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Abstract

Nitrogen (N) is one of the most important plant nutrient, and its availability and trans-
formations are vital for net primary production. Soil N transformations include miner-
alization, nitrification and denitrification processes. Nitrogen mineralization transforms 
organic N into inorganic N, providing available N for crops. Both nitrification and deni-
trification are microbe-driven processes associated with nitrous oxide (N

2
O) emissions. 

N
2
O emissions from agricultural soils decrease N fertilization efficiency and potentially 

induce global warming. The mitigation of soil N
2
O emissions in agricultural practice 

is essential for sustainable development of agriculture considering the environmental 
effect of N

2
O. Various strategies have been proposed for the mitigation of N

2
O emissions. 

Nitrification inhibitors have been demonstrated to be useful in decreasing soil N
2
O emis-

sions, including the application of nitrification inhibitors, such as dicyandiamide (DCD) 
and 3,4-dimethylpyrazole phosphate (DMPP). Recently, biological nitrification inhibi-
tors have also attracted researchers’ attention, which may be more environment-friendly. 
In addition, biochar commonly used as soil ameliorant to improve soil quality and C 
sequestration could also mitigate soil N

2
O emissions. Once all effective strategies would 

be widely implemented, more environment-friendly agriculture could be expected.

Keywords: fertilizer efficiency, global change, mitigation, nitrogen emissions, nutrition

1. Introduction

Nitrogen (N) is one of the most important elements for plant growth and hence it is vital for 
ecosystem’s primary production [1]. In the background of global climate change, understand-

ing soil N balance in agricultural soils is important for sustaining the development of modern 

agriculture and mitigation of climate change considering the substantial contribution made 

by agriculture to climate change [2–4].

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



In general, soil N mainly originates from atmospheric N deposition (both dry and wet depo-

sition) (Figure 1) and biological fixation in natural ecosystems [5]. In agricultural soils, how-

ever, N input via anthropogenic activities (e.g., fertilization practice) has been considered as 

the most important way [6]. Fertilization in agricultural practice could introduce many kinds 

of N into soil ecosystems. For example, both organic and inorganic N, in liquid or particle 
status, could often be observed in agricultural fertilization practice. In addition to N input by 

anthropogenic activities, N output via crops harvest or human-induced runoffs with irriga-

tion could occur simultaneously in agricultural soils (Figure 1).

Moreover, the complicated N transformations going on in soil ecosystems also account for 
large part of N output from soils [7]. For example, N mineralization associated with trans-

forming organic N into inorganic N might induce more N leaching with runoffs or under-

ground water; nitrification process could increase N loss from soils via gas emissions [2, 7, 8] 

(Figure 1).

Thereby, understanding the process and mechanisms underlining N transformations 
in agricultural soils would be vital for more efficient fertilization practice and agriculture 
management.

2. Nitrogen transformations in agricultural soils

2.1. Overview of soil N transformations

Except for N transformation process ongoing during litter decomposition process at the litter-
soil interface, N was also transformed by processes including mineralization, nitrification, 
denitrification, and so on, in agricultural soils [9].

Figure 1. Simple diagram showing N cycle between atmosphere and agricultural soil. Note: (A) N deposition; (B) N 
fixation; (C) fertilization; (D) denitrification; (E) nitrification; (F) organic N mineralization; (G) plant uptake; (H) litter 
decomposition; (I) soil immobilization; (J) N volatilization, leaching and crops harvest.
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While organic N accounts for larger part of total soil N, only soil inorganic N (mainly including 

ammonium and nitrate N) derived from mineralization of organic N is readily available for plant. 

Thereby, organic N mineralization is an important factor controlling levels of soil inorganic N 
availability, which is vital for crop production. In agricultural soils, most crop residuals were har-
vested by agricultural activities, while some of them were returned into soils as roots, rhizospheric 
deposition or aboveground litter. During decomposition of these organic matters, most inorganic 
N would be released into surrounding soils via mineralization of organic N. In these processes, N 
uptake by plant from soils was returned into soils again, during N mineralization process.

Nitrogen produced by mineralization process, including both ammonium and nitrate N, was 
readily available for crop growth. If there was no leaching or loss via runoffs, all available N 
will be adsorbed by plant roots and used for growth. However, nitrification and denitrifica-

tion processes (both produce greenhouse gas N
2
O) also occurred between ammonium and 

nitrate N, causing new balance among different N components [2, 4, 7].

In addition, soil ammonium N could also be immobilized by soil particles, and both impor-

tant inorganic N may loss with surface runoff, further decreasing its availability level. Before 

mineralized by microbes, soluble organic N was also reliable to be removed by runoffs.

2.2. General methods in studying soil N transformations

2.2.1. Net and gross N transformation rates

Due to complicated interactions among all soil N transformation process, net N transforma-

tion rates have been widely studied [10, 11]. Once plant roots were excluded, changes in soil 
N levels could be considered as results of transformations. Specifically, when soil mineraliza-

tion rates were examined, both ammonium and nitrate concentrations were determined both 
at the beginning and at the end of the study. Net N mineralization rates were considered as 
changes in concentration of both inorganic N per given time unit [11, 12]. The equations used 
for the calculation were as follows:

Net N mineralization rate:

   N  
mineralized

   =   
 [ ( Nitrate  

f
   +  Ammonium  

f
  ) – ( Nitrate  

0
   +  Ammonium  

0
  ) ] 
    ______________________________________   

 T  
days

  
  .  (1)

where N
mineralized

 = net N mineralization rate, expressed as mg N kg−1 soil day−1, Ammonium
f
 =  

final ammonium concentration, expressed as mg NH
4

+-N kg−1 soil, Ammonium
0
 = initial 

ammonium concentration, as mg NH
4

+-N kg−1 soil, T
days

 = incubation time, days.

