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1. Introduction  

Nonlinear block-oriented systems, including the Hammerstein, Wiener and feedback-
nonlinear systems have attracted considerable research interest both from the industrial and 
academic environments (Bai, 1998),  (Greblicki, 1989),  (Latawiec, 2004), (Latawiec et al., 
2003), (Latawiec et al., 2004),  (Pearson & Pottman, 2000).  
It is well known that orthonormal basis functions (OBF) (Bokor et al., 1999) have proved to 
be useful in identification and control of dynamical systems, including nonlinear block-
oriented systems (Gómez & Baeyens, 2004), (Latawiec, 2004), (Latawiec et al., 2003), 
(Latawiec et al., 2006), (Latawiec et al., 2004), (Stanisławski et al., 2006).  In particular, an 
inverse OBF (IOBF) modeling approach has been effective in identification of a linear 
dynamic part of the feedback-nonlinear and Hammerstein systems (Latawiec, 2004), 
(Latawiec et al., 2004). On the other hand, regular OBF (ROBF) modeling approach has 
proved to be useful in identification of the Wiener system. The approaches provide the 
separability in estimation of linear and nonlinear submodels (Latawiec et al., 2004), thus 
eliminating the bilinearity issue detrimentally affecting e.g. the ARX-based modeling 
schemes (Latawiec, 2004), (Latawiec et al., 2003), (Latawiec et al., 2006), (Latawiec et al., 
2004). The IOBF modeling approach is continued to be efficiently used here to model a 
linear dynamic part of the feedback-nonlinear and Hammerstein systems and regular OBF 
modeling approach is used to model a linear part of the Wiener system. 
The problem of modeling of a nonlinear static part of the nonlinear block-oriented system 
can be classically tackled using e.g. the polynomial expansion (Latawiec, 2004), (Latawiec et 
al., 2004) or (cubic) spline functions. Recently, a radial basis function network (RBFN) has 
been used to model a nonlinear static part of the Hammerstein and feedback-nonlinear 
systems and a very good identification performance has been obtained (Hachino et al., 
2004), (Stanisławski, 2007), (Stanisławski et al., 2007). The concept is extended here to cover 
the Wiener system. 
This paper presents a new strategy for nonlinear block-oriented system identification, which 
is a combination of OBF modeling for a linear dynamic part and RBFN modeling for a 
nonlinear static element. The effective OBF approach is finally coupled with the RBFN 
modeling concept, giving rise to the introduction of a powerful method for identification of 
the nonlinear block-oriented system. 
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2. Regular and inverse OBF modelling concept 

2.1 Regular OBF modeling 

It is well known that an open-loop stable linear discrete-time system described by the 
transfer function G(q) can be represented with an arbitrary accuracy by the model 

∑ =
= M

i ii qLcqG
1

)()(ˆ , including a series of orthonormal transfer functions Li(q) and the 

weighting parameters ci, i=1,...,M, characterizing the model dynamics. Thus, the model of 
the system can be written as (Latawiec, 2004), (Latawiec et al., 2006), (Latawiec et al., 2004) 
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Various OBF can be used in (1). Two commonly used sets of OBF are simple Laguerre and 
Kautz functions. These functions are characterized by the ‘dominant’ dynamics of a system, 
which is given by a single real pole (p) or a pair of complex ones (p, p*), respectively. 
In case of discrete Laguerre models to be exploited hereinafter, the orthonormal functions  
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consist of a first-order low-pass factor and (i-1)th-order all-pass filters. Dominant Laguerre 
pole p can be selected in an experimental way or can be determined with the aid of the 
stochastic gradient (SG) estimator (Boukis et al., 2006), (Oliveira, 2000). 

2.1 Inverse OBF modeling 

In case of use of the inverse OBF (IOBF) concept to model a linear dynamic part, the model 
equation can be presented in form 

 )()(ˆ)(ˆ 1 tutyqG =−  (3a) 
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where FIR model R(q)= 1
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model )(ˆ qG . In the IOBF concept, the inverse R(q) of the system is modeled using OBF. An 

OBF modeling approach can now be applied to equation (3b) instead of (3a) and finally we 
can present equation (1) in the following form (Latawiec et al., 2003) 

 ( ) ( ) )()(),( 10
1

tedtutypqLcy i

M

i
it +−=+∑

=

β  (4) 

where e1(t) is the equation error, d is the time delay of the system, β0 and ci i=1,…,M are the 
OBF model parameters. 

