structure calculations. The eigenvalues of KS equations have no phys-
ical meaning, and the ionization energy is in the opposite state direction [5]. Moreover, one
proposed approach is to introduce the eigenstates to calculate multi-body (many-body calcu-
lation) on the basis of Monte Carlo calculations [6] and perturbation theory [7]. The calculation
of elastic constants is preceded by full geometry optimization and the stress tensor calculation
of a number of distorted structures at the atomic scale. Polycrystalline structure constituted by
a single crystal structure contains a variety of information (e.g., orientation) and the properties
of a single crystal, such as anisotropy. Within the mechanics of typical crystals structures, the
transition from the micro- to the meso-scale (homogenization) and vice versa (localization) can
be estimated. Homogenization is an idealized description of a statistical distribution inside the
actual heterogeneous material. Once the continuity model is admitted, the concept of homoge-
neity is deduced from it [8]. For quasi brittle materials, Zhu et al. [9] have formulated the
anisotropic model in the framework of Eshelby-based homogenization methods. X-rays dif-
fraction measurement is one of the stress assay test methods in physics field, of which the stress
is actually determined by the strain [10]. Diffraction-based stress analysis depends critically on
the use of the correct diffraction elastic constants [11]. X-ray method to test the material stress
and to obtain elastic constants [12] is commonly based on the Reuss model [13]. Elasticity of
single crystal and mechanical properties of polycrystalline material have been closely inte-
grated. Various calculations methods are compared to determine homogenized moduli of the
polycrystalline material composed of a single crystal, for example, the certain stress of Reuss
model [13] and the certain strain of Voigt model [14].

DFTas a first-principles theory and a solid band theory in quantum mechanics has own a great
success in linking physical properties and molecular structure, the calculation with exact
accuracy but for low computational efficiency for macromolecular structure, which can be
used to calculate elastic constants of anisotropic crystals, the monoclinic gypsum, and
tobermorite crystals, for example. The chemical formula of gypsum is CaSO4•2H2O, which is
an evaporite mineral and a kind of hydration product of anhydrite (chemical formula: CaSO4).
Moreover, the 11 Å tobermorite model (chemical formula: Ca4Si6O14(OH)4�2H2O) as an initial
configuration of C-S-H structure is commonly used. Since Young’s modulus parameters of
gypsum and C-S-H are important to the multi-scale model [15], elastic constants of the gypsum
crystal are investigated. The crystal is monoclinic, with 13 independent constants. For the
homogenization of elastic deformation, especially for polycrystalline structures, the traditional
Reuss-Voigt-Hill method is used to calculate the elastic moduli of monoclinic structures. Based
on the ab initio plane-wave pseudopotential density functional theory method mentioned
earlier, we focus on the monoclinic crystals to estimate their homogenized elastic moduli.

2. Theoretical calculation by density functional theory (DFT)

Despite the above advantages of DFT, however, the resolution of a system by Kohn-Sham
equations involves difficulties due to an infinite number of electrons. These electrons maybe
changed under an effective potential generated by an infinite number of cores or ions.
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2.1. Equation of the theoretical approximate solution

From a microscopic point of view, Schrödinger equation describing a periodic crystal system

composed of atomic nuclei n in mutual interaction and electron spin σi is positioned

and respectively.

ð1Þ

Hamiltonian, in simple cases, consists of five terms: the kinetic energy of the electrons and

nuclei, and the various interactions between them.

ð2Þ

The possible analytical representation and resolution of such a problem become a difficult task

due to the limited memory of the computer tools. However, it is possible to reformulate the

problem using appropriate theorems and approximations.

The fundamental principle approaches of mean field theory, in particular the DFT, are that any

properties of an interacting particle system can be considered as a functional density in the

ground state of the system n0(r). Besides, the scalar function of the position n0(r) essentially

determines the wave functions of the system at the ground state and the excited states.

Electronic and mechanical properties of a periodic crystal refer to solid state physics, quantum

mechanics, and crystallography.

The crystalline ion movement of the electron is as and assumes that the

electron mobility (w) does not depend on the speed nuclei but on their positions.

According to the Born-Oppenheimer or adiabatic approximation [16], the dynamics of the

system (electrons and nuclei) is described. The electrons are assumed to react instantly to ionic

motion. In electronic coordinates, the nucleus positions are considered as immobile external

parameters.

ð3Þ

ð4Þ

where the last term of the Hamiltonian is constant and has been introduced in order to

preserve the neutrality of the system and avoid the divergence of the eigenvalues. Clean the

ground state of the system for fixed nuclear positions, total energy is given by the formula:

ð5Þ
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This energy has a surface in the space coordinates that is said to be ionic Born-Oppenheimer

surface. The ions move according to the effective potential energy, including Coulomb repul-

sion and the anchoring effect of the electron, which are as follows:

ð6Þ

ð7Þ

The dissociation degrees of freedom of electrons from those of nucleons, obtained through the

adiabatic approximation, are very important, because if the electrons must be treated by quan-

tummechanics, degrees of freedom of ions in most cases are processed in a conventional manner.

This theorem/approach of Hohenberg and Kohn tries to make an exact DFT theory for many-

body systems. This formulation applies to any system of mutually interacting particles in an

external potential , where the Hamiltonian is written as.

ð8Þ

DFT and its founding principle are summarized in two theorems, first introduced by

Hohenberg and Kohn [17], which refer to the set of potential and the density minimizing

of Eq. (5).

The total energy of the ground state of a system for interacting electrons is functional

(unknown) of the single electron density

EHK n½ � ¼ T n½ � þ Eint n½ � þ

ð

d
3
rVex rð Þ þ Enn R

!� �

� FHK n½ � þ

ð

d
3
rVex rð Þ þ Enn R

!� �

(9)

As a result, the density n0(r) minimizing the energy associated with the Hamiltonian (9) is

obtained and used to evaluate the energy of the ground state of the system.