Similarly, net nitrification rates and ammonification rates were calculated as follows:

Net nitrification rate:

   N  nitrified   =   
 ( Nitrate  

f
   −  Nitrate  

0
  ) 
  ______________ 

 T  
days

  
  ,  (2)

Net ammonification rate:

   N  ammonification   =   
 ( Ammonium  

f
   −  Ammonium  

0
  ) 
   ______________________  

 T  
days

  
  ,  (3)

Nitrogen Transformations Associated with N2O Emissions in Agricultural Soils
http://dx.doi.org/10.5772/intechopen.71922

19



where Nnitrified = net nitrification rate, expressed as mg NO
3
−-N kg−1 soil day−1, Nitrate

f
 = final 

nitrate concentration, expressed as mg NO
3
−-N kg−1 soil, Nitrate

0
 = initial nitrate concentra-

tion, as mg NO
3
−-N kg−1 soil, Ammonium

f
 = final ammonium concentration, expressed as mg 

NH
4
+-N kg−1 soil, Ammonium

0
 = initial ammonium concentration, as mg NH

4
+-N kg−1 soil, T

days
 =  

incubation time, days.

Meanwhile, with the development of isotope labeling strategy, more studies have been con-

ducted to determine the gross N transformation rates in agriculture and forestry soils [13–16]. 

By labeling N in ammonium or nitrate N, N element could be traced during the complicated 

transformation process. Thereby, the gross N transformation rates could be obtained using 
the isotope labeling method.

2.2.2. In situ and ex situ studies on N transformations

Studies on N transformations could also be sorted by study place or site, into in situ or ex situ 

studies. Laboratory soil incubation studies were widely used to examine N transformations 
in environmental science [10, 17]. During laboratory incubation, the environmental factors 
could be easily altered to check their role played on N transformation rates. Thereby, studies 
conducted in incubators are more operable than those in situ. For example, incubation studies 
could be manipulated with different soil water content, incubated temperature, or even aera-

tion status. However, not all N transformation studies could be conducted in the laboratory. In 
agricultural ecosystems, the dynamics of soil N might be important for fertilization practice in 

field crops research and management. In this condition, laboratory incubation studies are no 
longer applied. Instead, in situ soil core incubation is more suitable. Similar to laboratory incu-

bations, both concentrations of soil inorganic N at the beginning and at the monitored date 

should be determined of the soil column. Moreover, the soil column incubated in situ for study 

should be isolated from the surrounding soils to prevent potential N uptake by roots of crops.

In recent years, ion-exchange resins (Unibest PST-1, Unibest, Bozeman, MT, USA) have been 
widely used for in situ studies on soil N availability [18, 19]. In these studies, incubated soils 

cores were isolated from surrounding soil. Exchangeable anion/cation resin was used to 
capture any inorganic N moved into or out of the incubated soil core [19]. Changes in soil 
inorganic N in soil core and the resin relative to that of the initial soil core with time were 
considered as net N mineralization rate. Similarly, changes in soil nitrate N with time were 
considered as net nitrification rate.

3. Nitrogen transformations associated with N
2
O emissions

3.1. Illustration of N
2
O emissions

3.1.1. Soil N
2
O production

N
2
O is one important component of greenhouse gas emitted from soil. The global warming poten-

tial of N
2
O is much larger than that of methane and carbon dioxide (CH

4
 and CO

2
). According 

to the latest report, even though not so much as CH
4
 and CO

2
 in atmospheric environment, the 
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global warming potential of N
2
O is 265 times that of CO

2
, while CH

4
 is only 28 times [3]. Thereby, 

N
2
O might have contributed substantially to global warming considering its larger global warm-

ing potential [3, 8]. Importantly, most of the atmospheric N
2
O was emitted from soils, especially 

those fertilized by N fertilization in agricultural ecosystems. Hence, studying the way N
2
O is 

produced, emitted and adsorbed in agricultural soils would be important for mitigation of soil 
N

2
O emissions and hence for mitigation of atmospheric N

2
O in this climate changing world.

Soil N
2
O has been demonstrated to be the by-product or production of N transformation pro-

cess by previous studies [20]. Specifically, the main process producing N
2
O in soil ecosystems, 

namely nitrification and denitrification process, transformed ammonium N to nitrate N, and 
nitrate N to N

2
, respectively [21, 22]. The processes associated with N

2
O production could be 

described by hole in the pipe model (HIP, Figure 2) [20]. The model showed that N
2
O was 

produced by complete nitrification process and was produced during denitrification process. 
In both processes, nitric oxide (NO) was also produced by both nitrification and denitrifica-

tion processes, which was also considered as an important GHG [23–25]. Recently, in addition 
to N

2
O, NO has also attracted increasing attention due to their role played in altering atmo-

spheric chemistry and global climate [26–29].

