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Fuzzy Knowledge Representation  
Using Probability Measures of Fuzzy Events 

Anna Walaszek-Babiszewska 
Opole University of Technology 

Poland 

1. Introduction  

The concepts of Soft Computing introduced by Lotfi A. Zadeh in 1991 has integrated different 
methodologies and approaches, as: fuzzy set theory, fuzzy logic, approximate reasoning, 
linguistic expression of knowledge, probabilistic reasoning, and others for solving problems 
of complex systems in the way similar to human perception, recognition and solving 
problem methods.   Linguistic fuzzy modelling gives the formal, mathematical instruments 
for expressing human knowledge described in natural language. Probability of fuzzy 
meanings of linguistic variables determines a frequency of the occurrence the imprecisely 
expressed events.   
This work presents the methods of applications linguistic modelling and probability 
measures of fuzzy events for creating models compatible to the features of real systems, and 
more flexible than traditional rule-based models derived from linguistic knowledge.  
In Section 2. we remind the notions of a linguistic variable and a probability of fuzzy events, 
formulated by Zadeh, which have become fundamental for the development of fuzzy 
systems. We  define probability distributions of a linguistic variable and a linguistic vector 
as well as a mean fuzzy value (a mean fuzzy set) of the linguistic variable. The conditional 
probability of  fuzzy events will be the base for the inference procedure.  
Section 3. shows an exemplary probabilistic modelling for the characteristics representing 
features of particles in a certain population, formulated in fuzzy categories.  
The created knowledge representation states a collection of weighted rules (Section 4.)  
Weights of rules represent probabilities of fuzzy events of input and output system 
variables. Construction of fuzzy models is presented for different stochastic systems. The 
weights are involved in the inference procedures.  

2. Linguistic and probabilistic modelling - basic definitions and concepts 

2.1 Linguistic variable 

Linguistic fuzzy modelling with a linguistic knowledge representation gives us the formal, 
mathematical way for expressing the human linguistic perception of real world. A linguistic 
variable is the main notion in such modelling. The variable whose values are words,  can be 
defined by the quadruplet <X,L(X),U,Mx>, where X means the name of the variable, L(X) is 
a set of linguistic values (words) which X takes, U is an universe of discourse, and M is a 
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semantic function, that assigns the fuzzy meaning (fuzzy subsets Ai, i=1,…,I in U) to each 
linguistic value from  L(X) (Zadeh, 1975).  
As an example let us consider a linguistic variable X=diameter of particles, which takes the 
linguistic values L(X)={fine, middle size, coarse}. A semantic function M associates fuzzy 
meanings (fuzzy sets) Ai, i=1,2,3 to each linguistic value. Fuzzy sets are given by 

membership functions )(uAμ determined in the universe of discourse RU ⊂  (an interval of 

real numbers), as follows: 
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where  A1: fine,  A2: middle size, A3: coarse.   

2.2 Probability of fuzzy events and distributions of linguistic variables 

A fuzzy event A, in compliance with Zadeh’s definition, is a fuzzy subset ( ){ }uuA A ),(μ= in 

the elementary events domain ),( ΩU , with the membership function ]1,0[)( ∈uAμ  

measurable in Boreal sense (Zadeh, 1968). In another notation, a fuzzy event can be 

expressed as ∑
∈

=
Uu

A uuA )/)((μ , where the sum sign is considered as set character, not 

arithmetical. 
Let p be the probability function, which assigns to each Borel set in the domain 

},...{ 1 NuuU =  the real number p∈[0,1]. A probability P(A) of a fuzzy event A is defined in 

the way: 

 )()()( uupAP

Uu

A∑
∈

= μ  (4) 

where ]1,0[)( ∈up is a probability function in (U,Ω).  

If the domain U is infinite, and f(u) is a probability density function in (U,Ω), then a 
probability P(A) of a fuzzy event A can be calculated by the following integral: 

 ∫
∈

=
Uu

A duufuAP )()()( μ  (5) 
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Probability values of fuzzy events, calculated according to (4) and (5) are real numbers, 

]1,0[)( ∈AP .  