The principle established in the second theorem of Hohenberg and Kohn specifies that the

density that minimizes the energy is the energy of the ground state

E
BO

R
!h i

¼ minE R
!

; n r
!

� �� �

(10)

Because the ground state is concerned, it is possible to replace the wave system function by the

electron charge density, which therefore becomes the fundamental quantity of the problem. In

principle, the problem boils down to minimize the total energy of the system in accordance

with the variations in the density governed by the constraint on the number of particles

. In this stage, the DFT can reformulate the problem rather than solve an uncertain

functional FHK(n).
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2.2. The approximation approach of Kohn-Sham

The approach of Kohn-Sham system substitutes the interacting particles, which obeys the Ham-

iltonian in Eq. (3), by a less complex system easily solved. This approach assumes that the density

in the ground state of the system is equal to that in some systems composed of non-interacting

particles. This involves independent particle equations for the non-interacting system, gathering

all the terms complicated and difficult to assess, in a functional exchange-correlation EXC nð Þ.

ð11Þ

T is the kinetic energy of a system of particles (electrons) independently (non-interacting)

embedded in an effective potential which is no other than the real system,

ð12Þ

The Hartree energy or energy of interaction is associated with the Coulomb interaction of the

self-defined electron density.

ð13Þ

n rð Þ ¼
X

Ne

i¼1

wi rð Þj j2 (14)

Solving the auxiliary Kohn and Sham system for the ground state can be seen as a minimiza-

tion problem while respecting the density n(r). Apart from orbital function TS, all other terms

depend on the density. Therefore, it is possible to vary the functions of the wave and to derive

the variational equation:

δEKS

δw
∗

i rð Þ
¼

δTS

δw
∗

i rð Þ
þ

δEex

δn rð Þ
þ

δEHartree

δn rð Þ
þ

δExc

δn rð Þ

� �

δn rð Þ

δw
∗

i rð Þ
¼ 0 (15)

With the constraint of orthonormalization wi wj

�

�

�

E

¼ δi, j

D

, this implies the form of Kohn-Sham

for Schrödinger equations:

H
∧

KS � εi

� �

wi rð Þ ¼ 0 (16)

εi represents the eigenvalues, and H
∧

KS is the effective Hamiltonian H,

H
∧

KS rð Þ ¼ �
1

2
∇

2 þ VKS rð Þ (17)

VKS rð Þ ¼ Vex rð Þ þ
δEHartree

δn rð Þ
þ

δExc

δn rð Þ
(18)
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Eqs. (16)–(18) are known equations of Kohn-Sham, the density n(r) and the resulting total

energy EKS. These equations are independent of any approximation on the functional EXC(n),

resolution provides the exact values of the density and the energy of the ground state of the

interacting system, provided that EXC(n) is exactly known. The latter can be described in terms

of Hohenberg Kohn function in Eq. (8)

Exc n½ � ¼ FHK n½ � � TS n½ � þ EHartree n½ �ð Þ (19)

or more precisely,

Exc n½ � ¼ T
∧

	 


� TS n½ � þ V int

∧

	 


� EHartree n½ � (20)

This energy is related to potential exchange-correlation Vxc ¼
∂Exc

∂n rð Þ.

For the exchange-correlation functional, the only ambiguity in the approach of Kohn and Sham

(KS) is the exchange-correlation term. It is subject to functional approximations of local or near

local order of density that said energy EKS can be written as

Exc n½ � ¼

ð

n rð Þεxc n½ �; rð Þd3r (21)

where εxc([n], r) is the exchange-correlation energy per electron at point r, it depends on n(r) in

the vicinity of r. These approximations have made enormous progress in the field.

1. The approximation of the local density (LDA)

The use of the local density approximation (LDA) in which the exchange-correlation

energy E
LDA

xc
n½ � is another integral over all space, assuming that εxc([n], r) is the exchange-

correlation energy per particle of a homogeneous electron gas of density n

E
LDA

xc
n½ � ¼

ð

n rð Þεbom
xc

n rð Þ½ �d3r ¼

ð

n rð Þ ε
bom

x
n rð Þ½ � þ ε

bom

c
n rð Þ½ �

� �

d
3
r (22)

The exchange term E
bom

x
n rð Þ½ � can be expressed analytically, while the correlation term is

computed accurately using the Monte Carlo by Ceperley Alder [18] and then set in

different shapes [19].

This approximation has been particularly checked to deal with non-homogeneous systems.

2. The generalized gradient approximation (GGA)

The generalized gradient approximation (GGA) involves the local density approximation

providing a substantial improvement and better adaptation to the systems. This approx-

imation is equal to the exchange-correlation term only as a function of the density. A first

approach (GEA) was introduced by Kohn and Sham then used by the authors of Herman

et al. [20].
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This notion of GGA is the choice of functions, which allows us a better adaptation to wide

variations so as to maintain the desired properties. The energy is written in its general

form [21]:

EGGA
xc n½ � ¼

ð

n rð Þεxc n; ∇nj j;…½ �d3r ¼

ð

n rð Þεbomx nð ÞFxc n; ∇nj j;…½ �d3r (23)

where εbomx is the exchange energy of an unpolarized density n(r) system. There are many

forms of FXC, the most used are those introduced by Becke [22] and Perdew [23, 24].

2.3. Parameters of Bloch theorem and Brillouin zone

Different states of the Schrödinger equation for an independent particle in a system. By Kohn

and Sham equations, responding to eigenvalue equation is as:

H
∧

eff rð Þψi rð Þ ¼ �
ℏ
2

2m
∇

2 þ Veff rð Þ

� �

ψi rð Þ ¼ εiψi rð Þ (24)

where the electrons are immersed in an effective potential .

