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Abstract

In this chapter, a review of the Weibull probability distribution, probability ranking,
and the Weibull graphical estimation technique is presented. A review of single-stress
and multiple-stress life models of electrical insulation is also introduced. The chapter
also describes the graphical, linear and multiple linear regression techniques used in
estimating the parameters of the aging models. The application of maximum likeli-
hood estimation technique for estimating the parameters of combined life models of
electrical insulation is illustrated.

Keywords: life models, aging, insulation, Weibull probability, maximum likelihood
estimation, least square estimation

1. Introduction

A lifetime analysis of electrical insulation failure is an approach that relies on statistical

analysis of data that are attributed to the breakdown of the electrical insulation due to the

presence of degrading stresses, such as electrical, thermal and other environmental factors. The

lifetime analysis can provide statistical information about the electrical insulation such as

lifetime characteristics, probability of failures, lifetime percentiles or any time percentile under

normal operating conditions. In this approach, the insulation life is determined by measuring

the time-to-breakdown of identical specimens of the solid insulation subjected to life tests [1–

5]. Obtaining life data under normal operating conditions is a very time consuming and costly

process, rendering it impractical. Besides, it is important to observe modes of failure of the

electrical insulation to better understand the prevailing mechanisms of breakdown. Conse-

quently, electrical insulation design engineers and material scientists devised methods to force

the insulation to fail in shorter periods of time. These methods seek to accelerate the failures of

insulation samples by applying stresses at levels that exceed the levels that the insulation will

encounter under normal operating service conditions. Acceleration is accomplished by testing
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the insulation (specimen or device) using single or combined high stress levels which could

involve electrical, thermal or environmental stresses for either short periods (few seconds or

minutes) or long periods (few hours or days) [6]. The accelerated test data are then considered

as a base for extrapolation to obtain an estimate of the lifetime of the insulation when the

device or material is operated at normal operating conditions for relatively long time periods

(decades) of years [7–27].

Times-to-breakdown obtained by accelerated life (aging) tests are analyzed using an underly-

ing lifetime probability distribution. The probability distribution can, correspondingly, be used

to make predictions and estimates of lifetime measures of interest at the particular stress level.

This is accomplished by projecting or mapping lifetime measures from high stress level to a

service level. It can be assumed that there is some model (or function), which can be described

mathematically, that maps the lifetime estimate from the high stress level to the service level,

and can be as simple as possible (i.e. linear, exponential, etc.) [28–37]. The parameters of the

lifetime models can be estimated by combining the proposed life models with the Weibull

probability distribution function. Maximum likelihood estimation can be used to estimate the

parameters of the combined Weibull-electrical-thermal models using experimental data

obtained by measuring time-to-breakdown of the insulation.

2. Weibull probability distribution

The Weibull distribution has been widely recognized as the most common distribution in

breakdown testing of solid dielectric insulation and in reliability studies [28–31, 37–40]. Its

popularity is attributed to the many shapes it attains for various values of the shape parameter

(β). It can model a large variety of data and life characteristics. The distribution also has the

important properties of flexibility and a closed form solution for the integral of the Weibull

probability density function (pdf). This latter property is important for easy determination of

the Weibull cumulative probability function (cdf) and its corresponding parameters. There are

three forms of the Weibull cumulative probability distribution functions, namely, the three-

parameter Weibull distribution, the two-parameter Weibull distribution and the mixed

Weibull distribution. In life data analysis, the two-dimensional Weibull distribution is often

used to describe the time-to-breakdown of solid dielectric insulation with voltage, as it is a

convenient way for deriving the V-t characteristic or life models. The two-parameter Weibull

pdf and cdf distributions are defined as:

f t;α;β
� �

¼

β

α

t

α

� �β�1

exp �

t

α

� �β
( )

F t;α;β
� �

¼ 1� exp �

t

α

� �β
( )

t ≥ 0

F t;α;β
� �

¼ 0 t < 0

(1)

where t is the time-to-breakdown; α is the scale parameter, α > 0; β: is the shape parameter, β > 0.
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F(t) represents the proportion of samples initially tested that will fail by time t. The scale

parameter (α) represents the time required for 63.2% of the tested samples to fail. The shape

parameter (β), or slope of the Weibull distribution, is a measure of the dispersion of the time-to-

breakdown. The unit of α is time, while β is dimensionless.

