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Abstract

With the recent developments in the acquisition of images using drone systems, object-
based image analysis (OBIA) is widely applied to such high-resolution images. There-
fore, it is expected that the application of drone survey images would benefit from
studying the uncertainty of OBIA. The most important source of uncertainty is image
segmentation, which could significantly affect the accuracy at each stage of OBIA.
Therefore, the trans-scale sensitivity of several spatial autocorrelation measures optimiz-
ing the segmentation was investigated, including the intrasegment variance of the
regions, Moran’s I autocorrelation index, and Geary’s C autocorrelation index. Subse-
quently, a top-down decomposition scheme was presented to optimize the segmented
objects derived from multiresolution segmentation (MRS), and its potential was exam-
ined using a drone survey image. The experimental results demonstrate that the pro-
posed strategy is able to effectively improve the segmentation of drone survey images of
urban areas or highly consistent areas.

Keywords: OBIA, high-resolution image, segmentation, uncertainty, Moran’s I,
Geary’s C

1. Introduction

Low-altitude drone imaging is widely used in mapping, land cover/land use monitoring, and

resource and environment monitoring, and various low-altitude drone data processing and

analysis models have been established [1–4]. As drones are flexible, have customizable tempo-

ral resolution, and high spatial resolution, they have attracted much attention from researchers

and manufacturers. Drone-based remote sensing has already been applied to the management

and monitoring of forest resources [5], vegetation and river monitoring [6], monitoring of

archeological sites [7], management of natural disasters and seismic monitoring [8], precision

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
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distribution, and reproduction in any medium, provided the original work is properly cited.



farming [9], and other aspects. Drone-based remote sensing has been widely applied mainly

owing to recent breakthroughs in drone-based remote sensing data acquisition technology, as

well as innovative and technological improvements in the remote sensing field [10–13]. The

abovementioned descriptions of information extraction from drone-based remote sensing fully

utilized the advantages of high spatial resolution in imaging and employed object-based image

analysis (OBIA) technology. Therefore, studying the uncertainty of OBIA in drone-based

image processing has important significance for the application of drone-based high-resolution

imaging.

Segmentation is a prerequisite for OBIA, and the scale of segmentation is an important factor

affecting OBIA and affects nearly every stage of OBIA. Multiresolution segmentation (MRS)

has been shown to be one of the relatively successful segmentation algorithms in OBIA [14, 15].

This algorithm is very complex and has high requirements on the user; the scale, shape,

compactness, and other variables are its main parameters, which are all user-customizable

[14]. However, many studies have shown that the scale is the most important parameter, as it

controls the dimensions of the subject after segmentation and can directly affect the subse-

quent classification [16–20]. Therefore, scale problems have become a current prominent prob-

lem in OBIA, particularly in OBIA research on MRS. Arbiol et al. [21] also pointed out that

semantically significant regions are found at different scales, making the acquisition of appro-

priate segmentation scales and obtaining optimized segmentation results relatively important.

However, many specific terrain extraction studies were dependent on repeated experiments,

and scale parameters were determined according to experience [22]. Evidently, this is an

irreplaceable method [23], and therefore, many researchers have proposed methods to deter-

mine the optimal scale parameter [20, 23–27].

Therefore, this chapter focuses on discussing the uncertainty of multiscale segmentation and

testing the sensitivity of the evaluation indicators in different segmentation results. Further-

more, the quality of the segmentation results from different scales will be verified in order to

propose a strategy to improve the quality of multiscale segmentation. Firstly, the internal

consistency of the segmentation object (area-weighted average variance) and the spatial auto-

correlation indicators of the object (Moran’s I and Geary’s C) under different segmentation

results were evaluated and measured. Subsequently, based on the consistency and autocorre-

lation indicators, a top-down object decomposition protocol was proposed so that the segmen-

tation objects can coincide with objects in different terrains. Lastly, an area-based method was

used to calculate the precision and recall indicators to evaluate the quality of the multiscale

segmentation results. In addition, the optimized segmentation results in the proposed method

were verified. This contributed to the high-efficiency processing of data generated by drone-

based remote sensing.

