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Linear Lyapunov Cone-Systems 

Przemysław Przyborowski and Tadeusz Kaczorek 
Warsaw University of Technology – Faculty of Electrical Engineering, 

Institute of Control and Industrial Electronics, 
 Poland 

1. Introduction    

In positive systems inputs, state variables and outputs take only non-negative values. 
Examples of positive systems are industrial processes involving chemical reactors, heat 
exchangers and distillation columns, storage systems, compartmental systems, water and 
atmospheric pollution models. A variety of models having positive linear behavior can be 
found in engineering, management science, economics, social sciences, biology and 
medicine, etc. 
Positive linear systems are defined on cones and not on linear spaces. Therefore, the theory 
of positive systems in more complicated and less advanced. An overview of state of the art 
in positive systems theory is given in the monographs (Farina L. & Rinaldi S., 2000; 
Kaczorek T., 2001). The realization problem for positive linear systems without and with 
time delays has been considered in (Benvenuti L. & Farina L., 2004; Farina L. & Rinaldi 
S.,2000; Kaczorek T., 2004a; Kaczorek T., 2006a; Kaczorek T., 2006b; Kaczorek T. & Busłowicz 
M, 2004a).  
The reachability, controllability to zero and observability of dynamical systems have been 
considered in (Klamka J., 1991). The reachability and minimum energy control of positive 
linear discrete-time systems have been investigated in (Busłowicz M. & Kaczorek T., 2004). 
The positive discrete-time systems with delays have been considered in (Kaczorek T., 2004b; 
Kaczorek T. & Busłowicz M., 2004b; Kaczorek T. & Busłowicz M., 2004c). The controllability 
and observability of Lyapunov systems have been investigated by Murty Apparao in the 
paper (Murty M.S.N. & Apparao B.V., 2005). The positive discrete-time and continuous-time 
Lyapunov systems have been considered in (Kaczorek T., 2007b; Kaczorek T. & 
Przyborowski P., 2007a; Kaczorek T. & Przyborowski P., 2008; Kaczorek T. & Przyborowski 
P., 2007e). The positive linear time-varying Lyapunov systems have been investigated in 
(Kaczorek T. & Przyborowski P., 2007b). The continuous-time Lyapunov cone systems have 
been considered in (Kaczorek T. & Przyborowski P., 2007c). The positive discrete-time 
Lyapunov systems with delays have been investigated in (Kaczorek T. & Przyborowski P., 
2007d). 
The first definition of the fractional derivative was introduced by Liouville and Riemann at 
the end of the 19th century (Nishimoto K., 1984; Miller K. S. & Ross B., 1993; Podlubny I., 
1999). This idea by engineers has been used for modelling different process in the late 1960s 
(Bologna M. & Grigolini P., 2003; Vinagre B. M. et al., 2002; Vinagre B. M. &  Feliu V., 2002; 
Zaborowsky V. & Meylanov R., 2001). Mathematical fundamentals of fractional calculus are 
given in the monographs (Miller K. S. & Ross B., 1993; Nishimoto K., 1984; Oldham K. B.  & 
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Spanier J, 1974; Podlubny I., 1999; Oustaloup A., 1995). The fractional order controllers have 
been developed in (Oldham K. B.  & Spanier J., 1974; Oustaloup A., 1993; Podlubny I.,2002). 
A generalization of the Kalman filter for fractional order systems has been proposed in 
(Sierociuk D.  & Dzieliński D., 2006). Some others applications of fractional order systems 
can be found in (Ostalczyk P., 2000; Ostalczyk P., 2004a; Ostalczyk P., 2004b;  Ferreira 
N.M.F. & Machado I.A.T., 2003; Gałkowski K., 2005; Moshrefi-Torbati M. & Hammond 
K.,1998; Reyes-Melo M.E. et al., 2004; Riu D. et al., 2001; Samko S. G. et al., 1993; Dzieliński 
A. & Sierociuk D., 2006). In (Ortigueira M. D., 1997) a method for computation of the 
impulse responses from the frequency responses for the fractional standard (non-positive) 
discrete-time linear systems is proposed. The reachability and controllability to zero of 
positive fractional systems has been considered in (Kaczorek T.,2007c; Kaczorek T., 2007d). 
The reachability and controllability to zero of fractional cone-systems has been considered in 
(Kaczorek T., 2007e). The fractional discrete-time Lyapunov systems has been investigated 
in (Przyborowski P., 2008a) and the fractional discrete-time cone-systems in (Przyborowski 
P., 2008b).  
The chapter is organized as follows, In the Section 2, some basic notations, definitions and 
lemmas will be recalled. In the Section 3, the continuous-time linear Lyapunov cone-systems 
will be considered. For the systems, the necessary and sufficient conditions for being the 
cone-system, the asymptotic stability and sufficient conditions for the reachability and 
observability will be established. In the Section 4, the discrete-time linear Lyapunov cone-
systems will be considered.  For the systems, the necessary and sufficient conditions for 
being the cone-system, the asymptotic stability, reachability, observability and 
controllability to zero will be established. In the Section 5, the fractional discrete-time linear 
Lyapunov cone-systems will be considered. For the systems, the necessary and sufficient 
conditions for being the cone-system, the reachability, observability and controllability to 
zero and sufficient conditions for the stability will be established. In the Section 6, the 
considerations will be illustrated by numerical examples. 

2. Preliminaries 

Let  
nxm
R  be the set of real n m×  matrices ,

1n n
R R

×=  and let 
nxm
R+  be the set of real 

n m×  matrices with nonnegative entries. The set of nonnegative integers will be denoted 

by Z+ . 

Definition 1. 