3.1.2. Measurement of soil N
2
O emissions

Methods being developed for the measurement of soil N
2
O emissions rate including two dif-

ferent sets. This first one was used to measure soil N
2
O emission rate in laboratory incubation 

studies. Different to that conducted in situ, incubation studies monitored soil N
2
O emission 

based on soil mass rather than soil surface area. Thereby, those studies measured N
2
O emis-

sion rate based on soil mass per time. Equation developed for the calculation of N
2
O emission 

rate of incubated soil could be described as follows [17, 30, 31]:

  E = P × V ×   dc __ 
dt

   ×   1 ___ 
RT

   × M ×   1 __ m   ×   1 __ t    (4)

where E refers to emission rates of soil N
2
O (ng g−1 h−1), P is standard atmospheric pressure 

(Pa), V is headspace volume of the incubation flask (cm3), c is the concentration of N
2
O (ppb), 

Figure 2. Simple diagram showing the production process of soil N
2
O.
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t is the time between two sample collections (h), R is the universal gas constant, T is the abso-

lute air temperature (K), M is the molecular mass of N
2
O (g mol−1), and m is incubated soil 

mass by dry weight basis (g).

Relative to laboratory incubation studies, in situ studies could capture effects of various fac-

tors on soil N
2
O emissions in natural environment. These studies generally calculated soil N

2
O 

emission rate based on soil surface area. In general, in situ measurements could be conducted 

using static opaque chamber/gas chromatography method. To be specific, circular or square 
grooved collars should be buried into soil, with groove filled with water to seal the gas collec-

tion chamber [32, 33]. When soil N
2
O emission rate would be measured, open-bottom cylindri-

cal or cubic PVC gas sampling chamber would be fit into the groove. To exclude the potential 
effects of temperature variation during gas collection process, gas chambers were usually 
wrapped by foam and aluminum foil. Inside each chamber, battery-powered fans were used 
during gas accumulation process to mix air samples. Gas samples were usually collected man-

ually or automatically using single-use syringes or sir bags, respectively. After gas collection, 

gas chromatograph with electron capture detector was used to measure N
2
O concentrations. 

Soil N
2
O emission rates were usually determined by the equation as follows [31–33]:

  F = P × V ×   
d  N  

2
   O
 _____ 

dt
   ×   1 ___ 

RT
   × M ×   1 __ 

A
   ×   

 M  
n
  
 ___ 

M
    (5)

where F refers to soil N
2
O emission rates (mg N

2
O m−2 h−1), P is the standard atmospheric 

pressure (Pa), V and A are the volume (m3) and interior bottom area (m2) of the gas collection 

chamber, R stands for universal gas constant, T is the absolute air temperature (K) when the 
gas sample was aspirated and M

n
 and M are the molecular masses of N and N

2
O (g mol−1), 

respectively.

When cumulative emissions were needed for study purpose, total soil N
2
O emissions within 

a given time could be obtained by multiplying average soil N
2
O emission rate and the cor-

responding time span [17, 33].

It should be noted that both methods were used to obtain the net soil N
2
O emission rates. 

During measurement, soil might be source or sink of N
2
O depends on soils used for studies. 

However, when results were positive based on two equations, it could be determined that 
soils were emitting N

2
O. Similarly, when values were negative, soil could be adsorbing N

2
O 

in the corresponding studies.

3.2. Factors impacting soil N
2
O productions

3.2.1. General factors impacting soil N
2
O productions

According to the model shown in Figure 2, factors impacting nitrification and denitrifica-

tion could also be able to influence the production and emission of soil N
2
O. As have been 

reported by previous studies, factors impacting nitrification process including quantity and 
quality of soil N input, soil moisture (water holding capacity) [34, 35], soil temperature [10, 

17, 30], irrigation and tillage practices, soil type, soil oxygen concentration, dissolved organic 
C availability (controlling substrate availability of soil microbes) [17, 36], additives for soil 
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amelioration, vegetation or crop types [37], land use change and soil pH [36, 38]. While soil 

N provided substrate for transformation process producing soil N
2
O, other factors regulated 

N
2
O production process mainly via indirect effects on soil microbial activities.

For example, soil temperature is the key factor controlling microbial activities. Since both 
nitrification and denitrification processes have been demonstrated as being driven by nitri-
fication and denitrification bacteria, soil temperature could impact both transformation pro-

cesses via its effects on bacterial activities. According to previous studies, nitrification process 
preferred temperature between 25 and 35°C, while it will be inhibited when soil temperature 
decreased below 5°C or increased above 50°C [39]. Moreover, the favorable temperature for 
denitrification falls within 30 and 67°C [40].

In addition, soil acidification levels as shown by soil pH are also important for microbial 
activities. To be specific, the ratio of N

2
O in denitrification process would increase with rela-

tively lower soil pH, indicating enhancement of denitrification bacteria activities. Similarly, 
activities of some nitrification bacteria would also increase in response to lower pH.

Soil aeration also controls the quantity of N
2
O by nitrification or denitrification process. In 

well-ventilated soil environment, nitrification process could be complete while denitrification 
process posed at stage producing N

2
O. Since complete nitrification process was also accom-

panied by N
2
O production, under the same environmental conditions, more N

2
O would be 

produced in upland soils relative to flooded soils.

