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Abstract

Cortisol is the major corticosteroid in teleost fish, secreted and released by interrenal 
cells of the head kidney during activation of the hypothalamic-pituitary-interrenal (HPI) 
axis. Although cortisol is universally recognized as a key mediator of stress-associated 
responses, other hormones are also involved in the stress response, e.g., arginine vasoto-
cin (AVT), isotocin (IT), urotensins, dopamine, serotonin or β-endorphin. Cortisol affects 
AVT and IT secretion from nerve endings in gilthead sea bream (Sparus aurata) and round 
goby (Neogobius melanostomus). Moreover, it is pointed out that different mechanisms 
are involved in the regulation of AVT and IT release from the hypothalamic-pituitary 
complex in round goby. In the case of AVT, both genomic and nongenomic pathways are 
mediating the effect of cortisol while in the case of IT, it is only the nongenomic pathway. 
In turn, urotensin I instead of corticotropin-releasing factor (CRF) may contribute to the 
regulation of HPI axis and regulate AVT in Sparus aurata. In this species, urotensin II 
together with AVT and IT may control stress response to different salinities. Therefore, 
AVT, IT and urotensins, and their interactions with cortisol, seem to be significant in 
response to stress in fish.

Keywords: stress, cortisol, AVT, IT, UI, UII, in vitro techniques, fish

1. Introduction

Stress triggers reactions in all living organisms, and fish are no exception to this rule. It is 
known that fish are exposed to stress, not only in nature but also in aquaculture, fish mar-
kets and laboratories. In the past decades, knowledge and understanding of stress in fish has 
increased, particularly in the field of physiological mechanisms and responses that lead to 
changes in metabolism, growth, immune function, reproductive capacity and natural behavior. 
Interestingly, fish have proved to be more sensitive to stressors than many other vertebrates and 
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responded to stressors at the intensity levels that are often far below those that can be detected 
by terrestrial animals [1–4]. The stress response in fish has been widely categorized into the 
primary, secondary and tertiary responses [5–11]. The primary response (the neuroendocrine 
response) includes the rapid release of stress hormones, catecholamines and corticosteroids, 
into the circulation [1, 12, 13]. This physiological response to stressors encompasses activation 
of the brain-sympathetic-chromaffin cell (BSC) axis and the hypothalamic-pituitary-interrenal 
(HPI) axis [1] (Figure 1). During the BSC axis activation, chromaffin cells of the head kidney 
release catecholamines (adrenaline and noradrenaline) from sympathetic nerve terminals. 
Catecholamines are controlled by factors released from sympathetic nerve terminals, mainly 
acetylcholine and angiotensin. The action of catecholamines includes increased hemoglobin 
oxygen affinity, arterial blood pressure [14] and glucose mobilization from liver and muscles 
[1]. The activation of HPI axis comprises the corticotropin-releasing factor (CRF) release from 
the hypothalamus, which in turn stimulates the corticotrophic cells in the anterior pituitary to 
secrete adrenocorticotropic hormone (ACTH). Following that, the interrenal cells of the head 
kidney synthesize and release cortisol into the circulatory system. In teleosts, the head kidney a 
major endocrine, hematopoietic and lymphatic tissue, are the equivalent of the adrenal gland in 
mammals [1, 12]. The secondary response comprises the various biochemical and physiological 
effects such as metabolic changes (increased glucose and lactate in blood and decreased tissue 
glycogen), osmoregulatory disturbance (water/ion balance), changes in hematological features 
(hematocrit, leukocrit and hemoglobin), cellular changes (increased heat shock or stress protein 
production) and changes in the immune response (lysozyme activity and antibody production) 
[13, 15–17]. The tertiary response represents changes in whole-animal performance character-
istic (growth, swimming capacity and disease resistance) and modified behavioral patterns 
(feeding, aggression and reproduction) (“for review [9, 11, 18]”).

In fish, cortisol acts as a regulatory factor for a wide range of physiological functions under 
normal conditions and also to allow for rapid physiological adjustments in the face of expo-
sure to stressors [13]. Cortisol appears to play a pivotal role in the aerobic and anaerobic 

Figure 1. The stimulation of BSC axis and HPI axis in response to stress in fish.
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metabolism, stimulating several aspects of intermediary energy metabolism, elevating oxy-
gen uptake, increasing gluconeogenesis and inhibiting synthesis of glycogen synthesis [1, 
13, 19–21]. Furthermore, increases in plasma corticosteroids have a wide range of other met-
abolic effects including increases in protein turnover, regulation of amino acid metabolism, 
ammonia output and increased lipolysis (“reviewed in [13]”). This hormone also performs 
an osmoregulatory function in teleosts, being the main hormone for seawater adaptation 
and ion uptake [22, 23]. Moreover, cortisol may regulate the immune response in fish [1, 13, 
24]. Cortisol modulates, among others, the tissue inflammatory response through inhibi-
tory effects on cytokine production [25] and appears to attenuate the cellular heat shock 
protein response to thermal insult [26, 27]. Corticosteroid hormones may highly participate 
in the modulation of the reproductive endocrine control in both sexes [18].

