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Abstract

A thermomechanical numerical model is proposed to describe the time-dependent brit-
tle deformation of brittle rocks under different constant temperatures and confining
pressures. The mesoscale model accounts for material heterogeneity and local material
degradation, and the model introduces the concept of a mesoscopic renormalization to
capture the cooperative interaction between microcracks in the transition from distrib-
uted to localized damage. The thermophysical parameters for the model were deter-
mined based on creep experiments of granite at temperatures of 23, 50, and 90�C. The
numerical simulations agree well with the experimental data. We then explore the
influence of temperature, differential stress, confining pressure, and sample homogene-
ity on brittle creep in granite using the same parameters. The simulated results show
that the creep strain rate increases with an increase in temperature and differential stress
and time to failure decreases, while creep strain rate decreases with an increase in
confining pressure and sample homogeneity, and therefore time to failure increases.
The proposed model is of great help to control and optimize rock engineering in granite.

Keywords: time-dependent deformation, temperature, creep strain rate, damage
evolution

1. Introduction

Disposal of radioactive waste is currently considered as the preferred option to store and isolate

this waste from biosphere over hundreds of thousands of years for waste management world-

wide. In the geological disposal, the temperature in the near-field rock mass will increase due to

the heat generated by the radioactive waste and in turn affect the time-dependent behavior of

the host rock and consequently change the overall long-term performance of the disposal.

Therefore, a good understanding of the time-dependent behavior of the host rock at elevated

temperatures is of great significance to evaluate the stability of nuclear waste disposal.

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Extensive effort has been made to investigate the time-dependent behavior of rocks like sedimen-

tary rock and rock salt [1–4] and hard rocks like granite [5–10] and basalt [11]. Granite is a widely

recognized potential host rock for the disposal of radioactive waste due to its low permeability

and high strength [12]. Moreover, a good understanding of time-dependent deformation in

granite will also assist in our understanding of crustal deformation and natural hazards since

granite is a major constituent of the continental crust. The distribution of stress and permeability

evolution in granite is of great importance when we analyze natural hazards and rock engineer-

ing projects. Despite the importance of granite in these high-temperature environments, very few

studies of time-dependent brittle creep on granite have been made at elevated temperature [2, 8,

9, 13]. During a brittle creep experiment of rock at a constant differential stress for an extended

period of time, the strain against time first decelerates before accelerating as macroscopic sample

failure is approached [14]. The onset of the acceleration to failure in brittle creep experiments has

been ascribed as the result of the sample reaching a microcrack density at which microcracks can

interact and coalesce, sometimes referred to as the critical damage threshold [2, 11, 13, 15]. Time-

dependent brittle deformation is often attributed to a mechanism of subcritical crack growth,

namely stress corrosion cracking [14, 16]. Stress corrosion describes fluid-rock reactions that

occur preferentially between a chemically active pore fluid and strained atomic bonds at the

crack tips and therefore is sensitive to environmental factors such as stress, temperature, and pore

fluid reactivity [16]. Temperature influences the crack growth rate through the Arrhenius tem-

perature dependence of crack growth rate and because temperature affects the stress dependency

of the rate of crack growth. Experimental tests have shown that speed of crack growth during

experiments increases with an increase in temperature [14, 17, 18].

Due to the aforementioned importance of understanding the long-term mechanical behavior of

rock for disposal of radioactive waste, here we present a two-dimensional constitutive creep

model to describe the time-dependent deformation of granite at different temperatures and

confining pressures. We first formulate the coupled thermomechanical time-dependent model.

We then validate the model and determine the required thermo-physico-mechanical parame-

ters with published experimental data [10, 19]. Finally, the results of brittle creep simulations at

different temperatures, differential stresses, confining pressures, and sample homogeneities

were presented and discussed.

2. Description of time-dependent constitutive model

In this chapter, a quantitative model is proposed to describe the coupled heat transfer and rock

failure problems associated with rock exposed to elevated temperatures. For a model used to

investigate time-dependent creep deformation at high temperature, the coupled effect of the

medium deformation and heat transfer must be important. Three components including a heat

transfer description, a stress description, and a failure description must be accounted for. The

descriptions of heat transfer, stress, and failure in the model are, respectively, presented.