The effective potential has the periodicity of the crystal and may be expressed using Fourier

series, in a periodic system:

Veff rð Þ ¼
X

m

Veff Gmð Þexp iGmrð Þ (25)

Gm is the reciprocal lattice vector:

Veff Gð Þ ¼
1

Ωsell

ð

Ωsell

Veff rð Þexp �iGmrð Þdr (26)

where Ωsell is the volume of the original mesh.

As the translational symmetry, it is that states are orthogonal and conditioned by the limits of

the crystal (infinite volume). In this case, the Eigen functions of KS are governed by the Bloch

theorem: they have two quantum numbers: the wave vector k in the Brillouin zone (BZ) and

the band index i, and this can be expressed by a product of a plane wave exp.(ik, r) and a

periodic function:

ψi,k rð Þ ¼ exp ik; rð Þui,k rð Þ

ui,k rþ Rð Þ ¼ ui,k rð Þ

R ¼
P

niai, ni ¼ 1…Ni

(27)

where R is the vector of direct space defined by ai with i∈ 1; 2; 3f g and Ni is the number of

primitive cells in each direction (Ni ! ∞ in the case of perfect crystal).
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Solving Eq. (24) is equivalent to increase the periodic function ui,k rð Þ, in a database-dependent

functions points k : fk
j rð Þ j ¼ 1…Nbas kð Þj g

n

:

ui,k rð Þ ¼
X

j
C
j
if

k
j rð Þ (28)

where fk
j is the wave function developed in a space of infinite dimensions; this means that j

should be in principle infinite. But, in practice, we work with a limited set of basic functions,

which imply that the description of fk
j will approximate. That the selected database simply

solves the system:

X

m0

Hm,m0 kð ÞCi,m0 kð Þ ¼ εi kð ÞCi,m kð Þ

Hm,m0 kð Þ ¼ w
j
m,k H

∧

eff

�

�

�

�

�

�w
j
m,k

	 
 (29)

where each point is a set of k eigenstates, the label having i = 1, 2,… obtained by diagonaliza-

tion of the Hamiltonian in Eq. (29).

It is necessary to integrate the points k in the Brillouin zone. For a function fi(k) where i defines

the band index, the average value is

f i ¼
1

Nk

X

k

f i kð Þ !
Ωcell

2πð Þd

ð

BZ

f i kð Þdk (30)

Ωcell is the cell volume of the original mesh in the real space and 2πð Þd=Ωcell of the cell volume

of the Brillouin zone are determined using a sampling points k. Several election procedures

exist for these points. Particularly those of Baldereschi [25], Chadi and Kohen [26], and

Monkhorst and Pack [27] are the most frequently used.

3. Elastic constants and homogenized moduli of monoclinic structure

According to the crystal theory [28], any crystal lattice system contains six independent vari-

ables, namely the cell side length a, b, and c; unit cell angle α, β, and γ. Generally, the crystal

under a certain deformation, temperature, and pressure can be described by the corresponding

six-dimensional deformation tensor. The temperature and pressure will cause cell-deformed

configuration tensor as

XP,T ¼

aP,Tx aP,Ty aP,Tz

bP,Tx bP,Ty bP,Tz

cP,Tx cP,Ty cP,Tz

2

6

6

4

3

7

7

5

¼

a0,0x a0,0y a0,0z

b0,0x b0,0y b0,0z

c0,0x c0,0y c0,0z

2

6

6

4

3

7

7

5

1 0 0

0 1 0

0 0 1

2

6

4

3

7

5
þ

α1 P;Tð Þ α6 P;Tð Þ α5 P;Tð Þ

α6 P;Tð Þ α2 P;Tð Þ α4 P;Tð Þ

α5 P;Tð Þ α4 P;Tð Þ α3 P;Tð Þ

2

6

4

3

7

5

0

B

@

1

C

A

(31)
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where

aP,Tx aP,Ty aP,Tz

bP,Tx bP,Ty bP,Tz

cP,Tx cP,Ty cP,Tz

2

6

6

4

3

7

7

5

and

α1 P;Tð Þ α6 P;Tð Þ α5 P;Tð Þ

α6 P;Tð Þ α2 P;Tð Þ α4 P;Tð Þ

α5 P;Tð Þ α4 P;Tð Þ α3 P;Tð Þ

2

6

4

3

7

5
separately represent the cell

configuration tensor and the deformation tensor at temperature T (K) under the pressure P (GPa).

3.1. Calculation of elastic constants for single crystal structure

A multi-particle electronic structure satisfies the Schrödinger equation. As in [29], Kohn-Sham

equation as an approximation to simplify Schrödinger equation is described. For crystal com-

posed by vibrator with the vibration frequency wi, the total Helmholtz free energy is

F ¼ Eþ
X

i

Fthi ¼ U þ
X

i

1

2
ℏwi þ kBT

X

i

In 1� e
�

ℏwi
kBT

� �

(32)

Helmholtz free energy can be calculated for all the thermodynamic quantities. DFT-QHA

(quasi-harmonic approximation) is a precise calculation method to calculate thermodynamic

properties of solid materials elastic constants and Debye temperature with the accurate pre-

dictions.

According to the theory of elasticity, under the isothermal strain, the elastic modulus of

Helmholtz free energy can be described by the form of the Taylor expansion, of which the

coefficients of the polynomial are the elastic coefficient:

r0F ηij;T
� �

¼ r0F ηij;T
� �

þ
1

2

X

ijkl

cTijklηijηkl þ…þ
1

n!

X

ijkl…

cTijkl…ηijηkl… (33)

where ηij,ηkl, and ηmn are the coefficients of Lagrange deformation tensor, cTijklis the isothermal

first-order elastic coefficients, and F ηij;T
� �

is the Helmholtz free energy.