3.2.2. Factors impacting N
2
O production in agricultural soils

In agricultural soils with intensive anthropogenic disturbance, soil N
2
O productions became 

more complicated compared with those in natural soils [4]. Agricultural practice generally 

including fertilization, tillage, water regime [34], and so on, all of which could alter soil physi-
cal and chemical properties, impacting soil N

2
O productions [4].

First, agricultural soils received much more N input via fertilization, increasing N availabilities 

for nitrification and denitrification process [2, 4, 8]. Except for increasing N availability directly, 
fertilization types, quantity of fertilizations, fertilization method and the time when soil was 
fertilized together regulated N transformation process. In general, N fertilization including 

inorganic N or organic N input in agricultural management. In organic agriculture, activi-

ties of denitrification bacteria were higher, potentially facilitating the denitrification process, 
decreasing soil N

2
O productions [41]. Indeed, soil N

2
O emissions were found lower in organic 

agriculture than conventional agriculture in another study by Phillips [42].

Second, farmland with decreased-tillage or non-tillage management potentially enhance the 
accumulation of soil organic C [43]. Due to the balance between C and N regulated by C to N 
ratio, increased soil organic C might be accompanied by increased fixation of soil N and hence 
less N

2
O emissions from agricultural field [36]. However, increased soil N

2
O emissions were 

also observed in studies on decreased tillage farmland [34, 44, 45]. Moreover, soil tillage could 
also impact soil aeration conditions and indirectly regulate soil N

2
O emissions via effects on 

microbial activities. Thereby, soil tillage and other disturbance management may be impor-

tant in impacting soil N
2
O emissions [34, 45, 46].
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Water regime, especially that in paddy field, plays an important role in controlling soil N
2
O 

production and emissions [47–49]. When paddy field was flooded, soil aeration was inhibited, 
anaerobic microenvironment was hence cultivated. In this kind of condition, N

2
 became the 

main production of denitrification process, soil could be considered as the sink of N
2
O, as 

almost no emissions were observed. Meanwhile, flooded soil was generally favorable to meth-

anogens, which were associated with soil CH
4
 production. Indeed, flooded soil, generally 

in paddy field, has been demonstrated to be the main source of CH
4
 [47]. However, during 

drainage time, paddy field was not flooded any more, especially during time when soils were 
humid (i.e., wetting and drying cycles), aerobiotic soil environment was formed, and soil N

2
O 

emission rate could reach a peak [31]. In this kind of environment, soil is not completely dry 

but experiencing wetting and drying cycles, allowing more oxygen in soil pores, increasing 
the production of N

2
O [50]. Yan et al. [51] studied the correlations between soil water content 

and soil N
2
O emissions, reporting the largest soil N

2
O emission rate when soil water content 

was equivalent to water holding capacity. Thereby, soil water content and soil aeration condi-
tion interact in impacting soil N

2
O emissions in agricultural soil.

3.3. Mitigation of N
2
O emissions from agricultural soils

Various strategies have been developed for the mitigation of soil N
2
O emissions, especially in 

agricultural ecosystems. Agricultural management including fertilization, tillage, crop rota-

tions, and so on has been employed in mitigation of soil GHG, especially N
2
O emissions. Not 

only because N
2
O induce global warming, but also N losses that accompanied the production 

and emission process of N
2
O. To increase fertilization efficiency, the economy of agriculture 

management, and the benefit for environment, more efficient mitigation strategies are still 
needed. Presently, nitrification inhibitor has been widely used in agricultural management 
and has been demonstrated to be much more effective.

Nitrification inhibitor interrupted the transformation process from ammonium N to nitrate 
N, which could decrease N losses from soil (emissions or leaching, for example, Marsden 
et al. [52]) and increase N availability level for crops and hence the adsorption of ammonium 

N. Using nitrification inhibitors could potentially decrease soil emissions via interruptions on 
both nitrification and denitrification processes simultaneously. Chemical nitrification inhibi-
tor and biological nitrification inhibitor are two important choices in recent studies.

3.3.1. Chemical nitrification inhibitors

Chemical nitrification inhibitors are human-synthesized materials. By decreasing soil N loss 
induced by nitrification and denitrification process, nitrification inhibitors could enhance effi-

ciency of N fertilization. Thereby, nitrification inhibitors were also used as additives for N 
fertilizers. Nitrogen fertilizers with these additives (or similar additives like urease inhibitors, 
etc.) were usually used and called as enhanced efficiency nitrogen fertilizers [53].

Dicyandiamide (DCD) and 3,4-dimethylpyrazole phosphate (DMPP) are two most widely 
used nitrification inhibitors [54]. Both inhibitors interrupted the oxidation of ammonium N, 
limiting the important step occurred in nitrification process. Even though both inhibitors could 
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be used with N fertilization and were effective in mitigation of soil N
2
O emissions, DMPP has 

been demonstrated to be less phytotoxic and used at lower rate relative to DCD in general. The 
efficacy of both inhibitors in mitigation of soil N

2
O emissions could depend on temperature, 

soil chemical and physical characteristics, and so on. However, the difference in mitigation 
efficacy could also have been induced by the mobility of inhibitors in soil environment.