Let fuzzy subsets IiAi ,...,1, = of the linguistic variable X are defined by their membership 

functions ]1,0[)( ∈u
iA

μ in such way, that for every Uu∈ , the relationship ∑
=

=
I

i

iA
u

1

1)(μ  is 

fulfilling. Then, the set of probabilities IiAP i ,..,1)},({ =  calculated for fuzzy subsets 

IiAi ,...,1, = according to (4)  or  (5) and fulfilling the relation 

 1)(

1

=∑
=

I

i

iAP  (6) 

states a probability distribution of the linguistic variable X.  

A mean fuzzy value of the linguistic random variable X, signed as A , in a probability 

distribution ),( iAP i=1,…,I given above, is a fuzzy set with the membership function 

defined as follows: 

 UuuAPuAPu
IAIA

A

∈∀++=− ),()(...)()()(
11 μμμ  (7) 

The mean fuzzy value is the convex combination fuzzy set (Kacprzyk, 1986). It will be used 
in the aggregation procedure (Section 4). 
For the linguistic variable whose fuzzy meanings of linguistic values are given by (1) – (3), 
assume that probability density function is constant over the domain U=[0, 1],  f(u)=1. 
Probability of fuzzy events A1: fine, A2: middle size, A3: coarse can be calculated by the 
integrals 

 275.0)()()(

35.0

0

11 == ∫ duufuAP Aμ , (8) 

 450.0)()()(

8.0

2.0

22 == ∫ duufuAP Aμ , (9) 

 275.0)()()(

1

65.0

33 == ∫ duufuAP Aμ . (10) 

The calculated probability values fulfil (6), so the mean fuzzy value of events A1,A2, A3 can 
be calculated according to the dependence (7). 
Let us consider, as it is usually assumed in industrial practice, that for disjoint intervals 

Mmau mm ,...,1, ==Δ  the empirical probability is constant and equal to the quotient 

 
n

n
uuPup m
mm =Δ∈=Δ )()(  (11) 
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where nm is the number of particles whose a feature x takes the values from the proper 

intervals, and n is the total number of particles, ∑
=

=
Mm

mnn

,...,1

. Fuzzy sets IiAi ,...,1, =  

representing linguistic values of a linguistic variable X can be determined on the disjoint 
intervals am as follows 

 mm

Mm

iAi aaA /)(

,...,1

∑
=

= μ  (12) 

where the membership functions fulfill the condition Uaa mm

Ii

iA
∈∀=∑

=

,1)(

,...,1

μ . 

Probabilities of the events (12) can be expressed by the relationship 

 mm

Mm

iAi paAP )()(

,...,1

∑
=

= μ  (13) 

where )( mm auPp ∈= .  If the set of probabilities )}({ iAP of fuzzy events, calculated 

according to (12) and (13) is fulfilling the relationship 1)(

,...,1

=∑
= Ii

iAP  then it states a 

probability distribution of the linguistic variable X. 
Let us consider two linguistic variables:  <X,L(X),U,Mx> and <Y,L(Y),V,My>, where X means 
the name of the input (reason) variable, Y is the name of the output (result) variable of  a 
SISO system, L(X) and L(Y) are sets of linguistic values, RU ⊂  and RV ⊂  are universes of 
discourse of particular variables, Mx, My  are semantic functions, that assign fuzzy meaning 

(fuzzy subsets IiAi ,...,1, =  in RU ⊂  and JjB j ,...,1, = in RV ⊂ ) to each linguistic value 

from  L(X) and L(Y), respectively.   

Fuzzy sets IiAi ,...,1, =  and JjB j ,...,1, = state the numeric descriptions of particular 

linguistic values of variables X and Y, respectively.  Let fuzzy sets are defined by 
membership functions in the way 

 ]1,0[)( ∈u
iA

μ , i=1,…,I and ∑
=

∈∀=
I

i

A Uuu
i

1

;,1)(μ  (14) 

 ]1,0[)( ∈v
jB

μ , , j=1,…,J and ∑
=

∈∀=
J

j

B Vvv
j

1

,1)(μ .   (15) 

A new term set of a linguistic vector (X,Y) can be created in the space )()( YLXL ×  by the 

numeric description ),( vu
jBiA ×μ  in the universe VU × .  The membership function 

),( vu
jBiA ×μ  is a Borel function, which can be defined as a t-norm 

 ))(),((),( vuTvu
jBiAjBiA

μμμ =×  (16) 

e.g., as a product t-norm )()(),( vuvu
jBiAjBiA

μμμ =× . 
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A set of probability values )},({ ji BAP ×  of fuzzy events (fuzzy relations) ji BA × , i=1,…,I,  

j=1,…,J    can be calculated using the basic definition (4), as follows 

 ∑
×∈

×=×
VUvu

jBiAji vuvupBAP

),(

),(),()( μ  (17) 

where ]1,0[),( ∈vup  is a joint probability function.  