The components of the stress tensor can be extracted by σi ¼
P

6

j¼1

cijεj, after the applied strain,

the total energy variation of the system can be expressed as

ΔE ¼
V

2

X

6

i¼1

X

6

j¼1

cijeiej (34)

The second-order elastic coefficients can be obtained by the coefficient of the second-order

Taylor expansion of Helmholtz free energy with the strain,

cTijkl ¼ r0

∂
2F ηij;T
� �

∂ηij∂ηkl
(35)
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Here, strain and thermodynamics deformation are symmetric. There is only six independent

deformation tensor in the nine-dimensional deformation tensor. LCEC is a second-order linear

combination of independent elastic coefficients corresponding to Helmholtz free energy coef-

ficient under some deformation mode [30, 31]. For all directions under monoclinic crystals, if a

strain is added, the corresponding simultaneous equations can be solved to determine all

elastic coefficients.

3.2. The energy-volume relationship of the monoclinic crystal

Deformation tensors to calculate independent Cij constants of monoclinic crystal are listed in

Table 1.

For monoclinic crystal, elastic constants include C11, C22, C33, Cl2, C13, C23, C44, C55, C66 Cl5,

C25, C35, and C46; the strain energy-volume relation and elastic moduli of monoclinic symme-

try based on E-V method can be obtained. The calculated E-δ points are fitted to second-order

polynomials E(V, δ). For all strains, different strain forms δ are taken to calculate the total

energies E for the strained crystal structure. By applying a series of δ strain amplitude, the

independent elastic constants of monoclinic crystal by these simultaneous ΔE-δ equations can

be obtained.

Deformation tensor ΔE-V relation of LCEC LCEC

e ¼ δ; δ; 0; 0; 0; 0ð Þ ΔE
V0

¼ c11
2 þ c12 þ

c22
2


 �

δ
2 c11+ c22 + 2c12

e ¼ 0; δ; δ; 0; 0; 0ð Þ ΔE
V0

¼ c22
2 þ c23 þ

c33
2


 �

δ
2 c22 + c33 + 2c23

e ¼ δ; 0; δ; 0; 0; 0ð Þ ΔE
V0

¼ c11
2 þ c13 þ

c33
2


 �

δ
2 c11 + c33 + 2c13

e ¼ 0; 0; 0; δ; δ; 0ð Þ ΔE
V0

¼ c44
2 þ c45 þ

c55
2


 �

δ
2 c44 + c55 + 2c45

e ¼ δ; 0; 0; 0; 0; δð Þ ΔE
V0

¼ c11
2 þ c16 þ

c66
2


 �

δ
2 c11 + c66 + 2c16

e ¼ 0; δ; 0; 0; 0; δð Þ ΔE
V0

¼ c22
2 þ c26 þ

c66
2


 �

δ
2 c22 + c66 + 2c26

e ¼ 0; 0; δ; 0; 0; δð Þ ΔE
V0

¼ c33
2 þ c36 þ

c66
2


 �

δ
2 c33 + c66 + 2c36

e ¼ δ; δ; δ; 0; 0; 0ð Þ ΔE
V0

¼ c11
2 þ c22

2 þ c33
2 þ c12 þ c13 þ c23


 �

δ
2 c11 + c22 + c33 + 2c12 + 2c13 + 2c23

e ¼ δ;�δ; δ2= 1� δ
2


 �

; 0; 0; 0

 �

ΔE
V0

¼ c11
2 � c12 þ

c22
2


 �

δ
2 c11 + c22 � 2c12

e ¼ δ; δ2= 1� δ
2


 �

;�δ; 0; 0; 0

 �

ΔE
V0

¼ c11
2 � c13 þ

c33
2


 �

δ
2 c11 + c33 � 2c13

e ¼ δ
2= 1� δ

2

 �

; δ;�δ; 0; 0; 0

 �

ΔE
V0

¼ c22
2 � c23 þ

c33
2


 �

δ
2 c22 + c33 � 2c23

e ¼ δ
2= 1� δ

2

 �

; 0; 0; 2δ; 0; 0

 �

ΔE
V0

¼ 2c44δ
2 4c44

e ¼ δ; 0; 0; 0; 2δ; 0ð Þ ΔE
V0

¼ c11
2 þ 2c15 þ 2c55


 �

δ
2 c11 + 4c55 + 4c15

e ¼ δ; 0; 0; 0;�2δ; 0ð Þ ΔE
V0

¼ c11
2 � 2c15 þ 2c55


 �

δ
2 c11 + 4c55 � 4c15

e ¼ 0; δ; 0; 0; 2δ; 0ð Þ ΔE
V0

¼ c22
2 þ 2c25 þ 2c55


 �

δ
2 c22 + 4c55 + 4c25

e ¼ 0; 0; δ; 0; 2δ; 0ð Þ ΔE
V0

¼ c33
2 þ 2c35 þ 2c55


 �

δ
2 c33 + 4c55 + 4c35

Table 1. Deformation tensors to calculate independent elastic constants of monoclinic crystal [30, 31].
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3.3. Homogenization of monoclinic polycrystals by RVH estimation

Stress-strain relation in an orthotropic monoclinic crystal can be defined by the independent

elastic stiffness parameters [32]:

σ11

σ22

σ33

σ12

σ13

σ23

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

¼

c11 c12 c13 0 c15 0

c12 c22 c23 0 c25 0

c13 c23 c33 0 c35 0

0 0 0 c44 0 c46

c15 c25 c35 0 c55 0

0 0 0 c46 0 c66

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

ε11

ε22

ε33

γ12

γ13

γ23

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

(36)

where σ represents the normal stress and shear stress in each direction (unit: nN/nm2); ε and γ

are the normal strain and shear strain in each direction, respectively.