2.1. Specific characteristics of the Weibull probability distribution

The Weibull pdf and/or cdf distributions are characterized by the parameters α and β. The scale

parameter α is usually a function of the applied voltage when the time is a random variable. A

change in the scale parameter α has the same effect on the distribution as a change of the

abscissa scale. If α is increased, while β is kept the same, the distribution gets stretched out to

the right and its height decreases, while maintaining its shape and location as shown in

Figure 1 [30]. On the other hand, if α is decreased, while β is kept the same, the distribution

gets pushed in toward the left (i.e. toward its beginning, or 0) and its height increases. For β < 1

the distribution has the reversed J shape. If β = 1, the Weibull distribution becomes a two-

parameter exponential distribution as shown in Figure 2. For β = 2, it becomes the Rayleigh

distribution. For β <2.6, the Weibull pdf is positively skewed (has a right tail). For 2.6 < β < 3.7, its

coefficient of skewness approaches zero (no tail); consequently, it may approximate the normal

pdf, and for β >3.7, it is negatively skewed (left tail) [30].

An interpretation of the shape parameter indicates that if β >1, the dielectric fails as a result of

wear and the failure rate increases with time. In such a case, the failure rate increases with

time. If β <1, the failure rate decreases with time. When such behavior is encountered, this

indicates that the sample has some units with technical defects.

Figure 1. Effect of the scale parameter on Weibull probability distribution.
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2.2. Estimating the cumulative probability of failure data

The cumulative probability of failure F(ti) is estimated by a value Pi, based on the order statistic

rank i and the sample size n. A variety of equations for approximating F(ti) has been suggested

for the plotting position Pi [28, 29]:

1. Mean rank approximation

Pi ¼ E F tið Þf g ¼
i

nþ 1
(2)

2. Median rank approximation

Pi ¼ median of F tið Þ ¼
i� 0:3

nþ 0:4
(3)

3. Mode rank approximation

Pi ¼ mode F tið Þf g ¼
i� 1

n� 1
(4)

4. Sample cumulative distribution function (cdf) approximation

Pi ¼ sample cdf ¼
i� 0:5

n
(5)

The choice of the rank approximation is generally immaterial except when the sample size is

small. However, both the mean and median rank approximations are most widely used. In this

Figure 2. Effect of the shape parameter on the Weibull probability distribution.

Electric Field234



work, the median rank approximation is used in estimating the probability of failure. Note that

the median rank approximation is also known as Benard’s approximation.

2.3. Parameter estimation of Weibull distribution

The Weibull distribution parameters α and β are the variables that govern the characteristics of

the Weibull pdf. Once the Weibull distribution has been selected to represent the failure data,

the associated parameters can be determined from the experimental data. Weibull parameters

can be estimated graphically on a probability plotting paper [28–31] or analytically using

either Least Squares (LS) or Maximum Likelihood (ML) estimation techniques. An overview

of these techniques [1–4] will be presented next.

2.4. Graphical technique

A graphical technique is the simplest method for estimating the Weibull parameters using

probability plotting [29, 38]. The breakdown results at each individual stress level are plotted

on a specially constructed probability plotting paper (Weibull Probability Paper) as shown in

Figure 3. A probability plotting looks at the cdf of the Weibull distribution and attempts to

linearize it by employing a Weibull probability paper. The ordinate axis has a nonlinear scale

corresponding to the cumulative probability of failure. The abscissa has a log scale of the time-

to-breakdown. To plot the data, the data are ordered from smallest to largest and then a

cumulative probability of breakdown to each point is assigned. If the plotted data fit a straight

line, the slope of the line can be obtained and thus the shape parameter β can be obtained [14].

The scale parameter α can be determined by finding the time-to-breakdown corresponding to

Figure 3. Cumulative probability distribution with confidence interval plotted on Weibull paper.
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a cumulative probability of 63.2%. Using this simple, but time consuming approach, the

parameters of the Weibull distribution can be determined. This procedure is repeated for each

stress level of the accelerated aging tests.

Estimating the parameters of the Weibull distribution by a graphical technique using a proba-

bility plotting method has some shortfalls. A manual probability plotting is not always consis-

tent in the results. Plotting a straight line through a set of points is a subjective procedure; it

differs from person to person. In addition, the probability plot must be constructed for each

stress level. This, as a result, takes tremendous time and effort to plot the data. Furthermore,

sufficient failures must be observed at each stress level, which is not always possible.