2.1. Material heterogeneity description

It is important to introduce material heterogeneity to reveal a collective macroscopic behavior

different from that of the individual elements. The mechanical parameters such as uniaxial
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compressive strength and Young’s modulus of the mesoscopic material elements are assumed

to be homogeneous and isotropic and are randomly assigned with a Weibull statistical distri-

bution (Eq. (1)) [19] to reflect the material heterogeneity at a mesoscale:

f uð Þ ¼
χ

u0

u

u0

� �

χ�1

exp �
u

u0

� �

χ
� �

(1)

in which u is the scale parameter of an individual element at a mesoscale and the scale

parameter u0 is related to the average element parameter. The shape parameter χ indicates

material homogeneity and denotes as a homogeneity index. In order to get a set of values of

uniaxial compressive strength and Young’s modulus following the Weibull statistic distribu-

tion, a suit of random numbers ωi ranging from 0 to 1 are generated according to the Monte

Carlo method, and then the uniaxial compressive strength and Young’s modulus of each

element can be obtained from Eq. (2):

ui ¼ u0 ln
1

1� ωi

� �1
χ

(2)

in which ui is the uniaxial compressive strength and Young’s modulus of the element i.

Figure 1 shows two numerical standard rock specimens with a homogeneity index χ of 5. The

uniaxial compressive strength and the Young’s modulus are randomly determined according

to the Weibull distribution. The different colors in Figure 1 correspond to different values of

element strength and Young’s modulus. Therefore, the homogeneity index is an important

controlling parameter for the macroscopic mechanical response of a numerical sample [20].

2.2. Heat conduction description

It is assumed that the conductive flux is saturated at a value comparable to the enthalpy per

unit volume. The heat conduction equation in a medium is known as Fourier’s law:

qi ¼ �kij grad Tð Þ (3)

Figure 1. Numerical specimens with a geometry of 100 mm in length and 50 mm in width at a homogeneity index χ of 5.
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in which qi is the rate of heat conduction in W/m2, kij is the thermal conductivity tensor of the

medium in W/(m �C), and grad Tð Þ is the temperature gradient in �C/m. The negative sign

indicates that heat is transferred in the direction of decreasing temperature.

It is assumed that thermal equilibrium between the phases and heat conduction as the domi-

nant mechanism of heat transfer and the energy balance equation in an anisotropic medium

can be expressed as

∂

∂xi
kij

∂T

∂xj

� �

þ q ¼ rc
∂T

∂t
(4)

in which q denotes the heat source generated in the medium in W/m3, r is the bulk density of

medium in kg/m3, c is the specific heat of the medium in J/(kg �C), and t is the time. The energy

balance equation for an isotropic material can be reduced:

k∇2T þ q ¼ rc
∂T

∂t
(5)

2.3. Stress description

Assuming the total strain for a stressed medium is made up of elastic, creep, and thermal

components. The total strain can be decomposed:

ε ¼ εe þ εc þ εT (6)

in which the subscripts e, c, and T refer to the elastic strain, creep strain, and thermal strain,

respectively. The elastic strain εe can be expressed in a tensor form for elastic medium:

εe ¼ εij ¼
1

2G
Sij þ

1

3
εkkδij (7)

in which G is the shear modulus, εij is the tensor form of the elastic strain εe, Sij is the stress

deviator tensor of the elastic stress components σij, Sij ¼ σij �
1
3σkkδij, and δij is the Kronecker

delta. The Kronecker delta equals zero when i 6¼ j and one when i ¼ j. The thermal strain εT

due to the variation of temperature can be expressed:

εT ¼ α∆Tδij (8)

in which α is the coefficient of linear thermal expansion and ∆T is the temperature change. The

creep strain εc is a function of the stress σ, temperature T, and time t, i.e., εc ¼ F σ;T; tð Þ. It is

customary to assume that the effects are separable and can be written as

εc ¼ f σð Þg Tð Þh tð Þ (9)

where f σð Þ, g Tð Þ, and h tð Þ are the functions related to stress, temperature, and time, respec-

tively.
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For creep problems, a Norton-Bailey equation [4] known as a constitutive law of the creep

strain rate was adopted to characterize time-dependent creep deformation based on the

approach of the equation of state theory:

εc ¼ Aσntm exp � U

RT

� �

(10)

where A, m, and n are constants dependent on temperature. The constant n usually denotes

stress component of greater than one, m is usually a fraction, U is the creep activation energy

determined empirically as proportional to the slope of a plot of log εc as a function of 1=T at

constant σ, R is the universal gas constant, and T is the absolute temperature in Kelvin.