The homogenized elastic properties of polycrystals can be calculated, of which elastic moduli and

Poisson’s ratio can be obtained by calculating Voigt and Reuss bounds and averaging term as [32]

GV ¼
1

15
c11 þ c22 þ c33 þ 3 c44 þ c55 þ c66ð Þ � c12 þ c13 þ c23ð Þ½ � (37)

GR ¼ 15 4 c33c55 � c235

 �

c11 þ c22 þ c12ð Þ þ c23c55 � c25c35ð Þ c11 � c12 � c23ð Þ
��

þ c13c35 � c15c33ð Þ c15 þ c25ð Þ þ c13c55 � c15c35Þ � c22 � c12 � c23 � c13ð Þð

þ c13c25 � c15c23ð Þ c15 � c25ð Þ þ f �=Ωþ3 g=Ωþ c44 þ c66ð Þ= c44c66 � c246

 �� ���1

(38)

BV ¼ c11 þ c22 þ c33 þ 2 c12 þ c13 þ c23ð Þ½ �=9 (39)

BR ¼ Ω c33c55 � c235

 �

c11 þ c22 � 2c12ð Þ þ c23c55 � c25c35ð Þ 2c12 � 2c11 � c23ð Þ
�

þ c13c35 � c15c33ð Þ � c15 � 2c25ð Þ þ c13c55 � c15c35ð Þ 2c12 þ 2c23 � c13 � 2c22ð Þ

þ2 c13c25 � c15c23ð Þ c25 � c15ð Þ þ f ��1 (40)

f ¼ c11 c22c55 � c225

 �

� c12 c12c55 � c15c25ð Þ þ c15 c12c25 � c15c22ð Þ þ c25 c23c35 � c25c33ð Þ (41)

g ¼ c11c22c33 � c11c
2
23 � c22c

2
13 � c33c

2
12 þ 2c12c13c23 (42)

Ω ¼ 2 c15c25 c33c12 � c13c23ð Þ þ c15c35 c22c13 � c12c23ð Þ þ c25c35 c11c23 � c12c13ð Þ½ �

� c215 c22c33 � c223

 �

þ c225 c11c33 � c213

 �

þ c235 c11c22 � c212

 �� �

þ gc55 (43)

For monoclinic crystal structure, elastic constants include C11, C22, C33, Cl2, C13, C23, C44, C55,

C66 Cl5, C25, C35, and C46. The criteria for mechanical stability are given by Wu [32]:

cij > 0 i ¼ 1; 2; 3; 4; 5; 6ð Þ (44)

c44c66 � c246

 �

> 0 (45)

Elastic Constants and Homogenized Moduli of Monoclinic Structures Based on Density Functional Theory
http://dx.doi.org/10.5772/intechopen.72301

229



c33c55 � c235

 �

> 0 (46)

c22 þ c33 � 2c23ð Þ > 0 (47)

c11 þ c22 þ c33 þ 2 c12 þ c13 þ c23ð Þ½ � > 0 (48)

c22 c33c55 � c235

 �

þ 2c23c25c35 � c223c55 � c225c33
� �

> 0 (49)

2 c15c25 c33c12 � c13c23ð Þ þ c15c35 c22c13 � c12c23ð Þ þ c25c35 c11c23 � c12c13ð Þ½ �f

� c215 c22c33 � c223

 �

þ c225 c11c33 � c213

 �

þ c235 c11c22 � c212

 �� �

þ gc55g > 0 (50)

Young’s modulus and Poisson’s ratio can be rewritten based on the Voigt-Reuss-Hill approx-
imation [33]. In terms of the Voigt-Reuss-Hill approximations [34], MH = (1/2)(MR + MV), M
refers to B or G. Thus, Young’s modulus E and Possion’s ratio μ are obtained as

E ¼
9BG

3Bþ G
¼

9 BV=2þ BR=2ð Þ GV=2þ GR=2ð Þ

3 BV=2þ BR=2ð Þ þ GV=2þ GR=2ð Þ
(51)

μ ¼
3B� 2G
2 3Bþ Gð Þ

¼
3 BV=2þ BR=2ð Þ � 2 GV=2þ GR=2ð Þ

6 BV=2þ BR=2ð Þ þ 2 GV=2þ GR=2ð Þ
(52)

Then, Voigt-Reuss-Hill average [32] will be determined, and Young’s modulus can be calculated.

4. Modeling and homogenized elastic moduli of gypsum structure

4.1. Nanoscale modeling of monoclinic crystals

4.1.1. Nanoscale modeling of monoclinic gypsum crystal

The gypsum morphology is monoclinic, and the initial lattice is as a = 5.677Å, b = 15.207Å,
c = 6.528Å, α = β = 90�, and γ = 118.49�, its structure is monoclinic with space group I 2/a [35].

In Figure 1, the gypsum crystal can be summarized as follows: (1) the two hydrogen atoms of
water molecules formed weak hydrogen bonds with the O atoms of Ca and S polyhedra; (2) a
stacking sequence of CaO8 and SO4 chains in the (010) plane alternates with water layers along
the b-axis; and (3) in (010) plane, the sulfate tetrahedra and CaO8 polyhedra alternate to form
edge-sharing chains along [100] and zigzag chains along [001] direction [36] (Table 2).

4.1.2. Nanoscale modeling of monoclinic 11 Å tobermorite crystal

Hamid model [37] as the 11 Å tobermorite (formula: Ca4Si6O14(OH)4�2H2O) as an initial
configuration is commonly used. The morphology is monoclinic, and the initial lattice is [37]:
a = 6.69 Å, b = 7.39 Å, c = 22.779 Å, α = β = 90�, and γ = 123.49�, space group P21. Modeling of
11 Å tobermorite is shown in Figure 2.

In Figure 2(a), the 11 Å tobermorite crystal can be summarized as follows: (1) the structure is
basically a layered structure. (2) The central part is a Ca-O sheet (with an empirical formula:
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CaO2, of which the oxygen in CaO2 also includes that of the silicate tetrahedron part). (3)
Silicate chains envelope the Ca-O sheet on both sides. (4) Ca2+ and H2O are filled between
individual layers to balance the charges. The infinite layers of calcium polyhedra are parallel to

Figure 1. Modeling of gypsum crystal. (a) Gypsum structure [36] along [001]; (b) the real cell; (c) in x-direction; (d) in
y-direction; and (e) in z-direction.