The Kronecker product  A B⊗  of the matrices [ ]
mxn

ij
A a R= ∈   and 

pxq
B R∈   is the 

block matrix (Kaczorek T.,1998): 

 1,...,
1,...,

[ ] mp nq

ij i m
j n

A B a B R ×
=
=

⊗ = ∈  (1) 

Lemma 1. 
Let us consider the equation: 

 AXB C=  (2) 

where:  , , ,m n q p m p n qA R B R C R X R× × × ×∈ ∈ ∈ ∈  
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Equation (2) is equivalent to the following one: 

 ( )TA B x c⊗ =  (3) 

where [ ] [ ]1 2 1 2
: , :

T T

n m
x x x x c c c c= =… … , and  ix  and  ic  are the  i th 

rows of the matrices  X  and C  respectively.  

Proof: See (Kaczorek T., 1998)   
Lemma 2. 

If  1 2, , nλ λ λ…  are the eigenvalues of the matrix  A  and  1 2, , nμ μ μ…  the eigenvalues 

of the matrix  B , then  i jλ μ+  for , 1, 2,...,i j n=  are the eigenvalues of the matrix:  

T

n nA A I I B= ⊗ + ⊗
 

Proof: See (Kaczorek T.,1998) 

Definition 2. 

Let  

1

n n

n

p

P R

p

×= ∈
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

B  be nonsingular and 
k
p  be the  k th  ( 1, , )k n= …  its row. The set: 

 { }
1

( ) : ( ) 0P :
n

n n

k
k

iX t R p X t
×

=

∈ ≥= ∩  (4) 

where ( ) , 1, ,
i
X t i n= …  is the i th column of the matrix ( )X t ,is called a linear cone of the 

state variables generated by the matrix P . In the similar way we may define the linear cone 

of the inputs: 

 { }
1

( ) : ( ) 0Q :
m

m n

k
k

iU t R q U t
×

=

∈ ≥= ∩  (5) 

generated by the nonsingular matrix  

1

m m

m

q

Q R

q

×= ∈

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

B  and the linear cone of the outputs 

 { }
1

( ) : ( ) 0V :
p

p n

k
k

iY t R v Y t
×

=

∈ ≥= ∩  (6) 

generated by the nonsingular matrix  

1

p p

p

v

V R

v

×= ∈

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

B . 
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3. Continuous-time linear Lyapunov cone-systems 

Consider the continues-time linear Lyapunov system (Kaczorek T. & Przyborowski P., 
2007a) described by the equations: 

 
0 1

( ) ( ) ( ) ( )X t A X t X t A BU t= + +$  (7a) 

 ( ) ( ) ( )Y t CX t DU t= +  (7b) 

where, ( )
nxn

X t R∈ is the state-space matrix, ( )
mxn

U t R∈ is the input matrix, ( )
pxn

Y t R∈   is 

the output matrix, 
0 1
, , , ,

nxn nxm pxn pxm
A A R B R C R D R∈ ∈ ∈ ∈ .  

The solution of the equation (1a) satisfying the initial condition 
0 0

( )X t X=   is given by 

(Kaczorek T. & Przyborowski P., 2007a): 

 0 0 1 0 0 1

0

( ) ( ) ( ) ( )

0( ) ( )

t

A t t A t t A t A t

t

X t e X e e BU e d
τ ττ τ− − − −= + ∫  (8) 

Lemma 3. 
The Lyapunov system (7) can be transformed to the equivalent standard continuous-time,  
nm -inputs and  pn -outputs,  linear system in the form: 

 ( ) ( ) ( )x t Ax t Bu t= +$ # ## # #  (9a) 

 ( ) ( ) ( )y t Cx t Du t= +# ## # #  (9b) 

where, 
2

( )
n

x t R∈# is the state-space vector, 
( )

( )
nm

u t R∈#  is the input vector, 
( )

( )
pn

y t R∈#  is 

the output vector, 
2 2 2 2

( ) ( ) ( ) ( )
, , ,

n xn n x nm pn xn pn x nm
A R B R C R D R∈ ∈ ∈ ∈# ## # .  

Proof: 

The transformation is based on Lemma 1. The matrices , ,X U Y are transformed to the 

vectors: 

[ ] [ ]1 2 1 2 1 2
, ,

TT T

n m p
x X X X u U U U y Y Y Y= = = ⎡ ⎤⎣ ⎦# # #… … …  

where , ,i i iX U Y  denotes the  i th rows of the matrices , ,X U Y , respectively. 

The matrices of (9) are: 

 
0 1( ) , , ,T

n n n n nA A I I A B B I C C I D D I= ⊗ + ⊗ = ⊗ = ⊗ = ⊗# ## #   (10) 

3.1 Cone-systems 
Definition 3. 

The Lyapunov system (7) is called (P,Q,V) -cone-system if ( ) PX t ∈  and ( ) VY t ∈  for 

every 
0

PX ∈  and for every input ( ) QU t ∈ , 0t t≥ . 
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Note that for , ,P Q Vn n m n p n
R R R

× × ×

+ + +
= = =  we obtain  ( , , )

n n m n p n
R R R

× × ×
+ + + -cone system 

which is equivalent to the positive Lyapunov system (Kaczorek T. & Przyborowski P., 

2007c). 

Theorem 1. 

The Lyapunov system (7) is  (P,Q,V) -cone-system if and only if : 

 1

0 0 1 1
ˆ ˆ,A PA P A A−= =   (11) 

are the Metzler matrices  and  

 1 1 1ˆˆ ˆ, , .nxm pxn pxmB PBQ R C VCP R D VDQ R− − −
+ + += ∈ = ∈ = ∈  (12) 

Proof: 
Let: 

 ˆ ˆ ˆ( ) ( ), ( ) ( ), ( ) ( )X t PX t U t QU t Y t VY t= = =   (13) 

From definition 2 it follows that if ( ) PX t ∈   then ˆ ( )
n n

X t R
×

+
∈ , if  ( ) QU t ∈  then 

ˆ ( )
m n

U t R
×

+
∈  , and if  ( ) VY t ∈  then ˆ( )

p n
Y t R

×

+
∈ . 