However, it should be noted that attentions should be paid to the negative effect on soil N 
availability [55] or food security [54] induced by applications of nitrification inhibitors. The 
first negative effect is the potentially increased ammonia (NH

3
) volatilization induced by 

nitrification inhibitors [55]. Indeed, nitrification inhibitors decreased the rate of nitrification 
and denitrification process, potentially prolonged the retention time of ammonium N in soil 
environment, increasing the possibilities of more ammonia volatilization. Increased ammonia 

emissions would on one hand decrease the efficacy of N fertilization practice, and impor-

tantly, on the other hand, have economic and environmental consequences [53] considering 

their potential driving effect on soil N
2
O emissions.

To reduce potentially increased ammonia volatilization after application of nitrification inhib-

itors, manufactures developed urease inhibitor N-(n-butyl) thiophosphoric triamide (NBPT) 
[56, 57]. Application of NBPT has been proved effective in reducing pasture soil urease activ-

ity and mitigating ammonia volatilization [58, 59]. The combination of nitrification inhibitor 
and NBPT could also decrease the yield-scaled N

2
O emissions relative to treatments only with 

fertilizer in banana plantations [56].

The second caution is the grain yield and quality following alteration in soil N components 
[54]. While it is rational to expect that grain N concentration may increase in response to 
soil with longer N retention time, there are studies demonstrating no such effect in grain N 
following DMPP application [54]. A recent study on banana plantations in tropical China 
reported decreased yield-scaled N

2
O emission, but banana yield showed no significant differ-

ence between N fertilization treatment and N with inhibitors [56]. Thereby, the efficiency of 
N fertilization practice with nitrification inhibitors might be crops or vegetation-type depen-

dent, which should be considered in future applications.

There are also cautions on N fertilizer types that could be used combining with the appli-
cation of nitrification inhibitors. To maintain the efficiency of nitrification inhibitors, only 
several N fertilizers could be widely used with nitrification inhibitors. Due to higher cost of 
theses fertilizers, wide adoption in agricultural practice became more difficult [59]. Recently, 
new compounds with higher nitrification inhibitor efficiencies have been developed, such as 
3,4-dimethylpyrazole succinic (DMPSA), which is more stable when applied combined with 
other basic fertilizers (e.g., calcium ammonium nitrate) at basic conditions [54, 59].

3.3.2. Biological nitrification inhibitors

In tropical grassland and forest ecosystems, nitrification rate was found much slower relative to 
that in other similar soils. In further studies, it was found that some plant species synthesized 
important organic compounds and released these compounds into surrounding soils via roots 

[60]. These compounds were found being able to inhibit nitrification process, imposing similar 
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effects on nitrification process as chemical nitrification inhibitors. They were called biological nitri-
fication inhibitors as they were not human synthesized. Thereby, biological nitrification inhibitors 
are organic materials that have similar negative effects on nitrification process exuded by plant.

Biological nitrification inhibitors generally including phenolic compounds, alkaloid, isothio-

cyanate and terpenoid [60, 61]. For example, chemicals produced by Arbutus unedo, including 

phenolic compounds gallocatechin and catechin were able to decrease soil N
2
O emissions 

[62]. In tropical grassland of Africa, both Brachiaria humidicola and Brachiaria decumbens were 
found be able to release biological nitrification inhibitors by producing linoleic, and so on, 
which enable them to survive in the low-N south Africa Savannas [63].

Compared with chemical nitrification inhibitors, biological inhibitors were environment-
friendly in their producing process and application area. However, due to varying ability in 
synthesizing these compounds, further studies in how to cultivate species with stronger abil-
ity in producing these compounds are still needed.

3.3.3. Other gradients incorporated into agricultural soils

Other efforts have also been tried in decreasing soil N
2
O emissions. In agricultural and forest 

soils, biochar has been used to improve soil quality and C sequestration [64–67]. Biochar is 

produced by slow pyrolysis of crop residues, household garbage, poultry litter, wood chips, 
or some other similar materials at high temperature (pyrolysis temperature generally between 
400 and 600°C) without oxygen [67]. The physical characteristics of biochar enable it to be an 
ideal soil ameliorant. By applying biochar, soil aeration could be improved significantly, pro-

viding more oxygen and hence enhancing soil microbial activities. Due to its special physical 
characteristics, biochar could also prevent soil N leaching by adsorbing nitrate N (temporary 

immobilization, which would not impose negative effect on plant nutrient availability forever).

Acknowledgements

We acknowledge funding support by National Natural Science Foundation of China (Award 
number: 41501317), China Postdoctoral Science Foundation (Award number: 2017M612153), 
and Key Project of Jiangxi Education Department (Award number: GJJ160348).

Author details

Ling Zhang* and Xiaojun Liu

*Address all correspondence to: lingzhang09@126.com

Jiangxi Key Laboratory of Silviculture, Co-Innovation Center of Jiangxi Typical Trees 
Cultivation and Utilization, College of Forestry, Jiangxi Agricultural University, Nanchang, 
China

Nitrogen in Agriculture - Updates26



References

[1] Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, et al. Transfor-
mation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science. 
2008;320(5878):889-892

[2] Bouwman AF. Direct emission of nitrous oxide from agricultural soils. Nutrient Cycling 
in Agroecosystems. 1996;46(1):53-70

[3] IPCC. Agriculture, forestry and other land use (AFOLU). In: Climate Change 2014: 
Mitigation of Climate Change; 2014.