If the set of probabilities of fuzzy events )}({ ji BAP × fulfils the relationship 

∑∑
= =

=×
I

i

J

j

ji BAP
1 1

1)(

 

(18)

then, it states a joint probability distribution P(X,Y) of the linguistic vector variables (X,Y).  

The marginal probability distributions IiAPXP i ,...,1)},({)( == , and  )}({)( jBPYP = , j=1,…,J  

can be calculated for particular linguistic variables, as follows:  

 ∑
=

×=
J

j

jii BAPAP

1

)()(  (19) 

 ∑
=

×=
I

i

jij BAPBP

1

)()(  (20) 

The marginal distributions P(X) and P(Y) defined above are normalized:  

 1)(

1

=∑
=

I

i

iAP ,   1)(

1

=∑
=

J

j

jBP  (21) 

Conditional probability distributions of particular linguistic variables can be derived from 
the joint probability distribution P(X,Y) given by (17) and a marginal probability 
distributions (19) or (20).  The conditional probability distribution P(Y/X) of the linguistic 

variable Y, under the condition that X takes fuzzy values IiAi ,...,1, = , is a set of probability 

values )}/({)/( ij ABPXYP = ,j=1,…,J;  i=const,  calculated as follows: 

 )(/)()/( ijiij APBAPABP ×= , j=1,…,J; i=const. (22) 

Taking into account the normalization of probability distributions (see (18) and (21)),  the 

total probability of the result  jB  can be calculated, similarly to Bayes’  formula, and 

assuming, that the conditional probabilities )/( ij ABP , i=1,…,I, calculated under the 

condition of the reasons iA  are known (Walaszek-Babiszewska, 2008): 

 ∑
=

=
I

i

iijj APABPBP

1

)()/()( . (23) 

Let us note, that fuzzy sets  IiAi ,...,1, = are not disjoint in U. 

www.intechopen.com



 Automation and Robotics 

 

334 

3. Exemplary linguistic and probabilistic modelling  

3.1 Particle characteristics as results of measurements 
In chemical and biochemical research, in many industrial processes such as mineral 
preparation processes or in numerous food processes, the material to be prepared consists of 
a population of different types of particles.  
There are basic characteristics of material utilised by process engineers and automation 
engineers: 

• a characteristic of  the size composition presenting portions of particles  belonging to 
different size fractions,  

• a densimetric characteristic presenting portions of particles belonging to different  
density fractions,  

• a characteristic of tested chemical components.  
The two first characteristics are often considered as an empirical probability distribution of a 
two-dimensional random variable: volume x and density y of particles  

 JjIiNNbyaxPyxp ijjiij ,...,2,1;,...,2,1,/),(),( ===∈∈=  (24) 

where ai, i=1,…, I are disjoint intervals of the particle size (size classes) in a domain X, and bj, 
j=1,…,J are disjoint intervals of the particle density (density fractions) in a domain Y , Nij is a 
number of that particles in the parent population, whose volume belongs to i-th interval  ai 
and the density belongs to j-th interval bj, N is a total number of particles in the population, 

and ∑∑
= =

=
I

i

J

j

ijNN

1 1

. 

In engineering practice a different measure of the probability is being more often applying, 
the quotient of the respective masses: 

 MMyx ijij /),( =π  i=1,2,..., I;    j =1,2,...,J; (25) 

where Mij is a mass of that particles in the parent population, whose volume belongs to i-th 
interval ai and the density belongs to j-th interval bj, and ijjmimij NyxM ,,= , where imx , , 

jmy , are mean values of particle volume and density in the intervals ai  and bj, respectively; 

M is a total mass of the population, NyxM mm= , where xm, ym are mean values of volume 

and density of particles in the population, and ∑∑
= =

=
I

i

J

j

ijMM

1 1

. 