Atom x y z Occupancy rate Uiso or Ueq

Ca 0.5000 0.0786 0.2500 1.00 1.00

S 0.0000 0.0787 0.7500 1.00 1.00

O1 �0.0384 0.1326 0.5512 1.00 1.00

O2 0.2429 0.0215 0.8347 1.00 1.00

Ow 0.3784 0.1825 0.4554 1.00 1.00

H1 0.2504 0.1615 0.5009 1.00 1.00

H2 0.4022 0.2435 0.4900 1.00 1.00

Table 2. Atomic coordinates and displacement parameters of gypsum [36].

Figure 2. Modeling of 11 Å tobermorite crystal. Silicate chains, calcium octahedral, and oxygen atoms are shown as
yellow tetrahedra, green spheres, and red spheres. (a) 11 Å Tob monoclinic crystal; (b) in x-direction; (c) in y-direction; and
(d) in z-direction.
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(001), with tetrahedral chains of wollastonite-type along b and the composite layers stacked
along c and connected through the formation of double tetrahedral chains [38]. Atomic coor-
dinates and displacement parameters are seen in Table 3.

4.2. Initial conditions and elastic constants of monoclinic crystals

4.2.1. Initial conditions and elastic constants of gypsum

The initial conditions are as follows: the pressure region of 0–1 GPa is used. Besides, a plane-
wave basis set and ultrasoft pseudopotentials using GGA are used with a plane-wave cutoff
energy of 400 eV. Brillouin zone is 6� 6 � 4. Self-consistent convergence of the total energy per
atom is chosen as 10�4 eV. Elastic constants of monoclinic gypsum crystal under 0–1.0 GPa are
shown in Figure 3.

Atomic

species

X Y Z Occupancy

rate

Uiso or

Ueq

Atomic

species

X Y Z Occupancy

rate

Uiso or

Ueq

Si1 0.7710 0.3830 0.1578 1 0.031 O8 0.7690 0.8430 0.0953 1 0.027

Si2 0.9250 0.7500 0.0721 1 0.030 O9 0.5370 0.7980 0.1968 1 0.036

Si3 0.7720 0.9620 0.1596 1 0.015 O10 0.0040 0.0420 0.2008 1 0.034

O1 0.7740 0.4950 0.0932 1 0.039 O11 0.4330 0.2230 �0.0250 0.5 0.072

O2 0.7620 0.1690 0.1305 1 0.019 O12 0.9490 0.2560 0.0000 1 0.080

O3 0.0020 0.5270 0.2000 1 0.032 O13 0.4300 0.7700 �0.0220 0.5 0.090

O4 0.5360 0.3040 0.1926 1 0.035 Cal 0.2770 0.4257 0.2083 1 0.024

O5 0.9100 0.7470 0.0000 1 0.034 Ca2 0.7630 0.9160 0.2951 1 0.027

O6 0.2020 0.8870 0.0942 1 0.053 Ca3 0.5620 0.0640 0.0450 0.25 0.038

O7 0.2890 0.4360 0.0940 1 0.076 — — — — — —

Table 3. Atomic coordinates and displacement parameters of 11 Å tobermorite [38].

Figure 3. Gypsummonoclinic crystal under pressure 0–1.0 GPa by DFT. (a) Relative change of a, b, c, and V and (b) elastic
constants.
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From Figure 3, elastic constants at 0 GPa are given as c11 = 82.464 GPa, c12 = 34.751 GPa,
c13 = 33.643 GPa, c15 = �1.987 GPa, c22 = 63.046 GPa, c23 = 34.920 GPa, c25 = �8.071 GPa,
c33 = 57.549 GPa, c35 = �3.054 GPa, c44 = 20.863 GPa, c46 = �4.688 GPa, c55 = 28.062 GPa, and
c66 = 28.556 GPa. It is found that the oxygen atom of the water molecule did not change its
position or occupancy under pressure conditions. A simple pressure increase at an ambient
temperature cannot induce dehydration because of the unchange of water molecular in the
gypsum structure within pressure range [36].

Elastic constants of gypsum crystal model based on DFT are calculated, and parameters are
detailed in Table 4.

4.2.2. Initial conditions and elastic constants of tobermorite

Initial conditions of tobermorite are quite the same with that of gypsum crystal. Elastic con-
stants of 11 Å tobermorite crystal under 0–1.0 GPa are shown in Figure 4. Elastic constants are
shown in Table 5.

A comparisonal results of Shahsavari [39] are provided. Elastic constants at 0 GPa are as follows:
c11 = 106.63 GPa, c12 = 50.37 GPa, c13 = 41.09 GPa, c15 = �3.50 GPa, c22 = 131.67 GPa, c23 = 22.78
GPa, c25 = �0.78 GPa, c33 = 71.45 GPa, c35 = �0.83 GPa, c44 = 26.03 GPa, c46 = �0.02 GPa,
c55 = 27.61 GPa, and c66 = 45.26 GPa. Thus, elastic modulus can be homogenized to compare with
the results of LD C-S-H phase in nano-indentation test by Vandamme and Ulm [40].

4.3. Homogenized elastic moduli of typical monoclinic structures

4.3.1. Elastic modulus of monoclinic gypsum structure

Based on elastic constants, the elastic moduli of gypsum at 0 GPa are verified and averaged in
Figure 5.