[4] Freney JR. Emission of nitrous oxide from soils used for agriculture. Nutrient Cycling in 
Agroecosystems. 1997;49(1):1-6

[5] Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, et al. 
Human alteration of the global nitrogen cycle: Sources and consequences. Ecological 
Applications. 1997;7(3):737-750

[6] Zheng X, Fu C, Xu X, Yan X, Huang Y, Han S, et al. The Asian nitrogen cycle case study. 
AMBIO: A Journal of the Human Environment. 2002;31(2):79-87

[7] Zhu T, Zhang J, Cai Z. The contribution of nitrogen transformation processes to total 
N

2
O emissions from soils used for intensive vegetable cultivation. Plant and Soil. 2011; 

343(1-2):313-327

[8] Zou J, Lu Y, Huang Y. Estimates of synthetic fertilizer N-induced direct nitrous 
oxide emission from Chinese croplands during 1980-2000. Environmental Pollution. 
2010;158(2):631-635

[9] Mosier AR, Zhaoliang Z. Changes in patterns of fertilizer nitrogen use in Asia and its 
consequences for N

2
O emissions from agricultural systems. Nutrient Cycling in Agroe-

cosystems. 2000;57(1):107-117

[10] Jiang L, Zhang L, Deng B, Liu X, Yi H, Xiang H, et al. Alpine meadow restorations by 
non-dominant species increased soil nitrogen transformation rates but decreased their 

sensitivity to warming. Journal of Soils and Sediments. 2017;17(9):2329-2337

[11] Robertson GP, Coleman DC, Bledsoe CS, Sollins P. Standard Soil Methods for Long-
Term Ecological Research. New York, Oxford: Oxford University Press; 1999. 462 pp

[12] Zhang L, Zhang Y, Zou J, Siemann E. Decomposition of Phragmites australis litter 
retarded by invasive Solidago canadensis in mixtures: An antagonistic non-additive effect. 
Scientific Reports. 2014;4:5488

[13] Masse J, Prescott CE, Müller C, Grayston SJ. Gross nitrogen transformation rates differ 
in reconstructed oil-sand soils from natural boreal-forest soils as revealed using a 15N 

tracing method. Geoderma. 2016;282:37-48

Nitrogen Transformations Associated with N2O Emissions in Agricultural Soils
http://dx.doi.org/10.5772/intechopen.71922

27



[14] Lang M, Li P, Han X, Qiao Y, Miao S. Gross nitrogen transformations in black soil under 
different land uses and management systems. Biology and Fertility of Soils. 2015;52(2): 

233-241

[15] Chen Z, Zhang J, Xiong Z, Pan G, Müller C. Enhanced gross nitrogen transformation 
rates and nitrogen supply in paddy field under elevated atmospheric carbon dioxide 
and temperature. Soil Biology and Biochemistry. 2016;94:80-87

[16] Lan T, Han Y, Roelcke M, Nieder R, Cai Z. Effects of the nitrification inhibitor dicyan-

diamide (DCD) on gross N transformation rates and mitigating N
2
O emission in paddy 

soils. Soil Biology and Biochemistry. 2013;67:174-182

[17] Hu Y, Zhang L, Deng B, Liu Y, Liu Q, Zheng X, et al. The non-additive effects of tempera-

ture and nitrogen deposition on CO
2
 emissions, nitrification, and nitrogen mineraliza-

tion in soils mixed with termite nests. Catena. 2017;154:12-20

[18] Jones RO, Chapman SK. The roles of biotic resistance and nitrogen deposition in regulat-
ing non-native understory plant diversity. Plant and Soil. 2011;345(1-2):257-269

[19] Parker SS, Schimel JP. Soil nitrogen availability and transformations differ between 
the summer and the growing season in a California grassland. Applied Soil Ecology. 
2011;48(2):185-192

[20] Wrage N, Velthof GL, van Beusichem ML, Oenema O. Role of nitrifier denitrification in 
the production of nitrous oxide. Soil Biology and Biochemistry. 2001;33(12-13):1723-1732

[21] Li X, Sørensen P, Olesen JE, Petersen SO. Evidence for denitrification as main source of 
N

2
O emission from residue-amended soil. Soil Biology and Biochemistry. 2016;92:153-160

[22] Zhang J, Cai Z, Cheng Y, Zhu T. Denitrification and total nitrogen gas production from 
forest soils of eastern China. Soil Biology and Biochemistry. 2009;41(12):2551-2557

[23] Erickson HE, Perakis SS. Soil fluxes of methane, nitrous oxide, and nitric oxide from 
aggrading forests in coastal Oregon. Soil Biology and Biochemistry. 2014;76:268-277

[24] Huang Y, Li D. Soil nitric oxide emissions from terrestrial ecosystems in China: A syn-

thesis of modeling and measurements. Scientific Reports. 2014;4:7406

[25] Loick N, Dixon ER, Abalos D, Vallejo A, Matthews GP, McGeough KL, et al. Denitrification 
as a source of nitric oxide emissions from incubated soil cores from a UK grassland soil. 
Soil Biology and Biochemistry. 2016;95:1-7

[26] Hickman JE, Huang Y, Wu S, Diru W, Groffman PM, Tully KL, et al. Non-linear response 
of nitric oxide fluxes to fertilizer inputs and the impacts of agricultural intensification 
on tropospheric ozone pollution in Kenya. Global Change Biology. 2017;23(8):3193-3204