There is a relation between two expressions of empirical probabilities (Walaszek-
Babiszewska, 2004): 

 ijijij pa=π ,   i=1,2,..., I;    j =1,2,...,J; (26) 

where: 

 
mm

jmim
ij

yx

yx
a

,,= . (27) 

Table 1 presents the values of an empirical joint probability distribution p(xi,yj)=pij, 
calculated on the base of measurements (Walaszek-Babiszewska, 2004). Each of the ranges of 
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volume and density of particles has been divided into 4 intervals. The smallest value of 
indexes i,j concerns to the smallest value of density and volume: 

.; 43214321 yyyyxxxx <<<<<<  

The marginal probabilities pi. (x) and p.j ( y) are also given in Table 1. 
 

Density 
fraction 
number 

Probability pij(x, y) 

Size class number 
j 

i=1 i=2 i=3 i=4 

 

Marginal 
probability 

p.j(y) 

1 0.6290 0.0304 0.0074 0.0020 0.6688 

2 0.1338 0.0044 0.0011 0.0003 0.1396 

3 0.0534 0.0050 0.0010 0.0002 0.0596 

4 0.1198 0.0092 0.0025 0.0005 0.1320 

Marginal 
probability 

pi.(x) 

 
0.9360 

 
0.0490 

 
0.0120 

 
0.0030 1.

.

=

=

∑
∑

j

j

i

i

p

p

 

Table 1. The empirical joint probability distribution pij(x,y) and marginal probability 
distributions p.j(y), pi.(x) of particle features 

3.2 Linguistic characteristics of particles 
Perception-based information of human experts, expressing in natural language a quantity-
quality characteristic of particles features, can be verified on the base of linguistic and 
probabilistic modelling presented above. 
Let us assume two linguistic variables considered above:  
xname : ‘volume of particles’ and the set of linguistic values L(X)={small(A1), middle(A2), 
large(A3)} with the membership functions determined over the disjoint intervals ai, i=1,…, I as 
follows: 

211 /2.0/1 aaA += ;    322 /8.0/8.0 aaA += ;    433 /1/2.0 aaA +=  

yname : ‘density of particles’ and the set of linguistic values L(Y)={light(B1), middle(B2), heavy(B3)} 
with the membership functions determined over the disjoint intervals bj , j=1,…, J, as 
follows:  

211 /5.0/1 bbB += ;    322 /5.0/5.0 bbB += ;    433 /1/5.0 bbB +=  

For these two linguistic variables and the empirical joint probability distribution given in 
Table 1. we can calculate the probability of the simultaneous events,  e.g. 
 

P{ (x is small) and (y is light)} 
using (16) i (17) as follows: 
 

)()(),(

)()(),()()(),()()(),()(

212122

11212121111211111111

bayxp

bayxpbayxpbayxpBAP

BA

BABABA

μμ

μμμμμμ +++=×
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=× )( 11 BAP 0.6290⋅1⋅1+0.1338⋅1⋅0.5+0.0304⋅0.2⋅1+0.0044⋅0.2⋅0.5=0.7024 

In the similar way we can compute the values of probabilities )( ji BAP × , i,j=1,2,3  (Table 2.). 
 

 A1 A2 A3 P(Bj) 

B1 0.7024 0.0324 0.0037 0.7385 

B2 0.0946 0.0046 0.0005 0.0997 

B3 0.1488 0.0118 0.0012 0.1618 

P(Ai) 0.9458 0.0488 0.0054 
∑P(Ai)= 

∑P(Bj)=1 

Table 2. The probability distributions of linguistic variables (x,y) representing probability of 

fuzzy events  )( ji BAP × and marginal probabilities 

Probability distributions of linguistic variables (Table 2.) could be used for the validation of 
experts’ opinion: 

‘The contents of the light and small particles is very high’;  =× )( 11 BAP 0.7024; 

‘The contents of the light fraction is high’;  P(Bl)=0.7385; 
‘The contents of large particles is low’;   P(A3)=0.0054. 
The values of probability of fuzzy events calculated according to (16) and (17) depend on a 

choice of a t-norm. The problem is important for creating the inference procedure in 

knowledge-based systems. 