P C11 C12 C13 C15 C22 C23 C25 C33 C35 C44 C46 C55 C66

10–4[36] — — — — — — — — — — — — —

0.0 82.46 34.75 33.64 �1.99 63.05 34.92 �8.07 57.55 �3.05 20.86 �4.69 28.06 28.56

0.1 79.82 32.64 29.2 1.8 71.04 29.61 �7.54 61.88 �3.22 20.13 �3.06 26.19 27.7

0.2 82.93 37.75 34.59 1.09 63.62 32.42 �7.35 50.64 �4.37 21.32 �1.1 25.8 17.8

0.3 82.82 39.77 32.81 0.17 65.64 29.61 �7.23 57.31 �4.45 26.43 �5.57 23.17 23.39

0.4 84.47 38.6 32.25 1.27 69.03 32.31 �8.51 53.41 �2.21 20.8 �2.03 28.41 22.34

0.5 75.84 43.68 29.39 0.57 68.7 33.18 �8.36 56.08 �2.52 29.7 �3.88 27.35 22.4

0.6 74.22 43.11 28.77 2.22 69.52 28.87 �7.81 53.19 �2.68 28.97 �1.49 23.24 15.53

0.7 88.37 41.74 32.85 2.25 70.09 32.28 �9.14 55.48 �4.28 24.66 �2.76 27.25 22.58

0.8 88.53 39.65 35.29 2.96 73.28 33.84 �8.02 62.22 �3.73 24.73 �3.44 26.37 24.39

0.9 88.7 45.09 37.97 4.54 66.78 36.02 �10.4 61.98 �1.2 25.15 �4.92 28.93 26.82

1.0 90.12 39.79 34.63 2.7 75.99 34.92 �8.74 68.31 �3.46 26.32 �5.83 28.15 30.19

Table 4. Elastic coefficient Cij (GPa) of gypsum by DFT.

Elastic Constants and Homogenized Moduli of Monoclinic Structures Based on Density Functional Theory
http://dx.doi.org/10.5772/intechopen.72301

233



As gypsum shows anisotropic compressibility along three crystallographic axes with b > c > a
below 5 GPa [44], the pressure region of 0–1.0 GPa is used to verify whether the performance
of model under low pressure is stable. Mechanical moduli of gypsum polycrystalline are listed
in Table 6.

As an acoustic method [41] and mechanical properties [42] have been investigated, according
to elastic constants of gypsum crystal [43], elastic moduli by experiment can be calculated,
as shown in Table 6. Elastic moduli are as follows: Gv = 22.146 GPa, Gr = 19.705 GPa,
Bv = 45.521 GPa, Br = 43.822 GPa, B = 44.672 GPa, G = 20.926 GPa, E = 54.299 GPa, and
μ = 0.2974. These results are close to the plane-strain value of Young’s modulus by reference

Figure 4. 11 Å tobermorite monoclinic crystal under pressure 0–1.0 GPa by DFT. (a) Relative change of a, b, c, and V and
(b) elastic constants.

P/GPa C11 C12 C13 C15 C22 C23 C25 C33 C35 C44 C46 C55 C66

SHA[39] 102.65 41.68 27.70 1.25 125.05 18.83 �4.10 83.80 �3.38 22.90 �11.93 23.25 50.20

0.0 106.63 50.37 41.09 �3.50 131.67 22.78 �0.78 71.45 �0.83 26.03 �0.02 27.61 45.26

0.1 118.37 45.40 35.91 �3.52 129.18 17.19 0.11 67.84 �0.55 32.51 3.90 32.74 40.07

0.2 109.13 45.84 35.63 �3.22 136.79 23.05 0.03 82.75 0.06 28.88 1.21 22.40 45.69

0.3 115.53 46.36 40.17 �4.46 142.59 27.65 �0.04 95.03 0.02 31.08 0.49 32.38 50.57

0.4 102.65 35.38 38.73 �6.32 123.43 18.11 �1.92 74.28 0.05 18.14 �0.83 22.38 40.44

0.5 100.08 42.58 36.10 �4.52 137.56 21.68 �0.26 90.87 0.36 29.92 �0.46 29.66 51.82

0.6 97.87 44.09 28.76 �5.85 162.17 25.77 0.19 93.71 �0.14 24.89 �1.20 26.63 40.26

0.7 108.73 48.60 34.07 �4.55 147.09 26.78 �0.14 92.64 �0.01 21.56 2.06 44.25 41.23

0.8 122.87 55.30 40.62 �4.05 155.75 29.54 �0.25 103.3 �0.57 24.90 0.72 33.31 42.67

0.9 120.77 44.19 45.41 �4.82 139.59 13.68 0.09 88.25 �0.19 27.18 �0.35 26.85 53.22

1.0 127.01 41.78 45.00 �4.47 143.72 23.65 �0.02 98.30 �0.12 29.98 0.71 32.08 45.68

Table 5. Elastic coefficient Cij (GPa) of 11 Å tobermorite by DFT.
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[44] E = 50 GPa, μ = 0.45. By comparison of gypsum crystal and CH crystal, axial moduli of
gypsum in x, y, and z directions are 57.75, 37.22, and 34.91 GPa, while axial moduli of Ca(OH)2 in
x, y, and z directions are 93.75, 93.75, and 42.39 GPa, showing that gypsum crystal is much less
anisotropic than hydrogen-bonded layered Ca(OH)2 structure [42].

4.3.2. Elastic modulus of monoclinic tobermorite structure

Based on elastic constants of 11 Å tobermorite crystal using GGA calculation method by DFT,
bulk modulus B and shear modulus G are separately calculated by Eqs. (37)–(50) (Figure 6).

Figure 5. Elastic moduli of gypsum crystal under pressure 0–1.0 GPa.