2.5. Least squares technique (LS)

The least squares technique is a linear regression estimation technique that fits a straight line to

a set of data points, in an attempt to estimate the parameters associated with the straight lines.

The parameters are estimated such that the sum of the squares of the vertical deviations from

the points to the line is minimized according to [1–4]

J ¼
XN

i¼1

ea þ ebxi � yi

� �2
¼ min ea;

eb
� �XN

i¼1

ea þ ebxi � yi

� �2
(6)

where eaand ebare the LS estimates of a and b, and N is the number of data points. To obtain ea
and eb, the performance index J is differentiated with respect to a and b as shown below.

∂J

∂ea ¼ 2
XN

i¼1

ea þ ebxi � yi

� �
(7)

∂J

∂eb
¼ 2

XN

i¼1

ea þ ebxi � yi

� �
xi (8)

Setting Eqs. (7) and (8) equal to zero yields

XN

i¼1

ea þ ebxi � yi

� �
¼

XN

i¼1

eyi � yi
� �

¼ �

XN

i¼1

yi � eyi
� �

¼ 0 (9)

XN

i¼1

aþ bxi � yi
� �

xi ¼
XN

i¼1

eyi � yi
� �

xi ¼ �

XN

i¼1

yi � eyi
� �

xi ¼ 0 (10)

Solving Eqs. (9) and (10) simultaneously yields

ea ¼

PN

i¼1

yi

N
� eb

PN

i¼1

xi

N
(11)
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and

eb ¼

PN

i¼1

xiyi �

PN
i¼1

xi
PN
i¼1

yi

N

PN

i¼1

x2i �

PN
i¼1

xi

� �2

N

(12)

The least squares estimation technique is good for functions that can be linearized. Its calcula-

tions are easy and straightforward, and the correlation coefficient provides a good measure of

the goodness-of-fit of the chosen distribution. However, for some complex distributions, it is

difficult and sometimes impossible to implement.

2.6. Maximum likelihood estimation (MLE)

The maximum likelihood parameter estimation seeks to determine the parameters that maxi-

mize the probability (likelihood) of the failure data. Statistically, the MLE is considered to be

more robust and yields estimators with good statistical properties. The MLE has the following

statistical properties:

1. The ML estimators are consistent and asymptotically efficient.

2. The probability distribution of the estimators is asymptotically normal.

3. For small sample sizes, the ML estimators are considered to be more precise than those

obtained by LS method. Moreover, the ML estimators can converge into a solution even

with only one failure.

4. The MLE technique applies to most models and to different types of data.

5. The ML estimates are unique, and as the size of the sample increases, the estimates

statistically approach the true values of the population.

The theory of the MLE method is described as follows: Let t be a continuous random variable

representing the time-to-breakdown and characterized by the two-parameter Weibull distri-

bution with pdf:

f t;α;β
� �

¼

β

α

� �
t

α

� �β�1

exp �

t

α

� �β
" #

(13)

where α and β are unknown constant parameters which need to be estimated. For an

experiment with N independent observations, t1, t2, …, tN in a given sample, then the likeli-

hood function associated with this sample is the joint density of the N random variables, and

thus is a function of the unknown Weibull parameters (α, β). The likelihood function is

defined by [1–4]:
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L t1; t2;⋯; tNjeα; eβ
� �

¼ L ¼
YN

i¼1

f ti; eα; eβ
� �

¼
YN

i¼1

eβ
eα

ti
eα

� �~β�1

exp �
ti
eα

� �~β
" #

(14)

The logarithmic likelihood function is given by

Λ ¼ lnL ¼
XN

i¼1

ln f ti; eα; eβ
� �

¼
XN

i¼1

ln
eβ
eα

ti
eα

� �~β�1

exp �
ti
eα

� �~β
 !" #

(15)

The parameter estimates eα; eβ
� �

are obtained by maximizing L or Λ which is much easier to

work with than L. The ML estimators are determined by taking the partial derivatives of Λ

with respect to eα and eβ set them to zero, that is, ∂Λ

∂eα ¼ 0, ∂Λ

∂
eβ
¼ 0, where,

∂Λ

∂eβ
¼
XN

i¼1

1

eβ
þ
XN

i¼1

ln
ti
eα

� �
�
XN

i¼1

ti
eα

� �β

ln
ti
eα

� �� �
(16)

∂Λ

∂eα ¼ �
XN

i¼1

eβ
eα þ

eβ
eα
XN

i¼1

ln
ti
eα

� �~β

(17)

The resulting equations give the best estimates eβ and eα.