3.3 Quality parameters of particles as a mean value of a fuzzy event 

Characteristics of tested chemical components in population of particles are usually called 

the quality characteristics.  Suppose the quality parameter ),( jiij yxββ = in every elementary 

fraction of particles, where ix , jy are mean values of particle volume and density in the 

intervals ai  and bj, respectively. The mean value of a tested substance in the population of 

particles whose features are determined by a fuzzy event e.g. “C: small and light particles" 

can be calculated by using the notion of a mean value of fuzzy event, as follows (Walaszek-

Babiszewska, 2004): 

 

∑∑

∑∑

= =

= ==
I

i

J

j

jiCij

I

i

J

j

jiCijij

C

yxp

yxp

1 1

1 1

),(

),(

μ

μβ

β  (28) 

4. Knowledge representation  

4.1 General form of a fuzzy model 

A fuzzy model represented a MISO system, consisting of the collection of fuzzy rules in a  

form ‘IF x is A THEN y is B’ is considered (Yager and Filev, 1995). The propositions x is A in 

antecedents and y is B in consequents of rules are based on the partition of the input-output 

space, given by experts. The exemplary i-th file rule includes J elementary rules, in a form: 
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))(

)(

)(

...(:

/

/

/11

,,22,11

iJJ

ijj

i

ippiiii

wBisyALSO

wBisyALSO

wBisyTHEN

AisxANDAisxANDAisxIFwR

−−−−−−−−−−−−

−−−−−−−−−−−−
 (29) 

where ),...,( 1 p
T xxx = is a linguistic vector of system inputs (antecedent variables), y is a 

linguistic  output variable. The linguistic values (term sets) )(),(),...,( 1 yLxLxL p  of the input 

and output variables are predefined by process experts. Fuzzy sets ipi AA ,,1 ,..., ,, i=1,…,I 

represent linguistic values  of the input vector, and are defined by membership functions 
)(),...,(

,1,1 pipAiA uu μμ in the domains pUU ,...,1 , piRU i ,...,1, =⊂ . The linguistic output 

(consequent) variable y has the family of fuzzy subsets jB  with membership functions 

)(v
jB

μ , j=1,…,J in the numeric space .RV ⊂   

The rule weights iw and ijw /  i=1,…,I,  j=1,…,J represent probabilities of fuzzy events 

occurring in the antecedents and consequence of the model )( ii APw = ,   )/(/ ijij ABPw =  

(Walaszek-Babiszewska, 2007).  The weight iw of a file rule represents a joint probability of 

fuzzy events ipi AA ,,1 ...××  in the antecedent domain, calculated according to (16) and (17): 

 ))(),...,((),...,()(
,1,11 pipA

Uu

iApi uuTuupAP μμ∑
∈

=  (30) 

where T means a t-norm, membership functions  )(),...,(
,1,1 pipAiA uu μμ are defined  in a such 

way, that for every numeric value Uuuu p
T ∈= ∗∗∗ ),...,( 1  the relationship 1)(

,...,2,1

=∑
=

∗

Ii

iA
uμ  is 

fulfilled, and p( ),...,1 puu is a probability distribution which assigns to each Borel set in U a 

real number p∈[0,1].   

 Elementary rule weights ijw / , i=const, j=1,…,J state the conditional probabilities of the 

events (y is jB ) of the consequent variable, under the condition of the input variable (x 

is iA ). It can be calculated from Bayesian formula (see (22)), as follows 

 
)(

)(
)/(/

i

ji
ijij

AP

BAP
ABPw

×
== ,   j=1,…,J, i=const (31) 

where the probability of fuzzy events (fuzzy relations) ji BA × , i=1,…,I,  j=1,…,J , 

determined by the formula 

 ijjB

VUvu

iAji wvuTvupBAP ==× ∑
×∈

))(),((),()(

),(

μμ  (32) 
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states the joint probability distribution of linguistic input-output vector 

{ },)(),( ji BAPYXP ×=  i=1,…,I, j=1,…,J . The joint probability distribution 

]1,0[),( ∈vup determined in the input–output universe 1+⊂× pRVU  is understood in the 

sense of the probability theory. 