Pressure (GPa) Gv (GPa) Bv (GPa) Gr (GPa) Br (GPa) B (GPa) G (GPa) E (GPa) μ

Reference [43] 26.5333 39.2556 24.8077 39.2381 25.6705 39.2469 63.2265 0.2315

0.0 22.1459 45.5208 19.7054 43.8224 20.9257 44.6716 54.2985 0.2974

0.1 22.8896 43.9624 21.7569 42.9250 22.3233 43.4437 57.1766 0.2806

0.2 19.1472 45.1906 17.4395 41.9064 18.2934 43.5485 48.1394 0.3158

0.3 21.5041 45.5718 19.3501 43.6675 20.4271 44.6197 53.1678 0.3014

0.4 21.2263 45.9146 19.5324 43.2463 20.3794 44.5805 53.0537 0.3017

0.5 22.1809 45.9026 19.4980 43.7566 20.8395 44.8296 54.1306 0.2988

0.6 19.9615 44.2709 17.7554 41.5818 18.8585 42.9264 49.3486 0.3084

0.7 22.0356 47.5189 20.1833 44.0623 21.1095 45.7906 54.8931 0.3002

0.8 22.7817 49.0659 21.3745 47.0681 22.0781 48.0670 57.4399 0.3008

0.9 22.7399 50.6242 19.4094 48.1542 21.0747 49.3892 55.3510 0.3132

1.0 25.2707 50.3430 23.4785 48.9327 24.3746 49.6379 62.8382 0.2890

Table 6. Mechanical moduli of gypsum polycrystalline by different methods.
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Elastic moduli at 0 GPa are verified and averaged as Gv = 32.815 GPa, Bv = 59.803 GPa,
Gr = 29.908 GPa, Br = 54.276 GPa, E = 79.512 GPa, and μ = 0.268. Young’s modulus is about
79.512 GPa by Reuss-Voigt-Hill estimation, which is close to the simulation result of 89 GPa
[45] by Pellenq and result of 78.939 GPa [39] by Shahsavari. Mechanical moduli by different
methods are listed in Table 7.

However, these values considering the ordered Si-chain at a long range are far away from the nano-
indentation experiment performed on the C-S-H phase [40, 46]. It confirms the absence of order at a
long range in this phase and that the up-scaling to polycrystals cannot be done with the tobermorite
model. Modeling of C-S-H structure with disordered Si chain should be fairly considered.

Figure 6. Elastic moduli of 11 Å tobermorite crystal under pressure 0–1.0 GPa.

Pressure (GPa) Bv (GPa) Br (GPa) Gv (GPa) Gr (GPa) B (GPa) G (GPa) E (GPa) μ

Reference [191] 54.2133 51.6976 34.1560 28.9168 52.9555 31.5364 78.9391 0.2516

0.0 59.8066 54.2778 32.8140 29.9063 57.0399 31.3615 79.5121 0.2677

0.1 56.9306 50.1535 35.5205 33.4468 53.5438 34.4843 85.1689 0.2349

0.2 59.7454 56.4236 34.3364 31.4164 58.0846 32.8763 82.9743 0.2619

0.3 64.6138 62.4671 38.7385 36.7029 63.5388 37.7202 94.4669 0.2522

0.4 53.8665 50.9999 30.0678 26.1841 52.4333 28.1257 71.5786 0.2725

0.5 58.8039 56.9635 37.4898 34.7400 57.8831 36.1145 89.6903 0.2417

0.6 61.2236 57.0694 35.3648 32.2837 59.1442 33.8242 85.2259 0.2598

0.7 63.0391 60.0785 37.3432 34.0050 61.5598 35.6744 89.6966 0.2572

0.8 70.3213 67.4998 37.2739 34.9015 68.9022 36.0849 92.1653 0.2771

0.9 61.6837 57.8325 37.8067 33.5164 59.7599 35.6606 89.2325 0.2511

1.0 65.5442 63.4872 38.6855 36.6712 64.5147 37.7292 94.7226 0.2553

Table 7. Mechanical moduli of 11Å tobermorite polycrystalline by different methods.
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5. Conclusions

Elastic constants of gypsum and tobermorite structures under a certain pressure region are
calculated by DFT method, which has a certain value for both application and reference.
Results are as follows:

1. For monoclinic gypsum and tobermorite crystals, elastic coefficients are obtained in 0–1-
GPa pressure range to verify the reliability of the model by comparing other literatures.

2. Elastic constants of gypsum single crystal at 0 GPa are given as follows: c11 = 82.464 GPa,
c12 = 34.751 GPa, c13 = 33.643 GPa, c15 = �1.987 GPa, c22 = 63.046 GPa, c23 = 34.920 GPa,
c25 = �8.071 GPa, c33 = 57.549 GPa, c35 = �3.054 GPa, c44 = 20.863 GPa, c46 = �4.688 GPa,
c55 = 28.062 GPa, and c66 = 28.556 GPa.

3. Elastic constants of 11Å tobermorite single crystal at 0 GPa are as follows: c11 = 106.63
GPa, c12 = 50.37 GPa, c13 = 41.09 GPa, c15 = �3.50 GPa, c22 = 131.67 GPa, c23 = 22.78 GPa,
c25 = �0.78 GPa, c33 = 71.45 GPa, c35 = �0.83 GPa, c44 = 26.03 GPa, c46 = �0.02 GPa,
c55 = 27.61 GPa, and c66 = 45.26 GPa.

4. Young’s modulus of gypsum is about 54.299 GPa. Elastic moduli at 0 GPa are as follows:
Gv = 22.146 GPa, Gr = 19.705 GPa, Bv = 45.521 GPa, Br = 43.822 GPa, E = 54.299 GPa, and
μ = 0.297.

5. Young’s modulus of 11Å tobermorite is about 79.512 GPa. Elastic moduli at 0 GPa are as
follows: Gv = 32.815 GPa, Bv = 59.803 GPa, Gr = 29.908 GPa, Br = 54.276 GPa, E = 79.512
GPa, and μ = 0.268.

Structural, elastic properties of monoclinic crystals are investigated, and Cij determination is
given by DFT method. Reuss-Voigt-Hill estimation has been used for polycrystal structures
and can be seen as an intermediate step in the homogenization of elastic properties.
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