Equation (10) can also be expressed in a strain rate form because the strain rate is of great

interest for our study:

_εc ¼ mAσntm�1 exp � U

RT

� �

(11)

Creep flow rule under multiaxial stress conditions can be expressed in tensor form:

_
ε
c
ij ¼

3

2

dεc
dt

Sij

σe
(12)

in which σe is the effective stress, σe ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

3
2 SijSij

q

, dεc is the effective creep strain, and

dεc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
3 dε

c
ijdε

c
ij

q

. Now, substitute Eq. (12) into Eq. (11); the creep strain rate is also extended to

the multiaxial stress case:

_
ε
c
ij ¼

3

2
AmSijσ

n�1
e tm�1 exp � U

RT

� �

(13)

where _
ε
c
ij is the creep strain rate, Sij is the deviatoric part of σij, and σe is effective stress defined as

σe ¼
1
ffiffiffi

2
p

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ11 � σ22ð Þ2 þ σ33 � σ22ð Þ2 þ σ11 � σ33ð Þ2 þ 6 σ
2
12 þ σ

2
23 þ σ

2
13

� �

q

(14)

This creep model can describe the decelerating creep commonly seen in laboratory [14], but it

fails to capture the acceleration in strain rate in the approach to macroscopic sample failure.

Thus, a damage evolution law for the accelerating creep of rock is incorporated at this stage.

The static stress equilibrium equation can be expressed in tensor form:

σij, j þ f i ¼ 0 (15)

in which σij is the total stress tensor in MPa and fi is the body force per unit volume in MPa. The

continuity equation can be expressed in terms of the displacement gradient:
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εij ¼
1

2
ui, j þ uj, i

� �

(16)

in which εij is the small strain tensor and u is the displacement of the medium. The constitutive

equation for elastic isotropic medium can be expressed as

σij ¼ λδijεii þ 2Gεij � βδijΔT (17)

in which G is shear modulus, λ is Lamé’s constant, β is the coefficient of thermal stress in 1/�C,

and β ¼ 3λþ 2Gð Þα.

Thus, the final governing equation of heat transfer in a medium can be written in displacement

form:

λþ Gð Þ∙uj, ji þ Gui, jj þ f i � βδijΔT ¼ 0 (18)

2.4. Damage evolution description

An elastic damage constitutive law is incorporated in the model to describe its stress-strain

relationship. The elastic modulus for an isotropic elastic medium is expressed:

E ¼ E0 1�Dð Þ (19)

where E and E0 are the Young’s moduli of the damaged and the undamaged material, respec-

tively, and D is the isotropic damage variable. The constitutive relation can be rewritten in a

uniaxial state of stress:

σ11 ¼ E0 1�Dð Þε11 (20)

According to damage mechanics theory, the Young’s modulus of an element will degrade

according to Eq. (19) when the stress on the element exceeds a damage threshold. The stress-

strain curve of the element is considered linear elastic with a constant residual strength until

the given damage threshold is reached. The elastic damage constitutive law of each element

under uniaxial stress condition is shown in Figure 2. The maximum tensile stress criterion and

modified Mohr-Coulomb criterion are chosen as the damage thresholds to determine whether

any elements are damaged in tension or shear, respectively:

σ3 ¼ �f t0

σ1 � σ3
1þ sinϕ

1� sinϕ
¼ f c0

(21)

where σ1 is the maximum principal stresses, σ3 is the minimum principal stresses, f c0 and ft0
are the uniaxial compressive and tensile strength, respectively, and ϕ is the internal friction

angle of the element. The tensile strain criterion is always preferential because the uniaxial

tensile strength is far below uniaxial compressive strength of rock material.

The damage variable D according to the constitutive law as shown in Figure 2 can be

described.
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ð22Þ

where ε1 is the maximum principal strain and ε3 is the minimum principal strain. εt0 is the

maximum principal strain in tension, εc0 is the maximum principal strain in compression, and

r is a constitutive coefficient with a value of 2. The element behaves elastically during loading

and unloading when the major tensile or compressive strain of the element is less than the

maximum principal strain in tension or compression, respectively. The element will be dam-

aged by Eq. (22) when either of these strain thresholds is exceeded.