The weights iw , ijw and ijw /  i=1,…,I,  j=1,…,J of the model can be estimate by using a set of 

input-output measurements { }),( mm vu ,m=1,…,M and as probability distributions should 

fulfil the relationships   

 1

1

∑
=

=
I

i

iw ,    ,1

1 1

=∑∑
= =

I

i

J

j

ijw      .,1

1

/ constiw

J

j

ij ==∑
=

 (33) 

4.2 Inference and aggregation procedure  

The approximate reasoning is based on a fuzzy logic and fuzzy sets theory (Zadeh, 1979). 

The generalized modus ponens permits to deduce an imprecise conclusion from imprecise 

premises. A great number of works in the literature dealt with fuzzy reasoning, e.g.  

(Pedrycz, 1984), (Yager & Filev, 1994), (Hellendoorn & Driankov, 1997). 

 When the proposition ∗
iAisx  is given, then from the ij-th elementary rule of the model (29), 

a proposition ∗
ijBisy /  can be computed. The membership function )(

/

v
ij

B∗
μ of the inferred 

fuzzy output is given by the formula: 

 )),(),((sup)(
/

vuuTv
ijRiA

Uu
ijB

μμμ ∗∈∗ =  (34) 

where T means a t-norm, Rij is a fuzzy relation determined in the input-output space VU ×  

with the membership function ),( vu
ijR

μ  expressed as an implication operator or as a t-norm 

(min or product) derived from membership functions )(u
iA

μ  and )(
/
v

ijB
μ . Inferred fuzzy 

set ∗
ijB /  depends on a t-norm as well as the chosen type of the fuzzy relation Rij.   

Let us check the inferring procedure from the model (29), taking into account the rule 

weights  representing probabilities of fuzzy events defined above (according to (Walaszek-

Babiszewska, 2007a and 2008). Assuming a crisp value (singleton) of input variables  

),...,( 1
∗∗∗ = puuu  with the degree of fitting  ∗u  to the input fuzzy set Ai , calculated by 

 ipipAi
AiA

uuTu τμμμ == ∗∗∗ ))(),...,(()(
,1

,1
 (35) 

the output fuzzy set ∗
ijB /  can be found as follows:  

 ))(),(()(
/

/
vuTv

ijBiA
ijB

μμμ ∗
∗ =  (36) 
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where the t-norm determines the relation Rij . Using the product t-norm (according to 

Larsen’s rule) in (36), we have the output fuzzy set  ∗
ijB /  inferred from ij-th elementary rule, 

determined by a membership function 

 )()(
//
vv

ijBi
ijB

μτμ =∗  (37) 

Fuzzy outputs ∗
ijB / computed from elementary rules j=1,…,J, at the same value of the 

antecedent (i=const),  can be aggregated by using weights  ijw / :  

 )()(
/

1

/ vwv
ijB

J

j

iji
iB

μτμ ∑
=

∗ =  (38) 

The fuzzy set ∗
iB derived in such way is a fuzzy conditional mean value (see (7) in 

paragraph 2.2) of the conclusion (37), calculated under the condition ( ∗
iAisx ). 

If the crisp value of input variables  ),...,( 1
∗∗∗ = puuu  belongs also to another input fuzzy sets 

iA , and ,0≠iτ  i=1,…,I then  fuzzy outputs of the file rules ∗
iB , i=1,…,I can be aggregated 

using weights iw of all switched rules. Then the aggregated fuzzy set ∗B states a total mean 

fuzzy value of the conclusion (37), with the membership function calculated according to: 

 )()(
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μτμ ∑∑
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∗ =  (39) 

or in the way: 
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1
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μτ
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The relationships (33) have been taken into account in formulas (38) and (39).  

4.3 Knowledge representation of stochastic systems  

Stochastic systems are often described by the ordered pair (x,y) of input and output 
variables: 

 ( ){ }Ω∈∈∈∈ ωωω ,,,:,(),,( YyXxTttytx  (41) 

where X is the system input domain, Y is the output domain of the system, T represents a 
time domain, and Ω is an elementary events domain. There is a certain probabilistic, reason-
result relationship between variables x and y, where x plays the role of a reason, and y – the 
result.   
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 In paragraph 4.2 we considered the linguistic fuzzy model of the MISO system, assuming 
that x and y are linguistic variables (vector) with linguistic values determined by suitable 
fuzzy sets in the input and output numerical domain. Moreover, the probabilistic measure 
p(x,y) on a set of realizations of the processes have been given. The model (29) can be treated 
as a joint probability of linguistic vector variable in the input-output domain. 
Let us assume now, that the probabilistic measure p(x,y) on a set of realizations of the 
processes { } Kktttytx k ,...2,1,,)(),( == observed at the discrete moments, is given. 