3. RBF network 

The nonlinear function approximated by a Radial Basis Functions Network (RBFN) consists 
of two layers of neurons (one hidden and one output layer). The hidden layer consists of m 
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neurons, where each neuron implements the radial activated function. The output layer 
consists of one linear neuron which realizes weighted sum of outputs of hidden layer 
neurons. The output of RBFN is described by the equation 

 ))((
1

)( tu
i i

wtx i

m

φ∑
=

=  (5) 

where wi, i=1,…,m are the weighting coefficients and φi(u(t)) are the outputs of hidden layer 
neurons. Typically, the Gaussian function is used as an activation function in RBFN. The 

Gaussian functions are modeled by two parameters characterizing their centers αi and wides 

σi. In this case the φi(u(t)) is given by the equation   

 ( )22
/)(exp))(( iii kutu σαφ −−=   for i=1,..,m  (6) 

where ||.|| is the Euclidian norm. 
Important advantage of the RBF network is that the weighting coefficients wi, i=1,…,m can 
by estimated by using classical, linear estimation schemes e.g. recursive/adaptive least 

squares (RLS/ALS), or least mean squares (LMS). The centers αi and wides σi  (i=1,…,m) of 
the RBF can be determined with the aid of the stochastic gradient (SG) estimator (Kim et al., 
2006), genetic algorithm (Hachino et al., 2004) or other optimization methods. However, in 

practical applications, the optimization of the αi and σi is not absolutely necessary. It has 
been found in simulations (Stanisławski, 2007) that RBFN without optimization (with 
regular distribution of the centers and constant widths) can produce satisfactory solutions.  

3. Nonlinear block-oriented systems 

3.1 Hammerstein system 

The Hammerstein system consists of two cascaded elements, where the first one is a 
nonlinear memoryless gain and the second one is a linear dynamic model. The whole 
Hammerstein system can be described by the equation 

 [ ] [ ])()()()())(()()( tetxqGtetufqGty HH +=+=  (7) 

where G(q) models a dynamic linear part, f(.) describes a nonlinear function, x(t) is the 
unmeasured output of the nonlinear part and eH(t) is the error/disturbance term. An 
alternative output error/disturbance formulation is also possible. 
Combining equations (4),(5) and (7) we arrive at the equation describing the whole 
Hammerstein system 
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Assuming that wj=β0wj, i=1…m, the model output from the Hammerstein system can be 
finally given as 
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which can be presented in the linear regression form 
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 θϕ )()(ˆ tty T=  (10) 

where )(tTϕ =[-v1(t) ... -vM(t) φ1(t-d) φ2(t-d)... φm(t-d)], θ =[c1 ... cM w1 w2  ... wm] and 

vi(t)=Li(q,p)y(t). Unknown parameters θ of the model can be estimated by the familiar 

recursive least squares (RLS) or least mean squares (LMS) algorithms. 

3.2 Wiener system 

In a single-input single-output Wiener system, a linear dynamic part is cascaded with a 

nonlinear static element. The output )(ˆ ty  of the Wiener model, or the system output 

predictor, can be calculated as 

 (q)u(t)] G[f (t)y ˆˆˆ =  (11) 

Since a nonlinear static characteristic is invertible we can rewrite equation (11) in form 

 )()( tuqGtyf ˆ)](ˆ[ˆ 1 =−  (12) 

The function )](ˆ[ˆ 1 tyf −  can be approximated with RBF network. Finally, we arrive at the 

linear regression function  
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where iii
ww α−=  (i=1,..,m), which can be presented in the familiar form θϕ )()(ˆ tty T= , 

with  )(tTϕ  = [ v1(t) ... -vM(t) -φ1(y(t)) -φ2(y(t))... -φm(y(t))], θ=[c1 ... cM w1 w2  ... wm] and 

vi(t)=Li(q,p)u(t), i=1,...,M. 

3.3 Feedback-nonlinear system 

In the block-oriented feedback-nonlinear system, the output of the linear dynamic part is fed 

(negatively) back to the input through the static nonlinearity, so that the whole system can 

be described by the equation 
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where eF(t) is the error/disturbance term. Combining equations (4),(5) and (14) we arrive at 

the equation describing the whole, IOBF-related feedback-nonlinear system (Stanisławski et 

al., 2007) 
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Putting wj=β0wj, j=1…m, the output from the feedback-nonlinear system can be finally given 

as 
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The equation (16) can be presented in the linear regression form, with )(tTϕ =[u(t-d) -v1(t) ... 

-vM(t) -φ1(y(t-d)) -φ2(y(t-d))... -φm(y(t-d))], θ=[β0 c1 ... cM w1 w2  ... wm] and vi(t)=Li(q,p)y(t). 

Clearly, owing to the IOBF modeling approach applied, the linear and nonlinear submodels 

are separated from each other so that the bilinearity issue is eliminated here. 