3. Model validation

3.1. Constant strain rate experiments

In this section, the proposed model was calibrated with experimental data [10, 18, 21] to

determine appropriate input parameters. Mechanical data from uniaxial and triaxial constant

displacement rate experiments at room temperature were used to obtain the physico-

mechanical input parameters at the mesoscale. The geometry of the granite samples in labora-

tory tests was 100 mm in length and 50 mm in width. The compressive strength of air-dried

Beishan granite under confining pressures of 0, 1, and 5 MPa is 165.2, 174, and 216.8 MPa,

respectively. The Young’s modulus and Poisson’s ratio of air-dried Beishan granite in uniaxial

Figure 2. Elastic damage constitutive law for element under uniaxial compression and tension.
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compression are 43 GPa and 0.25, respectively. The randomly generated numerical samples

were discretized into 20,000 square elements. The size of the modeled sample was kept the

same for all numerical simulations in the present paper. A suite of unconfined and confined

compressive tests on the modeled rock samples were performed at constant room temperature

and constant confining pressures of 0, 1, and 5 MPa. The physico-mechanical input parameters

of the individual elements at a mesoscale used in the simulations were listed in Table 1.

The numerical and experimental stress-strain curves for the granite simulations are plotted in

Figure 3. It can be seen from Figure 3 that the simulated stress-strain curves are in good

agreement with the experimental stress-strain curves. It needs to be noted that the nonlinear

behavior at the early beginning of the experimental stress-strain curves is a result of the closure

of preexisting compliant microcracks. This nonlinearity is not replicated in the present model

because the stress-strain behavior of an element is considered linear elastic until the given

damage threshold is attained. We highlight that the model input parameters were the same for

each of the simulations in Figure 3, adding confidence that the model is capable of accurately

capturing the short-term mechanical behavior of Beishan granite under different confining

pressures.

3.2. Single-step brittle creep experiments

The numerical model was validated via a successful attempt to replicate published uniaxial

and triaxial experimental data for Beishan granite. We will now run a suite of conventional

brittle creep simulations on Beishan granite under different constant temperatures of 23, 50,

and 90�C in order to find the required thermo-physico-mechanical properties of the granite.

These thermophysical parameters were determined from the experimental data, and material

Input parameters Granite

Homogeneity index 5

Mean elastic modulus (GPa) 43

Mean uniaxial compressive strength (MPa) 350

Poisson’s ratio 0.25

Frictional angle (�) 30

Ratio of uniaxial compressive to tensile strength 10

Axial stress (MPa) 150

Specific heat capacity (J/(kg K)) 900

Coefficient of linear thermal expansion (1/K) 4.6 � 10�6

Thermal conductivity (W/(m K)) 3.48

A 6.8 � 10�11

n 1.75

m 0.39

U 3000

Table 1. Thermo-physico-mechanical parameters of the numerical model.
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constants A, m, and n for the numerical model are listed in Table 1. It is noted that the same

physico-mechanical input parameters listed in Table 1 were used for the simulations. The

temperatures of 23, 50, and 90�C represent room temperature, the in situ rock temperature,

and the maximum temperature on the canister surface, respectively.

The numerically simulated creep curves together with the experimental creep curves are

plotted in Figure 4. It can be seen that the simulated creep curves agree well with the experi-

mental curves. The numerical creep curves clearly capture the phenomenology of brittle creep:

the strain rate first decelerates followed by an acceleration in strain rate prior to final macro-

scopic failure.

Figure 5 presents the snapshots of the damage evolution of the numerical specimens deformed

at constant temperatures of 23, 50, and 90�C. Figure 5 shows when and where damage and

Figure 3. Comparison between numerical and experimental stress-strain curves for granite.

Figure 4. Comparisons between numerical and experimental creep curves under uniaxial conditions (σx = 0 MPa) at

constant temperatures of 23, 50, and 90�C.
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failure occur in the numerical specimen. The value of Young’s modulus is randomly distrib-

uted since the numerical rock samples are heterogeneous. Therefore, the elements with a low

Young’s modulus act as nucleation sites for damage. As time goes on, these damaged elements

grow and form localized damage zones. The localized damaged zones alter the stress field in

their surrounding region, and these alterations further trigger the dynamic extension of the

damage zone. Eventually, a thoroughgoing macroscopic fracture forms that signals the macro-

scopic failure of the sample.