From (7) and (13) we have: 

 
1 1

0 1 0 1

1

0 1

ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( )

ˆˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )

X t PX t PA X t PX t A PBU t PA P X t PP X t A

PBQ U t A X t X t A BU t

− −

−

= = + + = + +

+ = + +

$ $
 (14a) 

and 

 1 1 ˆˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )Y t VY t VCX t VDU t VCP X t VDQ U t CX t DU t− −= = + = + = +  (14b) 

 

It is known (Kaczorek T. & Przyborowski P., 2007a) that the system (14) is positive if and 

only if the conditions (11) and (12) are satisfied.                                                                             □ 

3.2 Asymptotic stability 

Consider the autonomous Lyapunov  (P,Q,V) -cone-system: 

 
0 1 0 0( ) ( ) ( ) , ( )X t A X t X t A X t X= + =$  (15) 

where, ( ) PX t ∈  and  
1

0 1
,

n n
PA P A R

− ×∈  are the Metzler matrices. 

Definition 4. 

The Lyapunov (P,Q,V) -cone-system (15)  is called asymptotically stable if: 

lim ( ) 0
t
X t

→∞
=  for every  

0
PX ∈  
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Theorem 2. 

Let us assume that  
1 2
, ,

n
λ λ λ…  are the eigenvalues of the matrix 

0
A   and 

1 2
, ,

n
μ μ μ…   

the eigenvalues of the matrix 
1
A  . The system (15) is stable if and only if: 

 Re( ) 0i jλ μ+ <  for  , 1, 2, ...,i j n=   (16) 

Proof: 

The theorem results directly from the theorem for asymptotic stability of standard systems 

(Kaczorek T., 2001), since by Lemma 2 eigenvalues of matrix A#   are the sums of 

eigenvalues of the matrices   0A  and  1A .                                                                                       □ 

3.3 Reachability 
Definition 5. 

The state  P
f

X ∈  of the the Lyapunov (P,Q,V) -cone-system (7) is called reachable at time 

ft , if there exists an input ( ) QU t ∈   for 0[ , ]ft t t∈ , which steers the system from the 

initial state 
0

0X =  to the state fX . 

Definition 6. 

If for every state P
f

X ∈  there exists 0ft t> , such that the state is reachable at time ft , 

then the system is called reachable. 

Theorem 3. 

The  (P,Q,V) -cone-system (7)  is reachable if the matrix: 

 
1 1

0 0

0

( ) ( ) ( )1 1: ( )( )

f
T

f f

t

PA P t PA P tT

f

t

R e PBQ PBQ e d
τ τ τ

− −− −− −= ∫  (17) 

is a monomial matrix (only one element in every row and in every column of the matrix is 

positive and the remaining  are equal to zero). 

The input, that steers the system from initial state 
0

0X =  to the state 
f

X  is given by:      

  
1

0 1( ) ( ) ( )1 1 1( ) [( ) ]
T

f fPA P t t A t tT

f fU t Q PBQ e R PX e
− − −− − −=  (18) 

for 
0[ , ]ft t t∈ . 

Proof: 

If 
f
R  is the monomial matrix, then there exists 

1 n n

f
R R

− ×
+∈ and the input (18) is well-

defined. 

Using  (8) and (18) we obtain: 
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1 1
0 0 1 1

0

1 1
0 0

0

( ) ( ) ( ) ( ) ( )1 1 1 1

( ) ( ) ( )1 1 1 1 1

( ) [ ( )( ) ]

[ ( )( ) ]

f
T

f f f f

f
T

f f

t

PA P t PA P t A t A tT

f f f

t

t

PA P t PA P tT

f f f f

t

X t P e PBQ PBQ e R PX e e d

P e PBQ PBQ e d R PX P PX X

τ τ τ τ

τ τ

τ

τ

− −

− −

− − − −− − − −

− −− − − − −

= =

= = =

∫

∫

(19) 

since 
1 1( ) ( )f fA t A t

ne e I
τ τ− − = .                                                                                                              □  

3.4 Dual Lyapunov cone-systems 
Definition 7. 
The Lyapunov system described by the equations: 

 
0 0

( ) ( ) ( ) ( )
T T T

X t A X t X t A C U t= + +$  (20a) 

 ( ) ( ) ( )
T

Y t B X t DU t= +  (20b) 

is called the dual system with respect to the system (7). The matrices 
0 1
, , , , ,A A B C D   

( ), ( ), ( )X t U t Y t   are the same as in the system (7). 

3.5 Observability 
Definition 8. 

The state 
0
X  of the Lyapunov (P,Q,V)  -cone- system (7)  is called observable at time 

0
f
t > , if  

0
X  can be uniquely determined from the knowledge of the output ( )Y t  and 

input  ( )U t  for  [0, ]
f

t t∈ . 

Definition 9. 

The Lyapunov (P,Q,V) -cone- system (7)  is called observable, if there exists an instant 

0
f
t > , such that the system (7)  is observable at time 

ft  . 

Theorem 4. 

The Lyapunov (P,Q,V) -cone-system (7)  is observable if the dual system (20) is reachable 

i.e. if the matrix: 

 
1 1

0 0

0

( ) ( ) ( )( )1 1
: ( ) ( )

f
T

f f

t

PA P t PA P tT

f

t

O e VCP VCP e d
τ τ τ

− −− −− −= ∫  (21) 

is a monomial matrix. 
Proof: 

The Lyapunov (P,Q,V) -cone-system (7) is observable if and only if the equivalent standard 

system (9) is observable and this implies that dual system with respect to the system (9) must 
be reachable thus the dual system (20) with respect to the system (7) also must be reachable. 
Using Theorem 3. we obtain the hypothesis of the Theorem 4.                                                    □ 
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4. Discrete-time linear Lyapunov cone-systems 

Consider the discrete-time linear Lyapunov system (Kaczorek T., 2007b; Kaczorek T. & 

Przyborowski P., 2007e; Kaczorek T. & Przyborowski P., 2008) described by the equations: 