1

eβ
¼ �

1

N

XN

i¼1

ln ti þ
XN

i¼1

tið Þ
~β ln ti

PN
i¼1 tið Þ

~β
(18)

eα ¼
1

N

XN

i¼1
tið Þ

~βÞ
� i 1=~βÞð

�
(19)

Eq. (18) is written in terms of eβ only, and can only be solved by an iterative technique, such as the

Newton-Raphson iterative technique. Once eβ, is obtained, eα can be determined using Eq. (19).

Although the methodology for the MLE is simple, the implementation is mathematically

intense. The present high-speed computers, however, have made the obstacles of the mathe-

matical complexity of the MLE an easy process. A specialized statistical commercial package

Weibull++ is used throughout this work to find the ML estimates of the Weibull distribution

parameters [39].

2.7. Failure time percentiles

Once the Weibull distribution parameters are obtained, the failure time percentiles, tp, can be

derived from Eq. (2) as follows (by substituting F(t; α, β) = p)
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tp ¼ eα � ln 1� pð Þ½ �1=
~β (20)

where tp is the time-to-breakdown for which a sample will fail with a probability of failure p, and

α ¼ L V;T; fð Þ is function of the applied stresses, (e.g. voltage, temperature, frequency, etc.). If

p = 0.632, then tp = α, the scale parameter, or the life by which 63.2% of the samples will fail.

Likewise, if p = 0.50, then tp=�t, the median life, or the life by which half of the samples will fail.

3. Life models

There are two approaches for studying the electrical breakdown and estimating the insulation

lifetimes (under normal operating conditions) of polymeric insulating materials. One approach

is based on phenomenological studies which require a complete understanding of the break-

down mechanism. This approach requires physical and/or chemical tests to be performed on

the insulating material that may yield to the development of mathematical models functional

with the lifetime. An example of this is relating the lifetime of the insulation to the length of

trees formed in the insulation bulk as a result of treeing mechanism [40]. The other widely

known approach relies on a statistical analysis of failures that are attributed to the breakdown

of the electrical insulation due to the presence of degrading stresses, such as electrical, thermal,

and other environmental factors [6–36]. In this approach, the insulation life is determined by

measuring the time-to-breakdown of identical specimens of the solid insulation subject to life

tests. Life tests, however, show that the times-to-breakdown are widely variable. This variation

is best modeled by the Weibull probability distribution.

Conducting life tests at realistic working stresses is not possible due to the time constraint,

given that most electrical insulation is expected to serve for several decades. Instead, break-

down data are obtained, without paying much attention to the details of the breakdown

mechanism, by conducting accelerated life (aging) tests in laboratory experiments so that the

insulation life is severely reduced [41, 42]. The main goal of life tests is to establish mathemat-

ical models for the aging process and the stresses causing it [32–36]. The constants of these

models need to be estimated from life tests where the lifetimes at a variety of stress levels are

measured. Once the constants are estimated, the life at any particular stress including normal

operating conditions can, in principle, be estimated.

3.1. Single-stress life models

Life models of single stress include the inverse power law and exponential law models for an

electrical stress, and the Arrhenius model for a thermal stress [32–34].

3.1.1. Life models for electrical stresses

An electrical stress is considered as one of the main factors causing deterioration of electrical

insulation. There are two empirical models that relate the test of an electrical stress to the
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time-to-breakdown. One is the inverse power law model, and the second is the exponential

law model. The parameters of both models are obtained from experimental data taken at

several different high voltage levels with other conditions unchanged. The electrical life

models mathematically describe the aging in a solid dielectric insulation that experiences an

electric stress [43]. The life models do not characterize the exact type of aging mechanism

that takes place. The life models are totally empirical and have no physical meaning other

than defining the degradation rate as power or exponential. However, the models have

proven to fit reasonably well with experimental data.