3.3. Multistep brittle creep experiments

Chen et al. [18] also performed a series of multistep creep experiments to investigate the

influence of temperature and stress on the time-dependent behavior of Beishan granite.

Multistep creep tests were performed at confining pressures of 0, 1, and 5 MPa and at temper-

atures of 23�C (room temperature) and 90�C (the maximum temperature on the canister

surface according to the current disposal conceptual design in China), respectively. The stress

applied on the sample during the experiments was increased stepwise to predetermined

percentages of the average peak stress (20, 40, 60, and 80%). The sample was kept at each level

of stress for 1 week. We also performed numerical multistep creep simulations under the same

conditions to further validate our model. It is noted that the numerical multistep creep simu-

lations were all performed using the determined physico-mechanical and thermophysical

parameters listed in Table 1. During the simulations, the rock samples are fixed in the vertical

direction but can move freely in the horizontal direction.

The numerically simulated multistep creep curves together with the experimental multistep

creep curves are plotted in Figure 6. It can be seen from Figure 6 that the simulated multistep

creep curves are in good agreement with the experimental curves. In detail, the model captures

the influence of both confining pressure and temperature on the mechanical behavior, and the

strain at the different stress steps and the time to failure are very similar between the experi-

ment and the model (Figure 6).

We therefore conclude that, based on the above validations, our model can be used to investi-

gate time-dependent creep of low-porosity granite at different temperatures. We will now use

Figure 5. Snapshots of the simulated failure process during the brittle creep.
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our model to further explore the influence of temperature, differential stress, confining pres-

sure, and sample heterogeneity on brittle creep in low-porosity granite.

4. Numerical simulations

4.1. Model setup

In this section, the influence of temperature, differential stress, confining pressure, and sample

heterogeneity on brittle creep of granite was investigated with the proposed model. The

numerical samples as shown in Figure 7 are the same as the samples modeled in the validation

described above. The modeled samples were discretized into 20,000 square elements. We

applied various axial stresses of 140, 145, 150, 155, and 160 MPa and various constant temper-

atures 23, 40, 50, 75, and 90�C on numerical samples with a inhomogeneity index 4, 5, and 6,

respectively, to study the influence of temperature, differential stress, and sample heterogene-

ity on brittle creep of granite. The loading conditions are also shown in Figure 7. The relevant

model parameters in the simulations are the same as the parameters listed in Table 1.

4.2. Effect of temperature on brittle creep

In addition to the validations above, two additional simulations of brittle creep were

conducted under uniaxial compressive stress of 150 MPa at constant temperatures of 40 and

75�C. The creep curves and creep strain rate curves for various constant temperatures are

shown in Figure 8, and the curves clearly show the accelerating-decelerating phenomenology

of brittle creep observed in laboratory tests. We can see that there is a clear temperature effect

on brittle creep in granite from these simulations.

It is noted that the creep strain rate strongly depends on temperature as observed in brittle

creep experiments. The evolution of creep strain rate at various constant temperatures is

Figure 6. Multistep creep curves for simulations performed under different confining pressures (σx = 0, 1, and 5 MPa) and

temperatures (23 and 90�C).
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shown in Figure 8. The strain rate first decreases, reaches the minimum creep strain rate, and

finally increases as the sample approaches macroscopic failure. The simulations show that

there are several orders of magnitude difference in the minimum creep strain rate between a

lower temperature (23�C) and a higher temperature (90�C). A large increase in strain rate at a

higher temperature results in a large decrease in the time to failure (Figure 9) as observed in

laboratory experiments on granite [8].

Figure 8. Creep curves and creep strain rate curves for simulations performed under uniaxial conditions at constant

temperatures.

Figure 7. Numerical model and loading conditions for the simulated creep experiments.
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4.3. Effect of differential stress on brittle creep

Here, the results of single-step brittle creep experiments under different constant-applied

differential stresses were presented to study the effect of differential stress on brittle creep in

granite. Uniaxial creep tests at a constant temperature of 50�C and constant axial stresses of

140, 145, 150, 155, and 160 MPa are numerically performed, and the numerically obtained

creep curves for the five simulations are shown in Figure 10. Likewise, Figure 10 clearly shows

the accelerating-decelerating phenomenology of brittle creep seen in laboratory tests. The

simulations indicate that the differential stress has a great influence on brittle creep in granite,

as observed in brittle creep experiments [14]. First, the creep strain rate is higher when the

differential stress is higher. A change in differential stress from 140 to 160 MPa leads to an

increase in the minimum strain rate by over an order of magnitude. Similar observations have

Figure 9. Time-to-failure vs. temperature curve for simulations performed under uniaxial conditions at constant temper-

atures of 23, 40, 50, 75, and 90�C.