It should be noted that cortisol dramatically rises during stress and seems to be a key mediator 
of stress-associated responses [13, 28]. There is considerable variability in the magnitude of the 
corticosteroid response among species [9, 29, 30]. Among teleosts, some species exhibit high 
cortisol concentrations (10−7–10−6 M) in response to acute stress [9], while some species reveal 
low cortisol levels (10−9–10−8 M) in response to the same stress [31–33]. Most fish species show 
their increase in plasma cortisol within about 0.5–1 hour after a stressful disturbance [34, 35], but 
there are exceptions to the role. In the sea raven (Hemitripterus americanus), circulating cortisol 
takes up to 4 hours to reach its peak level following an acute stressor [36]. Probably, the slow rate 
of response to the stressor may help conserve energy in a normally inactive, sedentary, benthic 
marine species having a slow metabolic rate [36]. Corticosteroid responses to stress also vary 
within species according to the duration or severity of the stressor (“for review: [9]”). What is 
more, differences in corticosteroid stress responses may exist among strains or stocks within the 
same fish species [37, 38], their hybrids [39], and between wild and hatchery fish [40]. It should 
be noted that the variation in stress responses within a single strain or population may indicate 
genetic determinants [41–43]. Beyond genetic and environmental factors, the developmental 
stage of the fish can also affect its responsiveness to a stressor (“for review: [9]”).

2. How does cortisol interact with other hormones in fish?

Although cortisol is universally recognized as a critical component of the endocrine response to 
stress, other hormones are also involved in the stress response, e.g., arginine vasotocin (AVT), 
isotocin (IT), urotensins, dopamine, serotonin or β-endorphin [13, 44–48]. However, other hor-
mones, such as thyroxine, prolactin and somatolactin can also elevate during stress but they have 
not yet been demonstrated to be useful stress indicators per se [49–51]. Our interest has focused on 
nonapeptides AVT, IT and urotensins, and their interactions with cortisol, in response to stress.

2.1. Arginine vasotocin, isotocin and urotensin I

Nonapeptides, such as AVT and IT, are fish homologs of the mammalian arginine vasopressin 
(AVP) and oxytocin (OT) [52]. In fish, AVT and IT are synthesized in separate parvo- and mag-
nocellular neurons of the preoptic area (POA), stored in axon terminals in neurohypophysis 
and released into the circulatory system after proper stimulation [53–55]. Only mature nona-
peptides, after dissociation from the noncovalent complex, play an active role as peripheral 
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hormones and neurotransmitters or neuromodulators in the central nervous system (CNS). 
The physiological role of AVT involves cardiovascular activity and maintenance of water/
ion homeostasis. Both nonapeptides interact with other endocrine systems and control social 
and reproductive behavior [56–59]. More importantly, there is evidence that AVT and IT are 
engaged in physiological stress response in fish. Changes in hypothalamic, pituitary and 
plasma AVT and IT concentrations were found in many fish species subjected to various unfa-
vorable situations such as confinement, disturbance, high density, food deprivation or osmo-
regulatory stress [33, 47, 60]. Therefore, AVT and IT are important components of stress axis 
in fish [61]. Moreover, AVT neurons are colocalized with CRF in the preoptic nucleus (NPO) 
[62, 63], and the expression of AVT and CRF mRNAs increases simultaneously in response to 
various stressors in many fish spices [56, 64, 65]. In vitro studies have shown that independently 
or in synergy with CRF, AVT stimulates ACTH release from fish pituitary cells [44, 66, 67]. In 
gilthead sea bream (Sparus aurata), unlike other teleosts, CRF is not a releasing factor for ACTH 
and cortisol, because there are no anatomical connections between CRF perikarya and ACTH 
cells in the adenohypophysis [68–70]. Therefore, it is possible that urotensin I (UI) instead of 
CRF regulates AVT and IT release in S. aurata.

It has been known that UI is implicated in the regulation of neuroendocrine, autonomic and 
behavioral responses to stressors in fish [71, 72]. Gene expression of UI was found not only in 
urophysis but also in the telencephalon-preoptic, hypothalamic, optic tectum-thalamus and 
posterior brain regions, which indicates the regulatory action of this peptide in CNS [73–75]. 