3.1.1.1. Inverse power law

The inverse power law (IPL) model is one of the most frequently used in the aging studies

under an electrical stress. The inverse power law model is given by:

L Vð Þ ¼ k V�n (21)

where L, the time-to-breakdown, is usually a Weibull scale parameter α at 63.2% probability, or

any other percentile, V is the applied voltage, and k, n, are constants to be determined for the

specific tested material or device. The inverse power law is considered valid if the data being

plotted on a log–log graph fits a straight line [44].

3.1.1.2. Exponential law

The exponential law is also commonly used for lifetime calculations. The exponential model is

given by:

L Vð Þ ¼ c exp �bVð Þ (22)

where L is the time-to-breakdown, V is the applied voltage, and c and b are constants to be

determined from the experimental data. The exponential model is verified by plotting the data

points on a semi-log graph. The model is considered valid if a straight line is obtained [44].

3.1.2. Life model for a thermal stress

The life of electrical insulation is seriously affected by a thermal stress. This effect can only be

recognized by a thermal life test. The life of electrical insulation under a thermal stress is

empirically expressed by the well-known Arrhenius equation. This equation describes the

thermal aging of materials and shows the dependency of the chemical reaction rate as a

function of the temperature. The Arrhenius equation is given by [43]:

L Tð Þ ¼ A exp
B

T

� �

(23)

where L is the time-to-breakdown, T is the absolute temperature, and A, B are constants to be

determined experimentally.
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3.2. Multi-stress life models

Multi-stress Life models were developed to predict the life of the insulation under combined

electrical and thermal stresses. In general these models are limited to the common electrical

and thermal aging stresses acting simultaneously [43]. Mainly, some models have empirical

nature such Simoni’s, Ramu’s, and Fallou’s [11, 12, 32–36]. These models account for the

interactions of electrical and thermal stresses by using a multiplicative law, in which the life

under a combined stress is related to the product of the single-stress lives. One possible

formula for this interaction can be manifested as the multiplication of the IPL model and

Arrhenius relationship, which is given by:

L V;Tð Þ ¼ KV
�n exp

B

T

� �

(24)

which is considered to be the basis for both Simoni’s and Ramu’s electrical-thermal life models.

Alternatively, the electrical exponential model is associated with the Arrhenius relationship.

This can be expressed as:

L V;Tð Þ ¼ C exp AV þ
B

T

� �

(25)

which constitutes the Fallou’s electrical-thermal life model.

Another probabilistic life model based on IPL was presented by Montanari et al. [34]. A brief

overview of the above mentioned electrical-thermal life models of Simoni, Ramu, Fallou, and the

probabilistic model by Montanari will be presented. The above models were developed for a

relatively simple dielectric system involving polymer films or slabs. A variety of multi-stress life

tests have been also developed for more complex insulation systems, for example, cables and

rotatingmachines stator windings [16, 17]. However, lifetimemodels as a function of two ormore

stresses are rarely derived due to excessive cost and time needed for collecting the failure data.

Regarding the frequency as an aging factor little research has been published in developing

combined electrical-thermal-frequency life models. In some works, high frequency sinusoidal

voltage was applied [41, 42]. The results of these works show that the frequency as an aging

factor that causes insulation deterioration. The effect of the frequency is modeled by relating

the variation of the parameters of the life model to the frequency [41].

3.2.1. Simoni’s model

According to the Simoni’s model, the insulation life, in relative terms with respect to a refer-

ence life determined by the absence of an electrical stress and at low temperature, is given by:

L V;Tð Þ ¼ to
V

Vo

� 	�n

exp �BΔ
1

T

� �� �

(26)

where to is the time-to-breakdown at room temperature and V = Vo, Δ
1
T

� �

¼ 1
T
� 1

To
, and B and n

are constants which are determined experimentally.
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3.2.2. Ramu’s model

The Ramu’s model is obtained from a multiplication of classical single-stress laws, and is given

by:

L V;Tð Þ ¼ K Tð Þ V½ ��n Tð Þ exp �BΔ
1

T

� �� �

(27)

where K Tð Þ ¼ exp K1 � K2Δ
1
T

� �� �

, n Tð Þ ¼ exp n1 � n2Δ
1
T

� �� �

, K1, K2, n1, and n2 are constants.

Δ 1
T

� �

is the same as that defined for the Simoni’s model.

3.2.3. Fallou’s model

Fallou proposed a semi-empirical life model based on the exponential model for electrical

aging:

L V;Tð Þ ¼ C exp AV þ
B

T

� �� �

(28)

where C, A, and B are electrical stress constants and must be determined experimentally from

time-to-breakdown curves at constant temperatures.