2. Study site and data

In August 2011, we used a fixed-wing drone equipped with a Canon EOS 5D Mark II digital

camera, with end and side overlaps of 80 and 60%, respectively, at an average flight altitude of

750 m to collect raw image data from a total of 400 km2 of built-up areas and suburbs in

Deyang city. The size of a single image was 5616 � 3744 pixels, and the spatial resolution was
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0.2 m. The actual coverage area of each image was 1123 � 748 m. The focal length of the

camera was 24.5988 m, and the sensor pixel size was 0.064 mm. After the field images were

acquired, the field control points were collected, with each flight belt interval containing one

control point. In a flight belt, there were generally 3–5 photographs per control point. Subse-

quently, digital photogrammetry was used to complete a 0.2-m resolution digital orthophoto

map (DOM), which generated 500 � 500 m standard maps.

Two standard drone DOMs (500 � 500 m) were selected for the study, including area 1 and

area 2 (Figure 1). The terrain ratio of the two experimental images was different: area 1:

covered cultivated land (38%), forests (43%), buildings (6%), bare land (5%), and roads (2%),

whereas area 2: covered cultivated land (45%), forests (37%), buildings (4%), water bodies

(5%), and roads (1%).

3. Multiscale segmentation

Multiscale segmentation is one of the most popular remote sensing segmentation algorithms,

and practical applications have been widely used [22, 28, 29]. Multiscale segmentation is a

Figure 1. RGB UAV images after orthorectification.
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technique based on region merging, and it is a process of bottom-up region merging from the

pixel layer, in which image objects are merged into the large image object layer by layer to

produce segmentation results at different segmentation scales. The average spectral heterogene-

ity of all image objects in the image layer is significantly increased after fusion. In order to

achieve this aim, each single merging process must minimize the heterogeneity of two adjacent

objects involved in the merging process [30], such that the heterogeneity of the object after

merging relative to the increase in the area-weighted heterogeneity of the original two images

is minimized. However, the increase in heterogeneity should be smaller than a threshold

value (controlled by scale parameters). If and only if is smaller than the threshold value, then

the merging is carried out [31]. Using the commercial software eCognition, which was mainly

used in this work to implement multiscale segmentation, the heterogeneity was calculated

through spectral and shape characteristics. The employed formula is ,

where and are weight parameters that satisfy . In detail,

represents the measurement of the shape modification of the segmentation object, which is

measured by smoothness and compactness using the formula , where

and are weight parameters, and . For detailed calcu-

lations of and , please refer to [31].

In summary, the segmentation parameters mainly include scale parameters and two groups of

parameters ( / and / ). Generally, the segmentation scale parameters repre-

sent the largest uncertainty factor causing changes in segmentation results. Therefore, refer-

ence data were used to evaluate the quality of the segmentation results under different

segmentation scales and test the sensitivity of the evaluation indicator of two segmentation

results (including internal consistency and the spatial autocorrelation indicator). In addition,

we proposed a top-down object segmentation strategy based on the multiscale segmentation

results. In multiscale segmentation, at every segmentation scale, the parameters / and

/ were fixed as 0.9/0.1 and 0.5/0.5, respectively. Of these parameters, the spectral

weight parameter of 0.9 resulted in spectral information playing the most important role in the

segmentation process. In order for the segmentation to show no bias between smoothness and

compactness, their weight parameters were set to 0.5. In addition, the band weights involved

in the segmentation were all set to 1.