The structural similarity of UI with CRF suggests similar hypophysiotropic roles of both hor-
mones in HPI axis in fish [76–78]. It has been established that UI modulates cortisol secretion 
either directly by acting on steroidogenic cells of an interrenal tissue or indirectly via the 
hypothalamic-pituitary axis [71, 77, 79, 80]. In many fish species, UI-immunoreactive (UI-ir) 
fibers from the nucleus lateral tuberalis (NLT) extend to the pituitary where they may interact 
with AVT and IT nerve terminals [81–84].

The effect of cortisol on AVT has been examined in vivo in gilthead sea bream. The application 
of cortisol implants enhanced the hypothalamic expression of AVT mRNA and subsequently 
hypophysial AVT content in this species [85]. Although IT studies are very limited, they sug-
gest that IT potentiates ACTH release from fish pituitary cells [44]. The in vitro effect of cor-
tisol or UI on AVT and IT secretion in fish has been studied only by Kalamarz-Kubiak et al. 
[86]. In this study, primary cultures of pituitary cells were prepared by a modification of the 
method described by Levavi-Sivan et al. [87, 88]. Pituitary cells were cultured with medium 
supplemented with cortisol (1.4 × 10−8, 1.4 × 10−7 and 0.4 × 10−6 M) or UI (10−12, 10−10 and 10−8 M). 
The doses of cortisol were chosen taking into account different cortisol responses to stress in 
various fish species [9, 29, 30]. The doses of UI used in the cell culture were determined based 
on the literature, considering its concentration in different tissues [29, 30, 80, 89, 90]. After 6, 
24 and 48 hours, the media were collected and stored at −70°C until AVT and IT analysis. AVT 
and IT concentrations were determined in incubation media by HPLC with fluorescence and 
UV detection according to a modified procedure by Kulczykowska [91].

The study performed by Kalamarz-Kubiak et al. [86] demonstrated that AVT and IT secre-
tion from nerve ending of S. aurata pituitary was influenced by cortisol and UI. In this study, 
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cortisol showed a stimulatory action on pituitary cells of S. aurata inducing AVT secretion 
at all doses. Dose-dependent effect of cortisol on AVT secretion has been manifested after 
24 hours of cell culture. In mammals, the influence of cortisol on AVP secretion was studied 
by in vivo and in vitro methods [92, 93]. In turn, other findings indicate that the expression of 
AVP in parvocellular neurons of the paraventricular nucleus (PVN) and AVP secretion into 
the pituitary portal circulation increase under chronic stress in rats [94–97]. It is also shown 
that stress upregulates the number of AVP receptors in rat anterior pituitary [96]. The results 
presented by Kalamarz-Kubiak et al. [86] demonstrated that the stimulatory effect of corti-
sol on AVT secretion from nerve ending of S. aurata pituitary diminishes after 48 hours of 
culture. The most likely explanation for the decline seems to be the depletion of AVT stores 
without subsequent supplementation of secretory granules from AVT-ergic nerves. However, 
corticoid receptor (CR) desensitization could be another cause. In mammals, desensitization 
of CRs is the result of physiological processes, as well as stress, and disease [98–100]. On the 

other hand, the reduction of AVT secretion after 48 hours of cortisol exposure could be also 
linked with an increase of aminopeptidase activity responsible for nonapeptide metabolism 
as it was shown in rats and chickens [101–103]. As in the case of AVT, in vitro cortisol action 

on IT secretion in teleosts was not known. Results presented by Kalamarz-Kubiak et al. [86] 

showed that cortisol decreased IT secretion from nerve ending of S. aurata pituitary. In mam-
mals, cortisol action on OT was investigated by in vitro and in vivo experiments. It was found 
that glucocorticoids exert an inhibitory effect on the neurosecretory activity of parvocellular 
OT-ergic neurons of rats [104]. In rats, the increase in plasma OT levels after intravenous injec-
tion of isotonic or hypertonic saline was blocked by dexamethasone [105].

For the reasons mentioned above, it was presumed that UI, instead of CRF, might regulate 
AVT and IT release in S. aurata. In the in vitro study presented by Kalamarz-Kubiak et al. [86], 
the dose-dependent stimulatory effect of UI on AVT secretion from nerve ending of S. aurata 

pituitary was observed after 6 hours of culture. In rats, it has been shown that UI slightly 
increases the hypothalamus AVP secretion in vitro, indicating the probable stimulatory effect 
of this peptide on AVT production [106]. In turn, the presented in vitro results [86] have dem-
onstrated that after 24 hours only the highest dose of UI elevates AVT secretion from S. aurata 

pituitary cells. Moreover, this stimulatory effect of UI completely expires after 48 hours of 
pituitary cell culture. Since UI is a natural ligand of CRF receptors (CRFRs) [78, 107], the later 
desensitization of CRFRs may be an explanation of these results. A number of in vitro studies 
demonstrate desensitization of CRFRs [108–111]. Moreover, it is also known that UI increases 
cortisol secretion [108–111]. Thus, UI may also influence AVT secretion indirectly, stimulating 
cortisol release. In gilthead sea bream, UI did not affect IT secretion from pituitary cells. Note 
that the influence of UI on IT or OT secretion had never been investigated before. The oppo-
site response of AVT and IT to UI or cortisol exposure in pituitary cell culture is in accordance 
with other data showing an independent regulation of nonapeptide secretion [58, 112]. In a 
summary, the following conclusions were formulated:

• Cortisol affects AVT and IT secretion from nerve endings in S. aurata pituitary.

• Cortisol stimulates AVT secretion in a dose-dependent manner and inhibits IT secretion in 
S. aurata pituitary cell culture.
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• UI stimulates AVT secretion but does not influence IT secretion from nerve endings in 

S. aurata pituitary.

• UI instead of CRF may contribute to the regulation of HPI axis and regulate AVT secretion.

• AVT and IT are essential components of stress response in fish.

2.2. Urotensin II

At the beginning of this chapter, it was noticed that besides cortisol, urotensins are also 
involved in the response to stress in fish. UI action has already been discussed. In turn, uro-
tensin II (UII), a cyclic peptide originally isolated from the urophysis of the goby (Gillichthys 

mirabilis) [113], appears to be involved in the control of osmoregulatory and metabolic func-
tions and also in the cardiovascular and gastrointestinal activities, and immune response in 
teleosts [114–118]. In the European flounder (Platichthys flesus), urophysial UII content rose 
over the 24 hours following a transfer from seawater to fresh water, whereas plasma UII 
content and UII receptor expression in kidney and gill decreased, implying downregulation 
of the UII system [115, 119]. It should be noted that in fish, hormonal regulation of water and 
ion homeostasis requires participation and interaction of many endocrine systems at the vari-
ous functional levels of the organism [58]. In teleosts, also AVT and IT seem to be involved 
in the maintenance of water and ion homeostasis [57, 58]. What is more, there is also evi-
dence of the role of AVT and IT in response to different osmotic stimuli [47, 60]. It has been 
observed that the synthesis of AVT and IT and their release from the neurohypophysis are 
sensitive to changes in water salinity. In teleosts, an acute change in water salinity results in 
altered pro-AVT and pro-IT mRNA expression in hypothalamic neurons [120–122] and in the 

altered content of AVT and IT in the pituitary [119, 122, 123]. It should be emphasized that the 
potential relationship between AVT and other hormonal systems such as UII contributing to 
the osmoregulation in fish has been suggested before [119, 124, 125]. As already mentioned, 
AVT and IT are synthesized in the POA and transported to the neurohypophysis for storage 
and release into the vascular system via axon terminals. UII has been identified in teleost and 
nonteleost fish not only in the urophysis but also in the CNS [126–129]. Moreover, UII and 
UII receptor mRNA expression has been detected in all brain regions of European flounder, 
including the telencephalon-preoptic region, hypothalamus and pituitary [115]. These results 
indicate the probable site of interaction between the UII and AVT/IT systems within the POA, 
hypothalamus and pituitary. In the European flounder, it was found that both UII and AVT 
are engaged in the hyper- and hypo-osmotic stress In the European flounder [119, 124, 125]. 

However, to the best of our knowledge, the influence of UII on AVT and IT secretion in tele-
osts has been studied only by Kalamarz-Kubiak and coworkers [130]. The aim of this study 
was to determine whether AVT and IT release from nerve endings is affected by UII in the 
pituitary of gilthead sea bream. Three-year-old gilthead sea bream of both sexes were used 
for in vitro study. Primary cultures of pituitary cells were prepared by a modification of the 
method described by Levavi-Sivan et al. [87, 88]. Pituitary cells were cultured with medium 
supplemented with UII (10−12, 10−10 and 10−8 M). The doses of UII used in this in vitro study 
were determined based on the literature, considering its concentration in different fish tissues 
[30, 125, 131]. After 6, 24 and 48 hours of incubation, the media were collected and stored at 
−70°C until HPLC analysis of AVT and IT. The results of this in vitro study indicate that UII 
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inhibits AVT secretion in pituitary cell culture. It has been shown that AVT is an antidiuretic 
hormone reducing urine production in fish [132, 133]. Thus, by inhibiting AVT secretion, UII 
may have a diuretic effect. Furthermore, it is known that UII administrated in vivo increases 