[27] Zhang Y, Lin F, Jin Y, Wang X, Liu S, Zou J. Response of nitric and nitrous oxide fluxes 
to N fertilizer application in greenhouse vegetable cropping systems in southeast China. 
Scientific Reports. 2016;6:20700

[28] Liu S, Lin F, Wu S, Cheng J, Sun Y, Jin Y, et al. A meta-analysis of fertilizer-induced soil 
NO and combined with N

2
O emissions. Global Change Biology. 2016;23(6):2520-2532

Nitrogen in Agriculture - Updates28



[29] Yao Z, Liu C, Dong H, Wang R, Zheng X. Annual nitric and nitrous oxide fluxes from 
Chinese subtropical plastic greenhouse and conventional vegetable cultivations. Enviro-
nmental Pollution. 2015;196:89-97

[30] Deng BL, Li ZZ, Zhang L, Ma YC, Li Z, Zhang WY, et al. Increases in soil CO
2
 and 

N
2
O emissions with warming depend on plant species in restored alpine meadows of 

Wugong Mountain, China. Journal of Soils and Sediments. 2016;16(3):777-784

[31] Liu S, Zhang L, Liu Q, Zou J. Fe(III) fertilization mitigating net global warming poten-

tial and greenhouse gas intensity in paddy rice-wheat rotation systems in China. 
Environmental Pollution. 2012;164:73-80

[32] Zhang L, Ma X, Wang H, Liu S, Siemann E, Zou J. Soil respiration and litter decomposi-
tion increased following perennial forb invasion into an annual grassland. Pedosphere. 
2016;26(4):567-576

[33] Zhang L, Wang H, Zou J, Rogers WE, Siemann E. Non-native plant litter enhances soil 
carbon dioxide emissions in an invaded annual grassland. PLoS One. 2014;9(3):e92301

[34] Liu XJ, Mosier AR, Halvorson AD, Reule CA, Zhang FS. Dinitrogen and N
2
O emissions in 

arable soils: Effect of tillage, N source and soil moisture. Soil Biology and Biochemistry. 
2007;39(9):2362-2370

[35] Zheng X, Wang M, Wang Y, Shen R, Gou J, Li J, et al. Impacts of soil moisture on nitrous 
oxide emission from croplands: A case study on the rice-based agro-ecosystem in 
Southeast China. Chemosphere - Global Change Science. 2000;2(2):207-224

[36] Huang Y, Zou J, Zheng X, Wang Y, Xu X. Nitrous oxide emissions as influenced by 
amendment of plant residues with different C:N ratios. Soil Biology and Biochemistry. 
2004;36(6):973-981

[37] Zhu T, Zhang J, Meng T, Zhang Y, Yang J, Müller C, et al. Tea plantation destroys soil 
retention of NO

3
− and increases N

2
O emissions in subtropical China. Soil Biology and 

Biochemistry. 2014;73:106-114

[38] Homyak PM, Kamiyama M, Sickman JO, Schimel JP. Acidity and organic matter promote 
abiotic nitric oxide production in drying soils. Global Change Biology. 2016;23(4):1735

[39] Weil RR, Brady NC. Nitrogen and sulfur economy of soils. In: Brady RWaN, editor. The 
Nature and Properties of Soils. Cambridge: Pearson; 2017. pp. 584-642

[40] Huang YZ, Feng Z, Fuzhu Z. Study on loss of nitrogen fertilizer from agricultural fields 
and countermeasure. Journal of Graduate School, Academia Sinica. 2000;17(2):49-58

[41] Kramer SB, Reganold JP, Glover JD, Bohannan BJ, Mooney HA. Reduced nitrate leaching 
and enhanced denitrifier activity and efficiency in organically fertilized soils. Proceedings 
of the National Academy of Sciences of the United States of America. 2006;103(12): 

4522-4527

[42] Phillips RL. Organic agriculture and nitrous oxide emissions at sub-zero soil tempera-

tures. Journal of Environmental Quality. 2007;36(1):23-30

Nitrogen Transformations Associated with N2O Emissions in Agricultural Soils
http://dx.doi.org/10.5772/intechopen.71922

29



[43] Lu F, Wang X, Han B, Ouyang Z, Duan X, Zheng H, et al. Soil carbon sequestrations by 
nitrogen fertilizer application, straw return and no-tillage in China's cropland. Global 
Change Biology. 2009;15(2):281-305

[44] Li C, Frolking S, Butterbach-Bahl K. Carbon sequestration in arable soils is likely to increase 
nitrous oxide emissions, offsetting reductions in climate radiative forcing. Climatic 
Change. 2005;72(3):321-338

[45] Six J, Ogle SM, Conant RT, Mosier AR, Paustian K. The potential to mitigate global warm-

ing with no-tillage management is only realized when practised in the long term. Global 
Change Biology. 2004;10(2):155-160

[46] Yagioka A, Komatsuzaki M, Kaneko N, Ueno H. Effect of no-tillage with weed cover 
mulching versus conventional tillage on global warming potential and nitrate leaching. 
Agriculture, Ecosystems and Environment. 2015;200:42-53

[47] Zou J, Huang Y, Jiang J, Zheng X, Sass RL. A 3-year field measurement of methane and 
nitrous oxide emissions from rice paddies in China. Global Biogeochemical Cycles. 
2005;19(2):153-174