4. Evaluation indicators of segmentation results

4.1. Measurement of internal consistency

Multiscale segmentation is essentially a technique based on region merging/growing [30]; this

type of method is usually sensitive to the threshold values of the merging conditions, and

artificially determined threshold values generally have errors. Therefore, we first measured the

sensitivity of different indicators toward the segmentation results and focused on two types of

indicators (object internal consistency and object heterogeneity). The best segmentation result

should have the maximum consistency and minimum heterogeneity (low spatial autocorrela-

tion) [32]. Currently, in order to evaluate the consistency of objects in the segmentation results,
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many studies on scale optimization have focused on an area-weighted average variance or

local variance, given by the following formula [32]:

ð1Þ

Here, vi represents the variance of the ith segmentation object and ai represents the area of the

ith segmentation object. The result v represents the internal area-weighted average variance of

all the segmentation objects. The larger the value of v, the stronger the consistency of various

objects or the smaller the overall difference, and the smaller the value, the larger the overall

difference among the segmentation objects [25].

4.2. Object spatial autocorrelation

Generally, the best segmentation results result in the largest difference among objects, such

that objects can be better differentiated and heterogeneity indicators reflect this difference. In

order to evaluate the heterogeneity between segmentation objects, we tested two heterogeneity

indicators, including the Moran’s I and reverse Geary’s C indices. Moran’s I is widely used in

current research [23, 32] and tends to indicate global heterogeneity. Geary’s C index is less

commonly used and tends to represent local heterogeneity.

(1) Moran’s I index

ð2Þ

where n represents the number of segmentation objects, yi represents the average grayscale

value of all the pixels in the ith segmentation object Ri, and represents the average grayscale

value of all the pixels in the entire image. W represents the spatial adjacency matrix between the

segmentation objects, and each weight wij represents the adjacency relationship between the

segmentation objects Ri and Rj in the segmentation image layer. If Ri and Rj are adjacent, then

wij = 1; otherwise, wij = 0. It is worth noting that the indices in this formula are all used for single

bands and the value range of I is [�1, 1]. The smaller the value of I, the lower the autocorrelation

between the segmentation objects, showing that there are statistical differences between objects.

Theoretically, an extremely low value of I exists and represents the best segmentation result [32].

(2) Reverse Geary’s C index

The range of Geary’s C index values is [0, 2], where a value of 1 indicates no spatial autocor-

relation, values less than 1 indicate that there is spatial autocorrelation, and the greater the

value, the stronger the correlation. Correspondingly, values greater than 1 indicate negative

spatial correlation [33]. Therefore, it is not difficult to see that the Geary’s C and Moran’s I

indices are essentially negatively correlated. In order for Geary’s C to be consistent with
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Moran’s I, Geary’s C was expanded here into the reverse Geary’s C (C), such that C is equal to

one minus Geary’s C, given as follows:

ð3Þ

where N represents the total number of segmentation objects that are in the calculation

through i or j indices, X represents the characteristic variable in the calculation, represents

the mean value of the characteristic variables of all segmentation objects, and represents a

weight matrix with values of 1 or 0 (1 means that the ith object is adjacent to the jth object, and

0 indicates that they are not adjacent). W indicates the total sum of the weight matrix . The

range of values for the reverse Geary’s C indicator C is [�1, 1], and this is noted to be

consistent with the value range of Moran’s I.

4.3. Combined analysis of indicators

As consistencyand spatial autocorrelationusedifferent angles to evaluate the segmentation results,

this section further tests the combined results of both indicators. In order for the consistency and

autocorrelation measurements to be comparable, first, was used to

normalize the area-weighted variance (v) in the consistency measurements and the two spatial

autocorrelation indicators. Subsequently, the sum of the normalized weighted variance and

spatial autocorrelation (using the reverse Geary’s C index as an example, ) was

used to calculate the optimized segmentation scales. Evidently, the individual optimized seg-

mentation results should be scales with lower LS values. This is because at this time, when the

combined value of the weighted variance and the spatial autocorrelation value is minimal, both

are at an equilibrium and both indicators tend to be optimal [23]. However, the scales obtained

this way are individually optimized parameters in the segmentation object when the internal

consistency and inter-object heterogeneity have reached the maximal equilibrium. In addition,

the three abovementioned indicators were all measurements against a single band or charac-

teristic variable, that is, only one band or characteristic at a time can be calculated. Generally,

the segmentation process includes many bands, such as the three RGB bands in the drone data

from the previously mentioned experiment. Therefore, in order to consider many bands simul-

taneously, the mean values of each band were simply obtained when calculating the combined

value.