renal blood flow and glomerular filtration rate and consequently enhances diuresis and natri-
uresis in the rat [134, 135]. This mammalian paradigm could be helpful in the interpretation 
of fish data. The in vitro study in S. aurata indicated that UII’s strong inhibitory action on AVT 
release from nerve endings in the pituitary is independent of tested doses and exposure time. 
What is more, after 24 hours of incubation, AVT inhibition was lower and persisted to the end 
of culture. This disinhibition of AVT secretion after a long time of incubation may indicate the 
desensitization of UII receptors as it was proved in human cell lines [136, 137]. In contrast to 
AVT, UII significantly increased IT release from nerve endings after 24 hours of culture. This 
stimulatory effect of UII appeared to be independent of tested doses. In mammals, UII is a 
naturally occurring somatostatin analog sharing some functional similarities with somatosta-
tin [113, 138]. The results in fish are consistent with data in mammals that show that the intra-
cerebroventricular somatostatin infusion significantly increases plasma OT secretion in virgin 
and pregnant rats [139]. Moreover, the opposite response of AVT and IT to UII exposure in 
pituitary cell culture showed an independent regulation of nonapeptide secretion. This idea 
was documented previously in rainbow trout (Oncorhynchus mykiss) [47, 112, 140].

From those results, the following conclusions were formulated:

• UII affects AVT and IT release from nerve endings in the pituitary of gilthead sea bream.

• UII inhibits AVT release and stimulates release of IT in S. aurata pituitary cell culture.

• UII together with AVT and IT may control response to different salinities in fish.

The hormonal interactions between UII and AVT and IT are presented in Figure 2.

3. What is the mechanism of cortisol action in fish?

It has been established that cortisol has both a corticosteroid and a mineralocorticoid func-
tion in fish [1]. An involvement of both classes of corticoid receptors (CRs), mineralocorticoid 
(MRs) and glucocorticoid (GRs), was widely demonstrated during adaptation to different 
salinities and osmoregulatory stress [141–144], fish reproduction [145, 146] and expression of 
social behavior [147–149]. It is worth noting that both MRs and GRs were engaged in tilapia’s 
response to handling stress [150] and expressed in rainbow trout organs with slow-release 
cortisol implants [151].

Glucocorticoid and mineralocorticoid receptors are involved in the genomic and nongenomic 
mechanisms of cortisol action in fish [149, 152, 153]. Corticosteroid-intracellular receptor com-
plex binds to the nuclear glucocorticoid response elements (GRE) to modulate transcription 
and protein synthesis (genomic pathway) [13, 25, 154]. The nongenomic effect is mediated 
through either nonspecific physicochemical interaction with the plasma membrane [155] or 

specific membrane receptors such as the G protein–coupled receptor (GPCR) [156] or the 
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plasma membrane-bound form of GR (mGRs) (nongenomic pathway) [157]. (“Nongenomic 
steroid action is presented in accordance with Mannheim classification [155].”)

3.1. What method can investigate the mechanism of action of cortisol?

Recently, there is growing concern about effects of farming and environmental pollution on 
fish well-being; thus, there is the need for new tests to study the endocrine responses in fish 
[158]. Furthermore, fish are increasingly being used as substitutes for mammalian model 
organisms in fundamental research and as a research model for chemical testing. Hence, 
research must remain focused on the discovery of new alternative techniques or on an adap-
tation of methods established for mammalian models for use as fish models [159].

The mechanism presented in this section requires a method that allows monitoring the 
dynamic hormone secretion and registering even small and short-term fluctuations in their 
release. Only perfusion culture method allows detailed examination of changes in the release 
of hormones while ensuring optimal culture conditions. Kalamarz-Kubiak et al. [160] devel-
oped a new procedure for the unique gradient perfusion technique (3D) of brain and pitu-
itary explants collected from three-spined stickleback (Gasterosteus aculeatus) and round goby 
(Neogobius melanostomus). So far, organ perfusion methods have not been often used in fish 
for lack of suitable techniques. Simple organ perfusion systems were applied in pituitary 
[161–165] and pineal gland [166–168] studies. However, an innovative system for organ per-
fusion (MINUCELLS and MINUTISSUE Vertriebs GmbH, Germany), proposed by Minuth in 
early 1990s, gives more options for this kind of technique. This gradient perfusion technique 
meets the requirements for studies of nervous tissues, blood-brain barrier, retina and blood-
retina, regeneration of blood vessels, skin renewal, bone and muscular tissue in mammals 
[169]. Thus, Kalamarz-Kubiak et al. [160] presented the first application of the MINUCELLS 
and MINUTISSUE tissue engineering technique for perfusion of fish brain tissues. In this 