 
1 0 1i i i iX A X X A BU+ = + +  (22a) 

 
i i i
Y CX DU= +  (22b) 

where, 
nxn

i
X R∈  is the state-space matrix,  

mxn

i
U R∈  is the input matrix, 

pxn

i
Y R∈   is the 

output matrix, 
0 1
, , , , , .

nxn nxm pxn pxm
A A R B R C R D R i Z+∈ ∈ ∈ ∈ ∈  

The solution of the equation (22a) satisfying the initial condition 0X   is given by (Kaczorek 

T.,2007b): 

 
1

0 0 1 0 1 1

0 0 0

! !
,

!( )! !( )!

ji i
k i k k i k

i i j

k j k

i j
X A X A A BU A i Z

k i k k j k

−
− −

− − +
= = =

= + ∈
− −∑ ∑∑  (23) 

Lemma 4. 
The Lyapunov system (22) can be transformed to the equivalent standard discrete-time,  

nm -inputs and  pn -outputs,  linear system in the form: 

 
1i i ix Ax Bu+ = +  (24a) 

 
i i iy Cx Du= +  (24b) 

where, 
2
n

i
x R∈  is the state-space vector, 

( )nm

i
u R∈  is the input vector, 

( )pn

i
y R∈  is the 

output vector, 
2 2 2 2

( ) ( ) ( ) ( )
, , , ,

n xn n x nm pn xn pn x nm
A R B R C R D R i Z+∈ ∈ ∈ ∈ ∈ .  

Proof: 
The proof is similar to the one of Lemma 3. 

The matrices of (24) have the form: 

 
0 1( ) , , ,T

n n n n nA A I I A B B I C C I D D I= ⊗ + ⊗ = ⊗ = ⊗ = ⊗  (25)     

4.1 Cone-systems 
Definition 10. 

The Lyapunov system (22) is called  (P,Q,V) -cone-system if  P
i
X ∈  and  V

i
Y ∈   for 

every 
0

PX ∈  and for every input Q
i

U ∈ , i Z+∈ . 

Note that for , ,P Q Vn n m n p n
R R R

× × ×

+ + +
= = =  we obtain  ( , , )

n n m n p n
R R R

× × ×
+ + + -cone system 

which is equivalent to the positive Lyapunov system (Kaczorek T., 2007b). 
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Theorem 5. 

The Lyapunov system (22) is (P,Q,V) -cone-system if and only if : 

 
1 0 1

1, , 1, ,0 0 1 1
1, , 1, ,

ˆ ˆˆ ˆ,i n i nij ij
j n j n

A PA P a A A a−
= =
= =

⎡ ⎤ ⎡ ⎤= = = =⎣ ⎦ ⎣ ⎦… …
… …

 (26) 

are the Metzler matrices satisfying 

 
0 1ˆ ˆ 0 , 1, ,
kk ll
a a for every k l n+ ≥ = …  (27) 

and 

 
1 1 1ˆˆ ˆ, ,

n m p n p m
B PBQ R C VCP R D VDQ R

− × − × − ×
+ + += ∈ = ∈ = ∈  (28) 

Proof: 
Let: 

 ˆ ˆ ˆ, ,i i i i i iX PX U QU Y VY= = =  (29) 

From definition 2 it follows that if P
i
X ∈   then ˆ n n

i
X R

×
+∈ , if  Q

i
U ∈  then ˆ m n

i
U R

×
+∈ ,  

and if  V
i
Y ∈  then ˆ p n

i
Y R

×
+∈ . 

From (22) and (29) we have: 

 
1 1

1 1 0 1 0 1

1

0 1

ˆ ˆ ˆ

ˆˆ ˆ ˆ ˆ ˆ

i i i i i i i

i i i i

X PX PA X PX A PBU PA P X PP X A

PBQ U A X X A BU

− −
+ +

−

= = + + = + +

+ = + +
 (30a) 

and 

 1 1 ˆˆ ˆ ˆ ˆ ˆ ˆ
i i i i i i i iY VY VCX VDU VCP X VDQ U CX DU− −= = + = + = +  (30b) 

The Lyapunov system (30) is positive if and only if, the equivalent standard system is 
positive. By the theorem for the positivity of the standard discrete-time systems, the 

matrices 
0 1

ˆ ˆ ˆˆ ˆ( ) , ( ) , ( ) , ( )
T

n n n n n
A I I A B I C I D I⊗ + ⊗ ⊗ ⊗ ⊗  have to be the matrices 

with nonnegative entries , so from (30) follows the hypothesis of the Theorem 5.                    □ 

4.2 Asymptotic stability 

Consider the autonomous Lyapunov (P,Q,V) -cone-system: 

 
1 0 1i i iX A X X A+ = +  (31) 

where, 
+

P, i Z
i
X ∈ ∈ . 

Definition 11. 

The Lyapunov (P,Q,V) -cone-system (15)  is called asymptotically stable if: 

lim 0i
i
X

→∞
=  for every  

0
PX ∈  
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Theorem 6. 

Let us assume that  1 2, , nλ λ λ…  are the eigenvalues of the matrix 0A   and 1 2, , nμ μ μ…   

the eigenvalues of the matrix 1A  . The system (31) is stable if and only if: 

 1i jλ μ+ <  for  , 1, 2, ...,i j n=  (32) 

Proof: 
The theorem results directly from the theorem for asymptotic stability of standard systems 

(Kaczorek T., 2001), since by Lemma 2 eigenvalues of matrix A   are the sums of 

eigenvalues of the matrices   0A  and  1A .                                                                                       □ 

4.3 Reachability 
Definition 12. 

The Lyapunov (P,Q,V) -cone-system (22) is called reachable if for any given P
f

X ∈  there 

exist   , 0q Z q+∈ >  and an input sequence , 0,1, , 1Q
i

U q q∈ = −…   that steers the state 

of the system from 
0

0X =  to 
f

X , i.e. 
q f
X X= .   

Theorem 7. 