5. Top-down object decomposition

The optimal segmentation scales of differently sized objects are different [34], and the scales

obtained through the single acquisition of indicators above are only individually optimized

scales; therefore, the segmentation objects have further potential for optimization. Here, the

above three parameters were used as a reference to substitute the global indicators, and

considering the local spatial autocorrelation indicators, a top-down object decomposition

strategy was proposed to optimize the segmentation objects in different terrain types. The
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specific steps were as follows: (1) firstly, the segmentation of different scales was achieved,

such as 10–300, with a step length of 10. Following that, from a scale of 300, an object set O at

the scale 290 in various objects at the scale 300 was searched. If the absolute value of the C

indicator of was greater than the specified threshold, then the objects in the combined set O

are one object and the updated scale 290 segmentation object image layer is stored until the

complete transversal of all objects at the scale 300 layer. (2) Subsequently, step 1 was repeated

from the updated scale 290 segmentation image layer, and sequential transversal of all image

layers was carried out until the scale 10 image layer. This method is the reverse of the

eCognition multiscale segmentation strategy (the eCognition software uses the homogeneity

of adjacent objects to measure the bottom-up combined objects and achieve multiscale seg-

mentation) and can play a complementary role.

6. Validation method for segmentation boundaries

Finally, the validation of segmentation boundaries was implemented. On the one hand, the

multiscale segmentation results were validated as a reference for subsequent studies; on the

other hand, the segmentation results using the method proposed here were validated. An

artificial interpreted reference image layer was used and combined with the precision and

recall indicators that were calculated from area-based methods. These two indicators have

already been widely used in the evaluation of segmentation boundaries [35, 36]. The basic

principle is that by assuming a segmentation result S of the raw image and a corresponding

actual ground reference image layer R, the precision indicator shows the pixels or area ratio in

the ground reference object when the majority of pixels in the object in the segmentation result

S overlap. This indicator is relatively sensitive to over-segmentation. The recall indicator shows

the ratio of the majority of pixels or area overlapping in the segmentation object in the actual

ground object and is sensitive to under-segmentation [36]. In order to clearly describe the

calculation process of the precision and recall indicators based on area, the description in [37]

was referenced to calculate the precision indicator. The segmentation image layer was matched

to the reference image layer, and the object Si in the segmentation image layer was transversed

to calculate the overlap area between every R and the largest reference object Rimax in the

overlap area of the segmentation image layer. Subsequently, the sum of the overlap areas was

divided by the total area of the segmentation image layer, to calculate the precision indicator as

follows:

ð4Þ

where represents the area of unit X. Similarly, to calculate the recall indicator, the object Ri

in the reference image layer was transversed and the overlap area between every Ri and the

largest reference object Simax in the overlap area of the segmentation image layer was calcu-

lated. Subsequently, the sum of the overlap areas was divided by the total area of the segmen-

tation image layer:
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ð5Þ

From the principle and calculation process of the two accuracy indicators, it is not difficult to

see that similar to the consistency/heterogeneity indicators, both of these indicators are nega-

tively correlated to each other to some degree and it is difficult for both precision indicators to

be large at the same time. Generally, only the mean value of the two indicators can be obtained;

therefore, both indicators are simply summed together to measure the overall effects of the

segmentation:

ð6Þ

7. Experiment discussion

7.1. Changes in each indicator with scale

(1) Area-weighted variance

Generally, optimized scales can be measured by considering the relationship between variance

and scale. Figures 2 and 3 demonstrate the variation of the average variance of the three bands

with segmentation scale in experimental areas 1 and 2, respectively, and both regions show

consistent trends: as the scale increases, the number of segmentation objects decreases and the

average variance of the objects gradually increases. This is easily understood, as when the

segmentation scale increases, the segmentation object becomes larger and each segmentation

object tends to include a greater area of image brightness values [25]. Therefore, on a rough

scale, the average variance of the segmentation objects will tend to increase. Kim et al. [25]