Figure 10. Creep curves and creep strain rate curves for simulations performed under uniaxial conditions at constant

differential stresses between 140 and 160 MPa.
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been experimentally obtained for many rock types [14]. As a result of the higher strain rate

at higher differential stress, the time-to-failure is reduced as differential stress is increased

(Figure 11).

Moreover, brittle creep tests under different constant confining pressures of 0, 2, and 10 MPa,

but the same constant temperature and applied axial stress of 50�C and 150 MPa, respectively,

were also performed, and the brittle creep curves were presented in Figure 12. The simulations

capture the decelerating-accelerating phenomenology in laboratory experiments and reveal

that confining pressure plays a great influence on brittle creep in granite. The creep strain rate

reduces with an increase in the confining pressure (Figure 12): an increase in confining

Figure 11. Time-to-failure vs. temperature curve for simulations performed under uniaxial conditions at constant differ-

ential stresses between 140 and 160 MPa.

Figure 12. Creep and creep strain rate curves for simulations performed under a constant differential stress of 150 MPa

and confining pressures of 0, 2, and 10 MPa.
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pressure from 0 to 10 MPa leads to a reduction in the minimum strain rate by about an order of

magnitude; the results are consistent with those from brittle creep experiments at different

confining pressures. Figure 12 also shows snapshots of each of the failed samples. It can be

seen that more localized shear damage occurred in rock samples at higher confining pressures.

4.4. Effect of material heterogeneity on brittle creep

As we know, rock is heterogeneous, and thus we use a statistical Weibull distribution to

reproduce material heterogeneity in rock. A set of simulations were performed to study the

effect of material heterogeneity on brittle creep in granite with different homogeneity indices

but at a temperature of 50�C, confining pressure of 0 MPa, and constant-applied axial stress of

150 MPa. The mean Young’s modulus and mean UCS of the elements were kept the same

(43 GPa and 350 MPa, respectively), and only the homogeneity indices were changed in these

simulations. As described above, a larger homogeneity index implies that the elements within

the sample are closer to the mean Young’s modulus and the mean UCS. Therefore, a sample

with a larger homogeneity index indicates that there are fewer low-strength elements in rock

sample, and it will become stronger and more brittle.

The simulated creep curves and the evolution of creep strain rate presented in Figure 13 show

that an increase in material homogeneity leads to a decrease in creep strain rate and an increase

in time to failure. For example, the minimum creep strain rate decreases by about an order of

magnitude, and the time to failure increases from about 111,600 to 358,200 s when the homo-

geneity index increases from 4 to 6. On the contrary, a decrease in material homogeneity results

in an increase in the creep strain rate and a decrease in the time to failure.

5. Concluding remarks

A numerical time-dependent thermomechanical model was proposed to simulate brittle creep

in granite under different loading conditions and different temperatures. The mechanical

parameters such as uniaxial compressive strength and Young’s modulus of the mesoscopic

Figure 13. Creep curves and creep strain rate curves for simulations performed on granite samples characterized by a

different homogeneity index.
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material elements assumed to be homogeneous and isotropic are randomly assigned with a

Weibull statistic distribution to reflect the material heterogeneity at a mesoscale. It is noted that

the model can well capture the cooperative interaction between microcracks in the transition

from distributed to localized damage. The model is validated against published experimental

data, and then conventional brittle creep experiments at various constant temperatures,

applied differential stresses, confining pressures, and sample homogeneities were simulated.

The simulations accurately capture the short- and long-term mechanical behavior of the exper-

imental brittle creep tests using unique thermo-physico-mechanical properties. The simula-

tions further show that an increase in temperature and differential stress leads to an increase in

the creep strain rate and therefore a decrease in time to failure and an increase in confining

pressure and sample homogeneity leads to a decrease in creep strain rate and an increase in

time to failure. Thus, the model proposed in the present paper will help the management and

optimization of rock engineering projects in granite.
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