The Lyapunov (P,Q,V) -cone-system (22)  is reachable: 

a) For 1A  satisfying the condition XAXA 11 = , i.e. RaaIA n ∈= ,1 , if and only if the 

matrix: 

 
1 1 1 1

0 0[ ( ) ( )]n

nR PBQ A PBQ A PBQ− − − −= A  (33) 

contains n  linearly independent monomial columns, 
1

0 0 1A PA P A−= +  . 

b) For 1 ,nA aI a R≠ ∈ , if and only if the matrix 
1PBQ−

 contains n  linearly independent 

monomial columns. 
Proof: 
From (26),(28),(29) and from the definitions 2 and 12, we have that the discrete-time 

Lyapunov (P,Q,V) -cone-system (22)  is reachable if and only if the positive discrete-time 

Lyapunov  system, with the matrices 0 1
ˆ ˆ ˆˆ ˆ, , , ,A A B C D , is reachable – so from the theorem 

for the reachability of positive discrete-time Lyapunov systems (Kaczorek T. & 
Przyborowski P., 2007e; Kaczorek T. & Przyborowski P., 2008) follows the hypothesis of the 
theorem 7.                                                                                                                                              □ 

4.4 Controllability to zero 
Definition 13. 

The Lyapunov (P,Q,V) -cone-system (22) is called controllable to zero if for any given 

nonzero 
0

PX ∈   there exist , 0q Z q+∈ >  and an input sequence 

, 0,1, , 1Q
i

U q q∈ = −…    that steers the state of the system from 
0
X  to 0

q f
X X= = . 
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Theorem 8. 

The Lyapunov (P,Q,V) -cone-system (22)  is controllable to zero: 

a) in a finite number of steps (not greater than 
2
n ) if and only if the matrix 

1

0 1
( )

T

n n
PA P I I A

− ⊗ + ⊗   is nilpotent, i.e. has all zero eigenvalues. 

b) in an infinite number of steps if and only if the system is asymptotically stable. 
Proof: 
From (26),(28),(29) and from the definitions 2 and 13, we have that the discrete-time 

Lyapunov (P,Q,V) -cone-system (22)  is controllable to zero if and only if the positive 

discrete-time Lyapunov  system, with the matrices 
0 1

ˆ ˆ ˆˆ ˆ, , , ,A A B C D , is controllable to zero – 

so from the theorem for the controllability to zero of  positive discrete-time Lyapunov 
systems (Kaczorek T. & Przyborowski P., 2007e; Kaczorek T. & Przyborowski P., 2008)  
follows the hypothesis of the theorem 8.                                                                                          □ 
Lemma 5. 

If the matrices 
1

0
PA P

−
 and 1A  are nilpotent then the matrix 

1

0 1
( )

T

n n
PA P I I A

− ⊗ + ⊗   is 

also nilpotent with the nilpotency index 2nν ≤ . 

Proof: See (Kaczorek T. & Przyborowski P, 2008). 

4.5 Dual Lyapunov cone-systems 
Definition 14. 
The Lyapunov system described by the equations: 

 
1 0 1

T T T

i i i iX A X X A C U+ = + +  (34a) 

 
T

i i iY B X DU= +  (35b) 

is called the dual system respect to the system (22). The matrices 
0 1
, , , , ,A A B C D   

, ,
i i i
X U Y   are the same as in the system (22). 

4.6 Observability 
Definition 15. 

The Lyapunov (P,Q,V) -cone-system (22) is called observable in  q -steps, if 
0
X  can be 

uniquely determined from the knowledge of the output 
i
Y  and  0,

i
U i Z+= ∈  for 

[0, ]i q∈ . 

Definition 16. 

The Lyapunov (P,Q,V) -cone-system (22)  is called observable, if there exists a natural 

number  1q ≥ , such that the system (22)  is observable  in q -steps. 

Theorem 9. 

The  Lyapunov (P,Q,V) -cone-system (22)  is observable: 

a) For 1A  satisfying the condition 
1 1

XA A X= , i.e. 
1

,
n

A aI a R= ∈ , if and only if the matrix: 
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1

1

0

1 1

( )

( )

n

n

VCP

VCP A
O

VCP A

−

−

− −

=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

B
 (33) 

contains n  linearly independent monomial rows, 
1

0 0 1
A PA P A

−= +  . 

b) For 
1

,
n

A aI a R≠ ∈ , if and only if the matrix  
1

VCP
−

 contains n  linearly independent 

monomial rows. 
Proof: 
From (26),(28),(29) and from the definitions 2 and 15, we have that the discrete-time 

Lyapunov (P,Q,V) -cone-system (22)  is observable if and only if the positive discrete-time 

Lyapunov  system, with the matrices 0 1
ˆ ˆ ˆˆ ˆ, , , ,A A B C D , is observable – so from the theorem 

for the observability of  positive discrete-time Lyapunov systems (Kaczorek T. & 
Przyborowski P., 2007e; Kaczorek T. & Przyborowski P., 2008) follows the hypothesis of the 
theorem 9.                                                                                                                                              □ 

5. Fractional discrete-time linear Lyapunov cone-systems 

Consider the fractional discrete-time linear Lyapunov system (Przyborowski P., 2008a; 
Przyborowski P., 2008b) described by the equations: 

 
1 0 1

N

i i i i
X A X X A BU+Δ = + +  (34a) 

 
i i i
Y CX DU= +  (34b) 

where, 
nxn

i
X R∈  is the state-space matrix,  

mxn

i
U R∈  is the input matrix, 

pxn

i
Y R∈   is the 

output matrix, 
0 1
, , , , ,

nxn nxm pxn pxm
A A R B R C R D R i Z+∈ ∈ ∈ ∈ ∈  and 

0

1 for 0
1

( 1) , ( 1) ( 1)
for 1, 2,...