[48] Wang JY, Jia JX, Xiong ZQ, Khalil MAK, Xing GX. Water regime–nitrogen fertilizer–straw 
incorporation interaction: Field study on nitrous oxide emissions from a rice agroecosys-

tem in Nanjing, China. Agriculture, Ecosystems and Environment. 2011;141(3-4):437-446

[49] Cai Y, Chang SX, Ma B, Bork EW. Watering increased DOC concentration but decreased 
N

2
O emission from a mixed grassland soil under different defoliation regimes. Biology 

and Fertility of Soils. 2016;52(7):987-996

[50] Davidson EA. Sources of nitric oxide and nitrous oxide following wetting of dry soil. 
Soil Science Society of America Journal. 1992;56(1):95-102

[51] Yan X, Shi S, Du L, Guangxi X. N
2
O emission from paddy soil as affected by water regime. 

Acta Pedologica Sinica. 2000;37(4):482-489

[52] Marsden KA, Marín-Martínez AJ, Vallejo A, Hill PW, Jones DL, Chadwick DR. The 
mobility of nitrification inhibitors under simulated ruminant urine deposition and rain-

fall: A comparison between DCD and DMPP. Biology and Fertility of Soils. 2016;52(4): 

491-503

[53] Linquist BA, Liu L, van Kessel C, van Groenigen KJ. Enhanced efficiency nitrogen fertilizers 
for rice systems: Meta-analysis of yield and nitrogen uptake. Field Crops Research. 2013; 
154:246-254

[54] Huérfano X, Fuertes-Mendizábal T, Fernández-Diez K, Estavillo JM, González-Murua 
C, Menéndez S. The new nitrification inhibitor 3,4-dimethylpyrazole succinic (DMPSA) 
as an alternative to DMPP for reducing N

2
O emissions from wheat crops under humid 

Mediterranean conditions. European Journal of Agronomy. 2016;80:78-87

[55] Lam SK, Suter H, Mosier AR, Chen D. Using nitrification inhibitors to mitigate agricul-
tural N

2
O emission: A double-edged sword? Global Change Biology. 2017;23(2):485-489

Nitrogen in Agriculture - Updates30



[56] Zhu T, Zhang J, Huang P, Suo L, Wang C, Ding W, et al. N
2
O emissions from banana planta-

tions in tropical China as affected by the application rates of urea and a urease/nitrification 
inhibitor. Biology and Fertility of Soils. 2015;51(6):673-683

[57] Abalos D, De Deyn GB, Kuyper TW, van Groenigen JW. Plant species identity sur-

passes species richness as a key driver of N
2
O emissions from grassland. Global Change 

Biology. 2014;20(1):265-275

[58] Shi X, Hu H-W, Kelly K, Chen D, He J-Z, Suter H. Response of ammonia oxidizers and 
denitrifiers to repeated applications of a nitrification inhibitor and a urease inhibitor in 
two pasture soils. Journal of Soils and Sediments. 2017;17(4):974-984

[59] Guardia G, Cangani MT, Andreu G, Sanz-Cobena A, García-Marco S, Álvarez JM, et al. 
Effect of inhibitors and fertigation strategies on GHG emissions, NO fluxes and yield in 
irrigated maize. Field Crops Research. 2017;204:135-145

[60] Sun L, Lu Y, Yu F, Kronzucker HJ, Shi W. Biological nitrification inhibition by rice root 
exudates and its relationship with nitrogen-use efficiency. The New Phytologist. 2016; 
212(3):646-656

[61] Bending GD, Lincoln SD. Inhibition of soil nitrifying bacteria communities and their 
activities by glucosinolate hydrolysis products. Soil Biology and Biochemistry. 2000; 
32(8):1261-1269

[62] Castaldi S, Carfora A, Fiorentino A, Natale A, Messere A, Miglietta F, et al. Inhibition of 
net nitrification activity in a Mediterranean woodland: Possible role of chemicals pro-

duced by Arbutus unedo. Plant and Soil. 2009;315(1):273-283

[63] Subbarao GV, Rondon M, Ito O, Ishikawa T, Rao IM, Nakahara K, et al. Biological nitrifi-

cation inhibition (BNI)—Is it a widespread phenomenon? Plant and Soil. 2007;294(1):5-18

[64] Liimatainen M, Martikainen PJ, Maljanen M. Why granulated wood ash decreases N
2
O 

production in boreal acidic peat soil? Soil Biology and Biochemistry. 2014;79:140-148

[65] Ameloot N, Sleutel S, Das KC, Kanagaratnam J, de Neve S. Biochar amendment to soils 
with contrasting organic matter level: Effects on N mineralization and biological soil 
properties. GCB Bioenergy. 2015;7(1):135-144

[66] Case SDC, McNamara NP, Reay DS, Stott AW, Grant HK, Whitaker J. Biochar suppresses 
N

2
O emissions while maintaining N availability in a sandy loam soil. Soil Biology and 

Biochemistry. 2015;81:178-185

[67] Lehmann J, Gaunt J, Rondon M. Bio-char sequestration in terrestrial ecosystems—A 
review. Mitigation and Adaptation Strategies for Global Change. 2006;11(2):395-419

Nitrogen Transformations Associated with N2O Emissions in Agricultural Soils
http://dx.doi.org/10.5772/intechopen.71922

31