Figure 2. The effect of cortisol, urotensin I and urotensin II on arginine vasotocin and isotocin secretion in gilthead sea 
bream.
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study, tissues were placed on the membrane between rings of tissue carriers inside the gra-
dient container. A specific construction of this container facilitated the uniform supply of 
medium to the luminal and basal sides to avoid the dead space. The methods of medium 
transport into the gradient container were tested using three perfusion sets. Set 1 and set 2 

allow the supply of one medium from the top without aeration or with aeration, respectively. 
Set 3 allows the supply of one or two aerated media from the top and bottom, simultaneously. 
Moreover, set 1 was used to determine the time required to achieve a stable basal level of AVT 
and IT release during tissue explant perfusion. The stable basal level of AVT and IT release 
was achieved between 60 and 80 minutes of perfusion for both fish species. Set 2 equipped 
with gas exchange module was aerated by an air pump (0.3% CO

2
) or a mixture of 95% O

2
 

and 5% CO
2
 at a pressure of 127.51 mmHg. The results indicated that only usage of a mixture 

of 95% O
2
 and 5% CO

2
 provided the proper conditions for perfusion and tissue reactivity in 

the medium supplemented with high K+ concentration (60 mM KCl) (Figure 3). In order to 
optimize the conditions of perfusion, the various pressure of gas mixture (127.51, 255.02 and 
315.03 mmHg at the outlet of the gas bottle) was tested. The gas pressure of 127.51 mmHg 
provides optimal conditions for perfusion in the set 2 with one gas exchange module. To 
ensure the same pressure conditions in set 3, with two gas exchange modules, higher pressure 
of 315.03 mmHg at the outlet of the gas bottle must be applied. Concentrations of AVT and 
IT in the media collected after perfusion were determined by HPLC with fluorescence and 
UV detection according to the modified procedure by Gozdowska et al. [170]. Although the 
presented procedure has been elaborated for studies of AVT and IT in fish explants, after only 
minor modification, if any, it can serve many other purposes. From those results, the follow-
ing conclusions were drawn and the recommendations were formulated:

• Set 1 is preferable only for short-term research.

• Set 2, where the medium is aerated with a mixture of 95% O
2
 and 5% CO

2
 at a pressure of 

127.51 mmHg, is recommended for long-term studies.

• Set 3 is also preferable for long-term studies but requires aeration with a mixture of 95% O
2
 

and 5% CO
2
 at a pressure of 315.03 mmHg.

• Sets 1 and 2 allow the supply of only one type of medium at the same time to the gradient 
perfusion container. Set 3 allows the transport of two different media from the top and bot-
tom to the perfusion container at the same time.

The schemes of sets used for gradient perfusion and graphs of AVT and IT release during tests 
of those sets are presented in Figure 3.

3.2. How does cortisol affect the release of AVT and IT and what kind of pathway, 
genomic or nongenomic, is involved in this regulation?

In teleost, two different GR coding genes (GR1 and GR2) and one MR gene were found [171, 
172]. The expression of GR1, GR2 and MR genes, as well as the immunoreactivity of GRs 
(GRs-ir), was noted in most of the magno- and parvocellular neurons of the preoptic nucleus 
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(NPO), known for synthesizing AVT, IT and CRF, in tilapia (Oreochromis mossambicus), rain-
bow trout and common carp (Cyprinus carpio) [173–175]. In the pituitary, GR1, GR2 and MR 
mRNA expression and GRs-ir have localized in pars distalis and pars intermedia where AVT-
ergic fibers give their projections [173–175].

As it was mentioned earlier, AVT and IT are engaged in physiological stress response and 
seem to be important components of stress axis in fish [33, 47, 61]. In gilthead sea bream, 
the application of cortisol implants in this species enhanced the hypothalamic expression 
of provasotocin mRNA and pituitary AVT content [85]. What is more, an in vitro study indi-
cated that cortisol affects AVT and IT release from the nerve terminalis in S. aurata pituitary 
[86]. However, to the best of the authors’ knowledge, the mechanism of cortisol action on 
AVT and IT release in teleosts has been studied only by Kalamarz-Kubiak and coworkers 
[176]. This in vitro perfusion study was performed to determine which class of receptors, 
GRs or MRs, participated in cortisol regulation of AVT and IT release from the hypotha-
lamic-pituitary (H-P) complex of round goby (Neogobius melanostomus). Moreover, this in vitro 

study allowed to determine which pathways, genomic or nongenomic, are engaged in the 
aforementioned process. Adult round gobies of both sexes were used in this in vitro study. 