!

i
N j

i i jN
j

j
N N

X X N N N j
jj jh

j

−
=

=⎧
⎛ ⎞ ⎛ ⎞ ⎪Δ = − = − − +⎨⎜ ⎟ ⎜ ⎟ =⎝ ⎠ ⎝ ⎠ ⎪⎩

∑ A

 

is the Grünwald-Letnikov N -order ( , 0 1N R N∈ < ≤ ) fractional difference, and h is the 

sampling interval.  
The equations (34) can be written in the form: 

 
1

1 1 0 1

1

( 1)
i

j

i i j i i i

j

N
X X A X X A BU

j

+

+ − +
=

+ − = + +
⎛ ⎞
⎜ ⎟
⎝ ⎠

∑  (35a) 

                                                       
i i i
Y CX DU= +                                              (35b) 
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Lemma 6. 
The fractional Lyapunov system (34) can be transformed to the equivalent fractional 
discrete-time,  nm -inputs and  pn -outputs,  linear system in the form: 

 
1

N

i i ix Ax Bu+Δ = +
& && & &

 (36a) 

 
i i iy Cx Du= +

& && & &
 (36b) 

where, 
2n

ix R∈&  is the state-space vector, 
( )nm

i
u R∈&  is the input vector, 

( )pn

i
y R∈&  is the 

output vector, 
2 2 2 2

( ) ( ) ( ) ( )
, , , ,

n xn n x nm pn xn pn x nm
A R B R C R D R i Z+∈ ∈ ∈ ∈ ∈
& && &

.  

Proof: 
The proof is similar to the one of Lemma 3. 
The matrices of (36) have the form: 

 
0 1( ) , , ,T

n n n n nA A I I A B B I C C I D D I= ⊗ + ⊗ = ⊗ = ⊗ = ⊗
& && &

 (37) 

5.1 Cone-systems 
Definition 17. 

The fractional Lyapunov system (22) is called (P,Q,V) -cone-system if P
i
X ∈ and  V

i
Y ∈   

for every 
0

PX ∈  and for every input Q
i

U ∈ , i Z+∈ . 

Note that for , ,P Q Vn n m n p n
R R R

× × ×

+ + +
= = =  we obtain  ( , , )

n n m n p n
R R R

× × ×
+ + + -cone system 

which is equivalent to the fractional positive Lyapunov system (Przyborowski P., 2008a). 
Theorem 10. 

The fractional Lyapunov system (34) is (P,Q,V) -cone-system if and only if : 

 
1 0 1

1, , 1, ,0 0 1 1
1, , 1, ,

ˆ ˆˆ ˆ,i n i nij ij
j n j n

A PA P a A A a−
= =
= =

⎡ ⎤ ⎡ ⎤= = = =⎣ ⎦ ⎣ ⎦… …
… …

 (38) 

are the Metzler matrices satisfying 

 
0 1ˆ ˆ 0kk lla a N+ + ≥ for every , 1, ,k l n= …   (39) 

and 

 
1 1 1ˆˆ ˆ, ,

n m p n p m
B PBQ R C VCP R D VDQ R

− × − × − ×
+ + += ∈ = ∈ = ∈  (40) 

Proof: 
Let: 

 ˆ ˆ ˆ, ,i i i i i iX PX U QU Y VY= = =   (41) 

From definition 2 it follows that if P
i
X ∈   then ˆ n n

i
X R

×
+∈ , if  Q

i
U ∈  then ˆ m n

i
U R

×
+∈ ,  

and if  V
i
Y ∈  then ˆ p n

iY R ×
+∈ . 
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From (34) and (41) we have: 

1 1

1 1 1 1

1 1

1 1 1

0 1 0 1

0 1

ˆ ˆ( 1) ( 1)

ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ

i i
j j

i i j i i j

j j

i i i i i i

i i i

N N
X X PX PX

j j

PA X PX A PBU PA P X PP X A PBQ U

A X X A BU

+ +

+ − + + − +
= =

− − −

⎛ ⎞ ⎛ ⎞
+ − = + − =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

= + + = + + =

= + +

∑ ∑

 

(41a) 

and 

 1 1 ˆˆ ˆ ˆ ˆ ˆ ˆ
i i i i i i i iY VY VCX VDU VCP X VDQ U CX DU− −= = + = + = +  (42b) 

It is known (Przyborowski P., 2008a) that the system (34) is positive if and only if the 
conditions (41a) and (42b) are satisfied.                                                                                            □ 

5.2. Stability 

Consider the autonomous fractional Lyapunov  (P,Q,V) -cone-system: 

 
1 0 1

N

i i iX A X X A+Δ = +  (43) 

where, 
+

P, i Z
i
X ∈ ∈ . 

Definition 18. (Dzieliński A. & Sierociuk D., 2006) 

The fractional Lyapunov (P,Q,V) -cone- system (43) is called stable in finite relative time if 

for , ,Rα β +∈ , , ,α β α β< < ∞ 1, , ;k n= … ,M N Z+∈ : 
 

0, 1, ,
k

i
X for i Nα< = − −…  

implies     

0,1, ,
k

i
X for i Mβ< = …  

where  
k

iX  is the  k th  column of the matrix iX . 

Theorem 11. 

The fractional Lyapunov (P,Q,V) -cone- system (34) is stable in the meaning of the 

definition 18 if: 

 2 2

1

2

( 1) 1
i

j

n n
j

N
A I N I

j

+

=

⎛ ⎞
+ + − <⎜ ⎟

⎝ ⎠
∑

&
 (44) 

where 
0 1

T

n n
A A I I A= ⊗ + ⊗
&

  and W   denotes the norm of the matrix W , defined as 

max
l

l

λ , where  lλ  is the  l th eigenvalue of the matrix W . 

Proof: 
The theorem results directly from the theorem of asymptotic stability of standard fractional 
systems (Dzieliński A. & Sierociuk D., 2006).                                      □ 

www.intechopen.com



Linear Lyapunov Cone-Systems 

 

183 

5.3 Reachability 
Definition 19. 

The fractional Lyapunov (P,Q,V) -cone-system (34) is called reachable if for any given 

P
f

X ∈  there exists   , 0q Z q+∈ >  and an input sequence , 0,1, , 1Q
i

U q q∈ = −…   that 

steers the state of the system from 
0

0X =  to 
f

X , i.e. 
q f
X X= .   