Figure 2. Average of variance for three bands in area 1.
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found that with increased scale, and even until under-segmentation, the hybrid object includes

more pixels that did not originally belong to the actual image, thereby decreasing the variance

of these hybrid images. Therefore, it is generally believed that an optimal segmentation scale

exists before the variance tends be gentle. However, the experiment results showed that apart

from insignificant inflection points near scale 60, it is difficult to find regions with gentle

changes in Figures 2 and 3. Conversely, when the variance increases with scale, the magnitude

of the increase in consistency is almost maintained. It is worth noting that [38] used a similar

principle to develop an estimation of scale parameter (ESP) scale optimization tool, where they

integrated the rate of change of the variance curves and the variance curves to identify the

optimal segmentation scale. This was carried out under conditions when the magnitude of

change in variance with scale was not very significant and was not the best choice.

(2) Moran’s I

Figures 4 and 5 shows that Moran’s I index continuously decreased when the scale increased

from fine to coarse. A fine scale generally tends toward over-segmentation, that is, the seg-

mentation objects that are adjacent to each other are more similar, resulting in a larger Moran’s

I index (i.e., stronger autocorrelation between objects). Conversely, an increase in scale results

in under-segmentation; the segmentation objects become larger, the differences between adja-

cent segmentation objects become significant, the spectral consistency decreases, and thus

Moran’s I index decreases. Therefore, considering the variation curve of the autocorrelation

indices with the segmentation scale, [25] believed that the minimum autocorrelation should

correspond to the optimal segmentation scale. However, the results showed that (Figures 4

and 5) the autocorrelation in both experimental areas continuously decreases with increasing

scale and Moran’s I index alone cannot determine the optimal scale.

Figure 3. Average of variance for three bands in area 2.
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(3) Reverse Geary’s C index

Considering that changes in the autocorrelation index Moran’s I are not very significant, we

tried another autocorrelation index that is more sensitive to local heterogeneity, Geary’s C.

Figures 6 and 7 show the changes in Geary’s C index with changes in the segmentation scale in

the two experimental areas, and it was found that Geary’s C decreased with increasing scale.

In reality, changes around the optimal segmentation scale are more sensitive: In experimental

areas 1 and 2, the regions near scales 120 and 150, respectively, started to become stable, and

the magnitude of the scale changes was not as large as that on the fine scale. According to the

validation results of the optimized segmentation boundaries (Figures 12 and 13), the reverse

Geary’s C index can better represent the optimized scale compared with variance and Moran’s

I index.

Figure 5. Average of Moran’s I for three bands in area 2.

Figure 4. Average of Moran’s I for three bands in area 1.
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(4) Normalized sums

According to the consistency and autocorrelation tests in the preceding section, it was found

that as the scale increases, the variance indicators that represent the consistency of the segmen-

tation object continuously increase, whereas the autocorrelation indicator that represents het-

erogeneity continuously decreases and it is difficult to discover regions where the changes

start to stabilize. Therefore, it is theoretically possible to use the two indicators individually to

identify the optimal segmentation scale; Drǎguţ et al. [38] and Kim et al. [25] obtained the

optimal segmentation scale using one indicator in their studies. The maximum or minimum

value can be identified through single indicators, but in fact, the maximum or minimum values

do not have a corresponding optimal segmentation scale. This is because when variance still

Figure 7. Average of reverse Geary’s C for three bands in area 2.