Figure 3. The schemes of culture sets used for gradient perfusion. Components of perfusion culture set: (1) storage 
medium bottles, (2) peristaltic pumps, (3) connecting fittings, (4) gas exchange modules, (5) gradient culture container, 
(6) sampling vials. The release of arginine vasotocin and isotocin during tests of these sets (graphs).
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Hypothalamic-pituitary explants were perfused using set 2 of gradient perfusion technique 
(for details see Section 3.2). The explants were perfused with medium supplemented with 
different treatments (cortisol, mifepristone [RU486], spironolactone [C03DA01] and actino-
mycin D). Mifepristone is a glucocorticoid receptor antagonist, which affects a wide range of 
physiological and behavioral traits (metabolism, reproduction, osmotic stress, vocalizations 
and aggression in fish) [13, 177]. Spironolactone is a mineralocorticoid receptor antagonist, 
which blocks the ion uptake in osmoregulation [142, 152] and reduces aggression during 
social interaction [149, 178]. Actinomycin D is a transcription inhibitor, which binds DNA 
at the transcription initiation complex and prevents elongation by RNA polymerase [179–

181]. Cortisol was tested at three doses (1.4 × 10−7 M, 2.8 × 10−7 M and 0.4 × 10−6 M). Cortisol 
doses were selected based on our previous experiments and literature [9, 86, 182–185]. The 
doses of inhibitors were selected on the basis of available data [186–190]. Finally, cortisol at 
0.4 × 10−6 M dose in combination with RU486 (0.3 × 10−6 M) or C03DA01 (0.36 × 10−6 M) or 
actinomycin D (1 × 10−7 M) was used in experiments. Concentrations of AVT and IT in the 
media collected after perfusion were determined by HPLC with fluorescence and UV detec-
tion according to the modified procedure by Gozdowska et al. [170]. In this study, cortisol 
showed a dose-dependent stimulatory effect on AVT release from H-P explants similar to the 
one presented previously in pituitary cells of S. aurata. In rats, corticosterone also affected 
AVP release from hypothalamic slices containing paraventricular and supraoptic nuclei in a 
dose-dependent manner [191]. The results presented by Kalamarz-Kubiak et al. [176] indicate 

that cortisol, most likely acting through GRs, stimulates the release of AVT from the H-P com-
plex of round goby. It has been suggested that cortisol preferentially binds to GR2 in teleosts, 
in response to low or mild stress, and to both GR2 and GR1 in response to extreme stress 
[192, 193]. Therefore, it is probable that both isoforms of GRs are engaged in cortisol action on 
AVT release from the H-P complex of round goby [176]. However, a biphasic AVT response 
may depict an initial release of mature AVT from the pool stored in the secretory granules, 
followed by the release of newly matured AVT molecules just after their dissociation from 
the noncovalent complex. Cortisol may exert biphasic effects on the release of inflammatory 
mediators, e.g., the plasma macrophage migration inhibitory factor and the tumor necrosis 
factor-α, interleukin-6 and acute-phase proteins in vertebrates, including fish [194, 195]. The 
results of presented in vitro study indicate that cortisol affects AVT release through GRs via 
genomic and nongenomic pathways in round goby. The biphasic response of AVT to cortisol 
was hindered by both the GR antagonist RU486 and the transcription inhibitor actinomycin 
D [176]. In the marine medaka (Oryzias dancena), RU486 blocked the transcriptional activity 
of both GR isoforms in response to cortisol action [193]. However, RU486 blocks some rapid, 
nongenomic effects of cortisol mediated via plasma membrane receptors in fish [181, 196, 
197]. Probable mGRs are engaged in the first phase of the biphasic AVT response to cortisol in 
Neogobius melanostomus. Alternatively, cortisol may demonstrate nongenomic action through 
specific membrane receptors such as the GPCRs or without receptor engagement through the 
nonspecific action that alters the plasma membrane’s physicochemical properties, as it has 
been shown in mammals [155] and fish [153, 180]. It is worth noting that in higher vertebrates 
and fish, the mechanism of corticosteroid action may integrate nongenomic and genomic 
pathways [25, 156, 198]. For instance, in rodents, such integration between nongenomic and 
genomic mechanisms has been shown in the neurons of the amygdala, hippocampus and 
cortex in response to stress and the administration of corticosterone (“for a review: [198]”).
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In results presented by Kalamarz-Kubiak et al. [176], the stimulation of IT secretion by cor-
tisol appeared within 20 minutes and persisted for the next 100 minutes, similarly as in the 
case of AVT, but did not disclose a biphasic character. The nongenomic, stimulatory effect of 
cortisol in vivo on Na+ -K+ and Ca2+ -ATPase activity in gills of tilapia occurred after 30 minutes 
and persisted for 120 minutes. [180]. Similar observations, i.e., fast and long-lasting effects of 
corticosteroids in vitro on the excitability of different brain areas, were noted in rodents (“for a 
review: [198]”). In round goby, cortisol probably influenced IT release by GRs via the nonge-
nomic pathway because cortisol action was inhibited by RU486, but not by actinomycin D. In 
contrast to the data in round goby, in vitro study of pituitary cells in S. aurata showed that 
cortisol decreased the IT release from nerve endings [86]. It should be noted that gilthead sea 
breams approached the reproductive season, while round gobies were out of their spawning 
season. Therefore, the IT responses to cortisol may be dependent on their physiological status 
and/or differ in various species.