4. Simlation experiments 

In the Matlab/Simulink environment, we comparatively analyze the three presented 

nonlinear block-oriented OBF/RBFN-related models consisting of 1) Hammerstein IOBF 

related model, 2) Wiener regular OBF related model and 3) feedback-nonlinear IOBF related 

model. For example, consider the magnetic levitation process which has been simulated as a 

demo in the Matlab/Simulink environment. Our main goal is to analyze efficiency of the 

approach in view of their possible use in on-line identification (and control). Performance of 

parameter estimation is evaluated by means of the mean square prediction error (MSPE). 

MSPE is described by the equation  

 ∑
=

−=
N

t

tytyNMSPE
1

2))(ˆ)(()1(  (17) 

 

The system is excited by a random number generator with regular distribution <0.5, 4>. 

Additionally, the system is corrupted with the input and output noises (ei(t) and eo(t)), which 

are supplied from a Gaussian random number generators with N(0, δi) and N(0, δo), 

respectively. For estimation of weights of the RBFs and parameters of the dynamical model 

we use a classical RLS algorithm. 

Table 1 specifies the results of a comparative analysis of the performance of the three models 
for M=6 and m=9. 
 

δi δo 
Hammerstein 

system 
Wiener system 

Feedback-nonlinear 
system 

0 0 8.851 e-6 0.2437 1.008 e-5 

0.005 0 2.167 e-5 1.123 9.236 e-5 

0.01 0 4.337 e-5 1.287 9.582 e-5 

0 0.005 2.752 2.231 2.838 

0 0.01 5.188 3.226 4.95 

0.005 0.005 2.921 3.406 2.792 

Table 1. MSPE of the Hammerstein, Wiener and feedback-nonlinear models 
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The results in Table 1 show that the high accuracy of identification has been obtained for the 

IOBF/RBFN-based models (Hammerstein and feedback-nonlinear models). The reasons are 

1) the specific, structure of the IOBF-related model, 2) numerical conditioning of the 

covariance matrix for the IOBF-based estimation problem is essentially better than that for 

the OBF-based one. However, the inconvenience of IOBF-related models is the high 

sensitivity on the output error due to the equation error structure. Table 1 shows that the 

Wiener model cannot provide sufficiently high accuracy of the identification problem, 

causing that the RBF network in the Wiener system models the inversion of the nonlinear 

function f(.). The calculation of the original function on the basis of RBF network is 

ambiguous and badly numerical conditioned. Finally, only the Wiener model gives the 

satisfy results for the system corrupted with the high-level disturbances.    

Plots of the actual output and its reconstruction by Hammerstein, Wiener and Feedback 

nonlinear models presented in Fig. 1 and Fig. 2 confirm very good performance of 

identification for Hammerstein and Feedback nonlinear models and poor performance for 

Wiener model, respectively. 
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Fig. 1. Plots of actual (solid-black) vs. predicted (dashed-red) outputs of the Hammerstein 
system (left) and feedback-nonlinear system (right) 
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Fig. 2. Plots of actual (solid-black) vs. predicted (dashed-red) outputs of the Wiener system 

www.intechopen.com



Orthonormal Basis and Radial Basis Functions in Modeling and Identification  
of Nonlinear Block-Oriented Systems 

 

283 

7. Conclusion 

The paper has presented the solutions to the nonlinear identification problem for the various 
nonlinear block-oriented systems using OBF-related models and RBF network. We have 
demonstrated that the Wiener model based on regular OBF modeling concept cannot 
provide sufficiently high performance of the identification problem. This is mainly to due 
with inversion problem of RBF network.  
Results of a simulation analysis have shown that the strategy using the IOBF modeling 
concept in Hammerstein and feedback-nonlinear model can provide a very good 
performance, both in terms of low prediction errors and accurate reconstruction of the 
nonlinear characteristics, in addition to high computational efficiency.   

8. References 

Bai E.W. (1998). An optimal two-stage identification algorithm for Hammerstein-Wiener 
nonlinear systems. Automatica,  Vol. 34,  pp. 333-338. 

Bokor J., Heuberger P., Ninness, B., Oliveira e Silva, T., Van den Hof P. & Wahlberg, B. 
(1999). Modelling and identification with orthogonal basis functions. Proc. 
Preconference Workshop, 14th IFAC World Congress, Beijing, P.R. China. 

Boukis C., Mandic D.P., Constantinides A.G. & Polymenakos L.C. (2006). A Novel 
Algorithm for the Adaptation of the Pole of Laguerre Filters. IEEE Signal Processing 
Letters, Vol. 13, No. 7,  pp. 429 - 432. 

Greblicki W. (1989). Nonparametric orthogonal series identification of Hammerstein 
systems. International Journal of Systems Science, Vol. 20, No. 12, pp. 2355-2367. 