Figure 6. Average of reverse Geary’s C for three bands in area 1.
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increases at scale 500 (Figures 2 and 3), Moran’s I and reverse Geary’s C indices still decrease

at scale 500 (Figures 4–7). In our experimental area, scale 500 or even larger scales are evi-

dently not optimal, and this is shown in the subsequent validation results of the optimized

segmentation boundaries. Therefore, single indicators are not suitable for the identification of

the overall optimal scale. According to the description in the preceding sections, the sum of

two indicators for the identification of optimized scales may be appropriate. The test results for

experimental areas 1 and 2 are shown in Figures 8–11. Figures 8 and 9 represent the sum of

normalized variance and normalized Moran’s I index, whereas Figures 10 and 11 represent the

sum of normalized variance and normalized reverse Geary’s C index. From the validation

results of the combined optimized segmentation boundaries (Figures 12 and 13), it is easy to

see that the curve of the sum of the normalized variance and normalized Moran’s I index with

Figure 8. Sum of normalized variance and Moran’s I for three bands in area 1.

Figure 9. Sum of normalized variance and Moran’s I for three bands in area 2.
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scale changes can better highlight the optimal segmentation scale, even at the extremely low

value obtained at scale 200 in Figure 8. This result is consistent with the thinking of [23] who

suggested that the lowest corresponding scale of the sum of consistency and heterogeneity

indicators is the optimal scale. However, for different experimental areas, the lowest value

usually cannot be obtained at the optimal scale, such as in Figure 9, which show that the sum

of the normalized variance and normalized Moran’s I index in experimental area 2 did not

achieve extremely low values at suitable scales. It is worth noting that starting from scales 150–

200, with increasing scale, the sum of the normalized variance and normalized Moran’s I index

in experimental area 2 starts to show significant moderation trends and this region corre-

sponds well to the optimal segmentation scale in experimental area 2. Therefore, optimal

segmentation scales are assumed to exist between under-segmentation and over-segmentation.

Figure 11. Sum of normalized variance and reverse Geary’s C for three bands in area 2.

Figure 10. Sum of normalized variance and reverse Geary’s C for three bands in area 1.
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Therefore, theoretically, the indicator values start to show significant changes before and after

this segmentation scale [25], but owing to differences in segmented terrain in the experimental

area, extremely low values do not always appear. Generally, the segmentation scale region

before the sum of the normalized variance and normalized Moran’s I index starts to show

stable changes is used as the optimal segmentation scale. In addition, the results of the sum of

the normalized variance and normalized reverse Geary’s C index were not good (Figure 10), as

abnormal changes occurred at smaller scales. This is due to the oversensitivity of the reverse

Geary’s C index, and the sum of the two is not recommended. For single indicators, the reverse

Geary’s C index is recommended, although in experimental area 2, the combination of the two

(Figure 11) was similar to the performance of the sum of the normalized variance and normal-

ized Moran’s I index in experimental area 2 (Figure 9), or even more significantly, represents

the optimal segmentation scale.

Figure 12. Precision and recall calculated between segments and reference, and their sum for area 1.

Figure 13. Precision and recall calculated between segments and reference, and their sum for area 2.
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7.2. Precision indicator analysis of multiscale segmentation results

This section mainly evaluates the segmentation quality of different segmentation scales by

referencing polygon testing of the segmentation results. At the same time, the performance of

the abovementioned indicators is validated in order to provide reliable reference information

to determine which indicators are more suitable for representing the optimal segmentation

scale. Figures 12 and 13 demonstrate the precision and recall indicators of the two experimen-

tal areas and the changes in these two indicators with changes in scale. It can be clearly seen

that the precision indicator decreases when the scale increases, whereas the recall indicator

increases when the scale increases. The sum of the two increases when scale increases, and

starts to become stable within a suitable scale range. Ideally, the larger the sum of the precision

and recall values, the better the segmentation result. As these two indicators are sensitive to

over-segmentation and under-segmentation, respectively, similar to the consistency and auto-

correlation indicators, the optimal segmentation scale is assumed to be the scale at which both

indicators start to become stable. Therefore, for experimental area 1, the optimal segmentation

scale should be in the region of scale 130, whereas that of experimental area 2 should be in the

region of scale 150, and this is similar to the analysis results of Section 3. Therefore, the sum of

the region-based precision and recall indicators can effectively show the optimal segmentation