In fish, the cortisol effects are mediated through both the GRs but also through MRs [1]. 

However, the in vitro study suggests that cortisol effect on AVT and IT release from the H-P 
complex in round goby is not mediated by MRs because the MRs’ antagonist, C03DA01, does 
not hinder AVT and IT release caused by cortisol.

Figure 4. The mechanism of cortisol action on arginine vasotocin and isotocin release in round goby.
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Outside the scope of this study, an opposite effect, i.e., the stimulation of cortisol secretion by 
AVT, should also be considered. There is evidence that AVT neurons innervate corticotrophic 
cells in green molly (Poecilia latipinna) pituitary [199] and that AVT synergizes with CRH/CRF 
(corticotrophin-releasing hormone/factor) to promote ACTH secretion from the pituitary in 
rainbow trout [66]. Consequently, AVT can stimulate cortisol release, and thus relationships 
between AVT and cortisol may be more complicated.

From those data, the following conclusions were formulated:

• Cortisol affects AVT and IT secretion from the H-P complex in round goby.

• Cortisol stimulates the release of both nonapeptides. However, the effect of cortisol on AVT 
release is dose-dependent.

• Cortisol has biphasic effects on the release of AVT, while this effect on IT is monophasic.

• GRs but not MRs  are involved in cortisol regulation of AVT and IT release.

• In the case of AVT, both genomic and nongenomic pathways mediate the effect of cortisol.

• In the case of IT, only the nongenomic pathway mediates the effect of cortisol.

The mechanism of cortisol action on AVT and IT release in round goby are presented in 
Figure 4.

4. Summary

The purpose of this chapter was to gain new knowledge on the involvement of cortisol and 
other indicators of fish welfare in the regulation of stress response in fish. The basis of the 
subject was to assume that both nonapeptides and urotensins are essential components of 
stress response in fish. So far, nobody has attempted to check if there is a functional rela-
tionship between cortisol and both nonapeptides and urotensins using in vitro technique of 
cell culture and gradient perfusion. For the first time, MINUCELLS and MINUTISSUE tissue 
engineering technique (3D) has been applied for the gradient perfusion of fish brain and pitu-
itary by Kalamarz-Kubiak et al. [160]. Although the presented procedure has been elaborated 
for studies of AVT and IT in fish explants, after only minor modification, if any, it can serve 
many other purposes. It has been confirmed that AVT and IT are essential components of 
stress response in fish. Presented results showed an independent regulation of nonapeptide 
secretion. Cortisol affects AVT and IT secretion from nerve endings in gilthead sea bream 
and round goby. Therefore, the cortisol effect may be different in various species and/or 
dependent on their physiological status. S. aurata is a very interesting species for this type of 
research. In gilthead sea bream, unlike other teleosts, CRF is not a releasing factor for ACTH, 
because there are no anatomical connections between CRF perikarya and ACTH cells. It has 
been investigated that urotensin I instead of CRF may contribute to the regulation of HPI 
axis and regulate AVT. In turn, urotensin II together with AVT and IT may control response 
to different salinities in fish. The results confirm that urotensins together with nonapeptides 
are involved in the regulation of stress response in fish. Here, the first feasible mechanism of 
cortisol action on AVT and IT release from the H-P complex has been presented in round goby. 
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The different mechanisms have been pointed out, where GRs are involved, whereas MRs are 
not. In the case of AVT, both genomic and nongenomic pathways mediate the effect of corti-
sol. In the case of IT, only the nongenomic pathway mediates the effect of cortisol. Therefore, 
AVT and IT seem to be good candidates for welfare indicators. Probably, the examination of 
cortisol in relation to other welfare indicators in the regulation of stress response will allow 
the separation of (physiological) stress from (psychological) distress, the separation of chronic 
stress from acclimation and the interactions between feelings, mood and behavior.

In conclusion, it is worth to quote the statement of Victoria Braithwaite [200], about the pain 
and stress in fish, for The Los Angeles Times dated October 8, 2006: “Their brains are not as 
different from ours as we once thought. Although less anatomically complex than our own 
brain, the function of two of their forebrain areas is very similar to the mammalian amygdala 
and hippocampus – areas associated with emotion, learning and memory. If these regions are 
damaged in fish, their learning and emotional capacities are impaired; they can no longer find 
their way through mazes, and they lose their sense of fear”.
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