Gómez J.C. & Baeyens E. (2004). Identification of block-oriented nonlinear systems using 
orthonormal bases. Journal of Process Control, Vol. 14, No. 6, pp. 685-697 

Hachino T., Deguchi K. & Takata H. (2004). Identification of Hammerstein model using 
radial basis function networks and genetic algorithm. Proc. 5th Asian Control 
Conference, Vol. 1, pp. 124-129. 

Kim N.Y., Byun H.G. & Kwon K.H. (2006). Learning Behaviors of Stochastic Gradient Radial 
Basis Function Network Algorithms for Odor Sensing Systems.  ETRI journal, Vol. 
28, No. 1. 

Latawiec K.J. (2004) The Power of Inverse Systems in Modeling and Control of Linear and 
Nonlinear Systems. Vol. 167,  Opole University of Technology Press, Opole, Poland. 

Latawiec K.J., Marciak C., Hunek W. & Stanisławski R. (2003) A new analytical design 
methodology for  adaptive control of nonlinear block-oriented systems. Proc. 7th 
World Multi-Conference on Systemics, Cybernetics and Informatics, Vol. XI, pp. 215-220, 
Orlando, Florida, USA. 

Latawiec K.J., Marciak C. & Oliveira G.H.C.: (2006). A new control-oriented modeling 
methodology for a series DC motor. Electromagnetic Fields in Mechatronics, Electrical 
and Electronic Engineering, Wiak S., Krawczyk A. & Fernandez X.L.M. (Eds.),  IOS 
Press, Studies in Applied Electromagnetics and Mechanics, Vol. 27, Chapter_B_13. 

Latawiec K.J., Marciak C., Rojek R. & Oliveira G.H.C. (2003). Linear parameter estimation 
and predictive constrained control of Wiener/Hammerstein systems. Proc. 13th 
IFAC Symposium on System Identification, pp. 359-364, Rotterdam, The Netherlands. 

www.intechopen.com



 Automation and Robotics 

 

284 

Latawiec K.J., Marciak C., Stanisławski R. & Oliveira G.H.C. (2004) The mode separability 
principle in modeling of linear and nonlinear blockoriented systems. Proc. the 10th 
IEEE MMAR Conference (MMAR’04), Vol. 1, pp. 479-484, Miedzyzdroje, Poland. 

Oliveira S.T. (2000). Optimal pole conditions for Laguerre and two-parameter Kautz models: 
a survey of known results. Proc. 12th IFAC Symp. on System Identification 
(SYSID'2000), pp. 457-462, Santa Barbara, CA, USA. 

Pearson R.K. & Pottman M. (2000). Gray-box identification of block-oriented nonlinear 
models. Journal of Process Control, Vol. 10, pp. 301-315. 

Stanisławski R., Latawiec K.J. & Stanisławski W. (2006). Modeling of a boiler proper using a 
complex structure model by means of multivariable orthonormal basis functions. 
Proc. 12th IEEE MMAR Conference (MMAR’06), pp. 935-938, Miedzyzdroje, Poland. 

Stanisławski R. (2007). Hammerstein system identification by means of orthonormal basis 
functions and radial basis functions. Emerging Technologies, Robotics and Control 
Systems, Pennacchio S. (Eds.), Internationalsar, Vol. 2, pp. 69-73, Palermo, Italy. 

Stanisławski R., Latawiec K.J. & Hunek W.P. (2007). Identification of feedback-nonlinear 
systems by means of orthonormal basis and radial basis functions. Proc. 13th IEEE 
IFAC IC MMAR 2007, pp. 611-616, August 2007, Szczecin, Poland. 

www.intechopen.com



Automation and Robotics

Edited by Juan Manuel Ramos Arreguin

ISBN 978-3-902613-41-7

Hard cover, 388 pages

Publisher I-Tech Education and Publishing

Published online 01, May, 2008

Published in print edition May, 2008

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

In this book, a set of relevant, updated and selected papers in the field of automation and robotics are

presented. These papers describe projects where topics of artificial intelligence, modeling and simulation

process, target tracking algorithms, kinematic constraints of the closed loops, non-linear control, are used in

advanced and recent research.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Rafal Stanislawski and Krzysztof J. Latawiec (2008). Orthonormal Basis and Radial Basis Functions in

Modeling and Identification of Nonlinear Block-Oriented Systems, Automation and Robotics, Juan Manuel

Ramos Arreguin (Ed.), ISBN: 978-3-902613-41-7, InTech, Available from:

http://www.intechopen.com/books/automation_and_robotics/orthonormal_basis_and_radial_basis_functions__i

n_modeling_and_identification_of_nonlinear__block-ori



© 2008 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