scale, which was consistent with the analysis results of [37]. Furthermore, when the sum of the

consistency measures and autocorrelation measures is plotted with the sum of precision and

recall, it can be clearly see that the combined value of the consistency measures and autocorre-

lation measures can represent the region when the combined precision and recall indicators

start to become stable, that is, the sum of the consistency and autocorrelation measures also

starts to show the corresponding scale regions during significant changes. Figures 14 and 15

show the best combination in the two experimental regions: for experimental area 1, it is

the sum of the normalized variance and Moran’s I (Figure 14), and for experimental area 2, it

is the sum of the normalized variance and reverse Geary’s C (Figure 15). In the figures, the

corresponding dotted vertical lines are artificially identified optimal scales.

Figure 14. Precision and recall calculated between segments and reference, and the sum of the normalized variance and

Moran’s I for area 1.
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7.3. Top-down decomposition based on autocorrelation measures

Currently, the majority of scale optimization studies all have a goal of obtaining single opti-

mized scales [38, 39]. However, according to the study by [34], the optimized scales of different

terrains are different and purely relying on the identification of single optimized scales is

essentially not in line with the core thinking of object-oriented remote sensing analysis. Here,

we attempted to propose a top-downmultiscale segmentation schemewith an aim of obtaining

the optimized segmentation results of different terrains. Table 1 shows the corresponding sum

of the precision and recall indicators at different scales for experimental area 1. The maximum

or local maximum values in different categories do not always appear on the overall optimal

segmentation scale. Here, we used the reverse Geary’s C to achieve a top-down decomposition

of under-segmented objects. A reverse Geary’s C value of 1 indicates that positive autocorrela-

tion exists in the object and the segmentation objects in various layers in the top-down

decomposition are obtained using the consistency of adjacent objects to determine the

bottom-up merger. Therefore, a high degree of autocorrelation exists in the object set in the

lower layer that is included in the upper layer. Through testing, we found that the local reverse

Geary’s C indices in the object set in the lower layer that is included in the objects in the middle

and upper layers in the experiment area are all large and approached 1. Therefore, the thresh-

old values in this test include 0.999, 0.997, and 0.995. If the calculated reverse Geary’s C index

in the objects in the upper layer, which include objects in the lower layer, is smaller than these

values, the objects in the upper layer are disintegrated, that is, the object sets in the layer are

retained. Figure 16 shows the layer-by-layer decomposition result from segmentation scale 320

to scale 50, when the experimental area 1 is below the threshold value of 0.999. It can be seen

that this not only retained the overall characteristics of cultivated land and buildings, but the

segmentation of forests is also refined. In particular, the proposed method can better represent

buildings. Figure 16(a) and (b) shows the results of top-down decomposition and optimal

segmentation scale 130, respectively. Figure 16(c) and (d) show the optimal segmentation scale

130 result and top-down decomposition result, respectively. The experiments showed that this

Figure 15. Precision and recall calculated between segments and reference, and the sum of the normalized variance and

reverse Geary’s C for area 2.
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method can make up for the deficiencies in merging when the bottom-up multiscale segmen-

tation only considers the consistency of adjacent objects.

7.4. Comparison of results of single-scale and multiscale decomposition

Assume that the optimal segmentation scale of experimental area 1 is 130; then, the corresponding

precision and recall indicators of various categories are as shown in Table 2. Table 2 shows the

summation of the precision and recall indicators of various categories that were obtained from the

accuracy validation of the segmentation results of gradual decomposition from scale 320 to 50