Theorem 12. 

The  fractional Lyapunov (P,Q,V) -cone-system (34)  is reachable: 

a) For 1A  satisfying the condition XAXA 11 = , i.e. RaaIA n ∈= ,1 , if and only if the 

matrix: 

 
1 1

0, ( )n nR PBQ A I N PBQ− −⎡ ⎤= +⎣ ⎦  (45) 

contains n  linearly independent monomial columns, 
1

0 0 1A PA P A−= +  . 

b) For 1 ,nA aI a R≠ ∈ , if and only if the matrix 
1PBQ−

 contains n  linearly independent 

monomial columns. 
Proof: 
From (38),(39),(40) and from the definitions 2 and 19, we have that the fractional discrete-

time Lyapunov (P,Q,V) -cone-system (34)  is reachable if and only if the fractional positive 

discrete-time Lyapunov  system, with the matrices 0 1
ˆ ˆ ˆˆ ˆ, , , ,A A B C D , is reachable – so from 

the theorem for the reachability of  positive discrete-time Lyapunov systems (Przyborowski 
P.,2008a). follows the hypothesis of the theorem 12.                                                                      □ 

5.4 Controllability to zero 
Definition 20. 

The fractional Lyapunov (P,Q,V) -cone-system (34) is called controllable to zero if for any  

given nonzero 
0

PX ∈  there exist , 0q Z q+∈ >  and an input sequence 

, 0,1, , 1Q
i

U q q∈ = −…  that steers the state of the system from 
0
X  to 0

q f
X X= = . 

Theorem 13. 

The fractional Lyapunov (P,Q,V) -cone-system (34)  is controllable to zero if and only if 

2q =  and: 

 
1

0 1 ( ) 0T

n n n nPA P I I A I N I− ⊗ + ⊗ + ⊗ =  (46) 

Proof: 
From (38),(39),(40) and from the definitions 2 and 19, we have that the fractional discrete-

time Lyapunov (P,Q,V) -cone-system (34)  is controllable to zero if and only if the 

fractional positive discrete-time Lyapunov  system, with the matrices 0 1
ˆ ˆ ˆˆ ˆ, , , ,A A B C D , is 

controllable – so from the theorem for the controllability of  positive discrete-time Lyapunov 
systems (Przyborowski P., 2008a). follows the hypothesis of the theorem 13.                           □ 
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5.5 Dual fractional Lyapunov cone-systems 
Definition 21. 
The fractional Lyapunov system described by the equations: 

 
1 0 1

N T T T

i i i iX A X X A C U+Δ = + +  (47a) 

 
T

i i iY B X DU= +  (47b) 

is called the dual system respect to the system (34). The matrices 0 1, , , , ,A A B C D   

, ,
i i i
X U Y   are the same as in the system (34). 

5.6 Observability 
Definition 22. 

The fractional Lyapunov (P,Q,V) -cone-system (34) is called observable in q -steps, if 
0
X can 

be uniquely determined from the knowledge of the output
i
Y and 0,

i
U i Z+= ∈ for [0, ]i q∈ . 

Definition 23. 

The fractional Lyapunov (P,Q,V) -cone-system (34)  is called observable, if there exists a 

natural number  1q ≥ , such that the system (34)  is observable  in q -steps. 

Theorem 14. 

The  fractional Lyapunov (P,Q,V) -cone-system (34)  is observable: 

a) For 1A  satisfying the condition 
1 1

XA A X= , i.e. 
1

,
n

A aI a R= ∈ , if and only if the matrix: 

 

1

1

0( )
n

n

VCP
O

VCP A I N

−

−

⎡ ⎤
= ⎢ ⎥+⎣ ⎦

 (48) 

contains n  linearly independent monomial rows, 
1

0 0 1
A PA P A

−= +  . 

b) For 
1

,
n

A aI a R≠ ∈ , if and only if the matrix  
1

VCP
−

 contains n  linearly independent 

monomial rows. 
Proof: 
From (38),(39),(40) and from the definitions 2 and 20, we have that the fractional discrete-

time Lyapunov (P,Q,V) -cone-system (34)  is controllable to zero if and only if the 

fractional positive discrete-time Lyapunov  system, with the matrices 
0 1

ˆ ˆ ˆˆ ˆ, , , ,A A B C D , is 

observable – so from the theorem for the observability of  positive discrete-time Lyapunov 
systems (Przyborowski P., 2008a). follows the hypothesis of the theorem 14.                           □ 

6. Examples 

Consider the state, input and output cones generated by the matrices 

                           
1 2 1 0 1 0

, ,
1 1 0 1 0 1

P Q V
−

= = =
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

                                (49) 
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6.1 Example 1 
Consider the continuous-time Lyapunov system (7) with the matrices 

 

0 1

7 4 4 0 1 21 1
, , ,

2 5 0 1 1 13 3

2 4 0 0
,

1 1 0 0

A A B

C D

− − − −
= = =

− − −

−
= =

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (50) 

This system is (P,Q,V) -cone-system with ,P Q  and V defined by (49) since: 

1

0

1

1 2 7 4 1 2 1 01ˆ
1 1 2 5 1 1 0 33

4 0ˆ
0 1

A

A

−− − − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦  
are the Metzler matrices and 

1

1

1

1 2 1 2 1 0 1 01ˆ
1 1 1 1 0 1 0 13

1 0 2 4 1 2 2 0
ˆ

0 1 1 1 1 1 0 1

1 0 0 0 1 0 0 0
ˆ

0 1 0 0 0 1 0 0

B

C

D

−

−

−

− −
= =

− −
= =

= =

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

are matrices with nonnegative entries. 