There are many models of stochastic systems discrete in a time domain T, for example an 
input-output dynamic model: 

 )](),...,(),...,(),...,(),([)( 11 mkknkkkk tytytxtxtxfty −−−−=  (42) 

where f() can be a multivariable regression function. These types of models are well known 
as Box-Jenkins’ time series models and are modelled by using Takagi-Sugeno type fuzzy 
models (Yager, and Filev, 1994), (Hellendoorn, and Driankov, 1997). 
We are interested in other types of models, which take into account a multivariable 
distribution function of the processes { } Kktttytx k ,...2,1,,)(),( == observed at the discrete 

moments, e.g.  

 )](),...,(),(),...,(),...,(),([),( 11 mkkknkkk tytytytxtxtxpyxp −−−−=  (43) 

These models are used in more simple forms, as the first order models (e.g. white noise) or 
the second order models (e.g. Markov’s process, known also as a short memory process). 
The general form of the fuzzy model of a stochastic process discrete in a time domain T, can 
be expressed as a set of weighted rules: 

 

])(

)(...)(

...)(...)()([

,

,1,1

,1,1,

kik

mkimkkik

nkinkkikkiki

BistyTHEN

BistyANDBistyAND

AistxANDAistxANDAistxIFw

−−−−

−−−−

 (44) 

where 
i=1,…,I – number of rules, determined by the partition of the input-output space 

11 ++ × mn YX ; 
x,y –linguistic variables, Xx∈ , Yy∈ with linguistic values sets L(X), L(Y), determining 

linguistic states of the system, 

nkikiki AAA −− ,1,, ,...,,  - fuzzy subsets corresponding to linguistic values of  variables 

)(),...,(),( 1 nkkk txtxtx −− , Xx∈ ; 

mkikiki BBB −− ,1,, ,...,,  - fuzzy subsets corresponding to linguistic values of  variables 

)(),...,(),( 1 mkkk tytyty −− , Yy∈ ; 

iw - weight of i-th rule, a joint probability of the fuzzy event (fuzzy relation iR ) in  the 

input-output space 11 ++ × mn YX (according to (Walaszek-Babiszewska, 2007b)) 

 )......()( ,1,,,1,, mkikikinkikikiii BBBAAAPRPw −−−− ×××××××==  (45) 

The weighted rule (44) can be easily written in a form of a rule with two weights, 
corresponding to a probability of the antecedent events and to a conditional probability of 
the consequent event, similarly to model (29). 

www.intechopen.com



Fuzzy Knowledge Representation Using Probability Measures of Fuzzy Events 

 

341 

4.4 Exemplary knowledge representation of a stochastic process 

The data }{
kt
x of the euro/Polish zloty exchange rate, observed daily in the first year of 

involving it into 12 countries of the EU, has been recognized as a realization of a certain 
stochastic process. The process has been modelled to predict some linguistic value of the 
process and the probability of its occurrence.  

Two variables 
21

, −− ktkt
xx  have been assumed as antecedent variables.  From the point of 

view of fuzzy modelling, the created model represents a fuzzy relation ),,(
21 −− ktktkt

xxxR of 

the linguistic variables in a form of weighted rules. Three linguistic states of the process 
have been distinguish: L(X)={low(A1), middle(A2),  high(A3)} and the fuzzy meaning have been 
defined, based on disjoint intervals in the process domain X. 

The joint empirical probability distribution ),,(
21 −− ktktkt

xxxp  has been calculated, using 

disjoint cube intervals 3Xaaa kji ∈×× , i,j,k=1,…,4. The empirical probability distribution 

),,(
21 −− ktktkt

xxxP of linguistic variables, taking the fuzzy states 321 ,, AAA  observed at the 

moments 21,, −− kkk ttt , has been computed. Then, the marginal and conditional probability 

distributions have been calculated.  
The linguistic fuzzy model consists of 7 file rules. Table 3. presents all file rules of the model 
in a form of a decision table (Walaszek-Babiszewska, 2007b). 
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Table 3. The rule-based fuzzy model of the stochastic process }{
kt
x  
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