Scale Forests Roads Cultivated land Buildings Bare land

520 1.434 1.194 1.234 1.242 1.617

480 1.437 1.196 1.236 1.267 1.614

440 1.443 1.181 1.259 1.316 1.641

400 1.398 1.200 1.265 1.338 1.670

360 1.353 1.145 1.329 1.345 1.686

320 1.251 1.140 1.358 1.367 1.705

280 1.261 1.154 1.383 1.401 1.702

240 1.216 1.127 1.395 1.409 1.683

200 1.153 1.119 1.456 1.448 1.667

190 1.151 1.131 1.456 1.459 1.664

180 1.129 1.127 1.461 1.447 1.659

170 1.122 1.127 1.471 1.430 1.642

160 1.103 1.128 1.466 1.439 1.646

150 1.093 1.132 1.483 1.440 1.634

140 1.081 1.134 1.482 1.446 1.621

130 1.078 1.136 1.501 1.452 1.592

120 1.073 1.125 1.493 1.451 1.583

110 1.062 1.152 1.471 1.440 1.583

100 1.054 1.151 1.449 1.431 1.526

90 1.044 1.142 1.444 1.421 1.532

80 1.041 1.142 1.425 1.414 1.513

70 1.036 1.133 1.381 1.392 1.454

60 1.026 1.126 1.341 1.375 1.408

50 1.021 1.112 1.278 1.341 1.350

40 1.017 1.107 1.206 1.320 1.285

30 1.012 1.095 1.123 1.284 1.190

20 1.005 1.054 1.055 1.239 1.121

Table 1. Sum of precision and recall at each scale for area 1. Bold values indicate the optimal segmentation scale in

different categories. Italic value indicate the overall optimal segmentation scale for all categories.
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using a threshold value of 0.999, and the comparison of this with the accuracy determined from

the optimal segmentation scale of 130. It can be seen that this method can result in the sums of the

precision and recall accuracy of forests, roads, and cultivated land being worse than the single

optimal scale used for discrimination. However, this method can simultaneously greatly increase

the segmentation accuracy of buildings (Figure 16) and retain the segmentation characteristics of

bare land to a maximum degree. The sum of the precision and recall accuracy was better than at

scale 130. It can be seen that the proposed method can effectively improve the segmentation

results of urban areas or regions with high consistency (such as buildings and bare land). How-

ever, the results of this method may be worse for forests, cultivated land, or other regions with

similar spectra. Therefore, this method must be used selectively, such as in study sites that are

dominated by urban areas or consistent regions.

8. Chapter summary

This chapter presented the use of drone-based remote sensing images to evaluate the quality of

the MRS algorithm for the segmentation of drone images, tested the sensitivity of different

Figure 16. Disintegrated results from scale 320 to 50 using threshold 0.999.

Different methods Forests Roads Cultivated land Buildings Bare land

Optimal scale 1.078 1.136 1.501 1.452 1.592

Decomposition result 1.060 1.124 1.436 1.478 1.678

Table 2. Sum of precision and recall at the optimal scale and redefined segments for area 1.
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segmentation evaluation indicators, and proposed an optimization protocol for segmentation

scales. First, the consistency and heterogeneity measures of the object were used to test the

sensitivity of different indicators in multiscale segmentation results. The results showed that it

is more difficult to find optimal scales by using single indicators. A combination of area-

weighted variance (consistency) and Moran’s I spatial autocorrelation index (heterogeneity)

can simultaneously account for the internal consistency of the object and the heterogeneity

between objects, such that the optimized segmentation object can internally achieve maximum

homogeneity and maximum heterogeneity can be achieved between objects, which is more

conducive to discovering the optimal segmentation scale. For normalized combined indicators,

the combined results of the normalized variance and normalized Moran’s I were found to be

better than the results of the normalized variance and normalized reverse Geary’s C. Through

a combination of normalized precision and recall measures, we found the optimal segmenta-

tion scale region for experimental areas 1 and 2. These results can provide an empirical

reference for the optimization of segmentation in drone-based remote sensing images. Com-

pared with other indicators, the reverse Geary’s C is more sensitive to the segmentation scale,

as the top-down object decomposition protocol based on its spatial autocorrelation indicator

can improve the segmentation results of different terrains. However, this method does not

show good results for forests or cultivated land, which have low spectral consistency. There-

fore, based on the results of this research, it is recommended that this method be selectively

used.
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