0A  has the  eigenvalues: 1 21, 3λ λ= − = −  and 
1A  has the eigenvalues: 

1 4,μ = −  

2 1μ = −  therefore the system is asymptotically stable, since all the sums of the 

eigenvalues: 

1 1 1 2 2 1 2 2( ) 5, ( ) 2, ( ) 7, ( ) 4λ μ λ μ λ μ λ μ+ = − + = − + = − + = −
 

have negative real parts. 
For this system the reachability matrix 

2

2

( )

3( )
0

e 0

0 4e

f f

f

t t

f
t

R d

τ

τ
τ

− +

− +

⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦
∫  
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and the observability matrix  

2

2

( )

3( )
0

4e 0

0 e

f f

f

t t

f
t

O d

τ

τ
τ

− +

− +

⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦
∫  

are the monomial matrices for every 0
f
t > . Therefore, the system is reachable and 

observable. 

6.2 Example 2 
Consider the discrete-time Lyapunov system (22) with the matrices 

 

0 1

0.3 0.2 0.2 0 1 21
, , ,

0.1 0.2 0 0.5 1 13

2 4 0 0
,

1 1 0 0

A A B

C D

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦
−⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 (50) 

This system is (P,Q,V) -cone-system with ,P Q  and  V  defined by (49) since: 

1

0 1

1 2 0.3 0.2 1 2 0.1 0 0.2 0ˆ ˆ,
1 1 0.1 0.2 1 1 0 0.4 0 0.5

A A

−− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

are the Metzler matrices satisfying conditions:  

0 1 0 1

11 11 22 11

0 1 0 1

11 22 22 22

ˆ ˆ ˆ ˆ0.3 0.2 0.5 0, 0.2 0.2 0.4 0

ˆ ˆ ˆ ˆ0.3 0.5 0.8 0, 0.2 0.5 0.7 0

a a a a

a a a a

+ = + = > + = + = >

+ = + = > + = + = >
 

and 

1 1

1

1 2 1 2 1 0 1 0 1 0 2 4 1 2 2 01 ˆˆ ,
1 1 1 1 0 1 0 1 0 1 1 1 1 1 0 13

1 0 0 0 1 0 0 0
ˆ

0 1 0 0 0 1 0 0

B C

D

− −

−

− − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

are matrices with nonnegative entries. 

0A  has the  eigenvalues: 1 20.1, 0.4λ λ= =  and 
1A  has the eigenvalues: 

1 0.2,μ =  

2 0.5μ =  therefore the system is asymptotically stable, since all  the eigenvalues: 

1 1 1 2 2 1 2 2( ) 0.3, ( ) 0.6, ( ) 0.6, ( ) 0.9λ μ λ μ λ μ λ μ+ = + = + = + =  

have moduli less than one. 

www.intechopen.com



Linear Lyapunov Cone-Systems 

 

187 

The system is reachable and observable because the matrix 
1

PBQ
−

 has 2n =  monomial 

columns, and the matrix 
1

VCP
−

 has 2n =  monomial rows. 

The system is not controllable to zero in finite number of steps since the matrix 

1

0 1

0.3 0 0 0

0 0.6 0 0
( )

0 0 0.6 0

0 0 0 0.9

T

n n
PA P I I A

− ⊗ + ⊗ =

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

is not a the nilpotent matrix, but the system is controllable to zero in the infinite number of 
steps since it is asymptotically stable.  

6.3 Example 3 

Consider the discrete-time Lyapunov system (34) with 
1

4

N =  and the matrices 

 

0 1

1 2

0.5 0.8 0.17 0 3 3
, , ,

0.6 0.9 1 0.4 1 1

3 3

2 4 0 0
, ( 2)

1 1 0 0

A A B

C D n

−
− −

= = =

−
= = =

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (51) 

This system is (P,Q,V) -cone-system with ,P Q  and  V  defined by (49) since: 

0 1

0.3 2 0.17 0 1 0 2 0 0 0
ˆ ˆ ˆˆ ˆ, , , ,

0 0.1 1 0.4 0 1 0 1 0 0
A A B C D

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

The system is (P,Q,V)  -cone-system because: 

0 1 0 1

11 11 22 11

0 1 0 1

11 22 22 22

ˆ ˆ ˆ ˆ0.3 0.17 0.25 0.72 0, 0.1 0.17 0.25 0.52 0

ˆ ˆ ˆ ˆ0.3 0.4 0.25 0.95 0, 0.1 0.4 0.25 0.75 0

a a N a a N

a a N a a N

+ + = + + = > + + = + + = >

+ + = + + = > + + = + + = >
 

and the matrices  ˆˆ ˆ, ,B C D  have nonnegative entries. 

For the instant  100i =  we have 

2 2

1

2

( 1) 0.8268 1

i

j

n n

j

N
A I N I

j

+

=

+ + − = <
⎛ ⎞
⎜ ⎟
⎝ ⎠

∑  

so the system is stable in the meaning of the the definition 18.   
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The system is reachable and observable because the matrix 
1

PBQ
−

 has 2n =  monomial 

columns, and the matrix 
1

VCP
−

 has 2n = monomial rows. 
The system is not controllable to zero in finite number of steps since the matrix 

1

0 1

0.72 0 0 0

0 0.52 0 0
( ( ) )

0 0 0.95 0

0 0 0 0.75

T

n n n n
PA P I I A I N I

− ⊗ + ⊗ + ⊗ =

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

is not a zero matrix. 

7. Conclusions 

In this paper three types of systems have been considered. For the continuous-time linear 
Lyapunov cone-systems, the necessary and sufficient conditions for being the cone-system, 
the asymptotic stability and sufficient conditions for the reachability and observability have 
been be established. For the discrete-time linear Lyapunov cone-systems, the necessary and 
sufficient conditions for being the cone-system, the asymptotic stability, reachability, 
observability and controllability to zero have been established. For the fractional discrete-
time linear Lyapunov cone-systems, the necessary and sufficient conditions for being the 
cone-system, the reachability, observability and controllability to zero and sufficient 
conditions for the stability have been established. The considerations have been illustrated 
on the numerical examples. 
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