3.2.4. Montanari’s probabilistic model

The probabilistic life model of combined electrical and thermal stresses by Montanari et al.

relates the failure probability p to insulation life Lp. It is based on substituting the scale

parameter in the Weibull distribution with the life using the inverse power law. For a given

time-to-breakdown probability p, the probabilistic model is given by:

Lp V;Tð Þ ¼ Ls V=Vsð Þn � ln 1� pð Þ½ � 1=β Tð Þð Þ (29)

where Lp is a lifetime at probability p, Ls is a time-to-breakdown at reference voltage Vs, and β

is the shape parameter.

3.3. Estimating life model constants

Eqs. (21) to (23) describe several mathematical models which relate insulation life to a single

aging stress, either voltage or temperature. Likewise, Eqs. (24) to (29) describe the electrical-

thermal life models. In each model of the above life models, there are several parameters that

are needed to be estimated from life testing data. The parameters are estimated from life tests

where the lifetimes at a variety of stress levels are measured. Once the parameters are esti-

mated, the life at any particular stress can, in principle, be estimated. This enables a method of

estimating the life at normal stress based on failure data collected from accelerated life tests.

Traditionally, the parameters of life models are calculated either graphically or analytically

using graphical or regression analysis type methods.
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3.3.1. Graphical method

The graphical method for estimating the parameters of a life model involves generating two

types of plots. First, the time-to-breakdown at each individual stress level is plotted on a proba-

bility paper appropriate to the assumed life distribution (i.e. Weibull, Lognormal). The parame-

ters at each stress level are then estimated from the plot. Once the parameters of the life

distribution have been estimated at each stress level using probability plottingmethods, a second

plot is created in which a characteristic lifetime is plotted versus stress on a paper that linearizes

the assumed lifetime-stress relationship. For example, a log-log paper linearizes the inverse

power law, a semi-log paper linearizes the exponential model, and a log-reciprocal linearizes

the Arrhenius relationship. The lifetime characteristic can be any percentile, such as 10% lifetime,

the scale parameter, the mean lifetime, etc. The parameters of the lifetime-stress relationship are

then estimated from the second plot by solving for the slope and the intercept of the line [45].

In spite of the fact that the graphical method is simple and straightforward, the method suffers

from some shortfalls such as:

• It is quite time consuming.

• The graphical method may fail in linearizing the lifetime-stress relationship when the data

are plotted on the special paper.

• In accelerated life tests with small data, the separation and individual plotting of the data

to obtain the parameters increase the underlying error.

• The estimated parameters, that are assumed constant, are likely to vary when the test is

repeated. Confidence intervals on the estimated parameters cannot be established using

the graphical methods.

3.3.2. Regression analysis

Calculating the parameters of a life model using regression analysis is relatively straightfor-

ward. For most single-stress models, simple linear regression (SLR) is used to estimate the

parameters. Similarly, multiple linear regression (MLR) is used for multi-stress models and

complicated single-stress models. On the other hand, nonlinear regression methods are

employed in cases where life models contain thresholds below certain values where aging

does not occur. These nonlinear models are much more difficult to analyze [40]. Therefore,

non-statisticians do not usually use nonlinear regression. For this reason, most life models

assume that the threshold is close to zero, permitting the use of conventional regression

analysis. The MLR method first requires the life model to be linearized into a form such as:

y ¼ ao þ a1x1 þ a2x2 þ⋯þ akxk (30)

where y is a dependent variable (life, or a mathematical transformation of life), xk are indepen-

dent stresses (or transformations of stresses or combinations of stresses), and ao, a1, a2,… ak are

the constants to be determined. The method of least squares can be used to estimate the

regression constants in a MLR model. The least squares technique involves finding the values
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of the constants that minimize the difference between the predicted lifetimes under a set of

stress conditions and the actual lifetime measures under the same conditions. By relating a

“characteristic” life of the underlying probability distribution to the aging stress, a set of

mathematical equations can be used to calculate the parameters [45]. Each observation (xi1,
xi2,…, xik, yi), satisfies the model in (30), or

yi ¼ ao þ a1xi1 þ a2xi2 þ⋯þ akxik

¼ ao þ
Xk

j¼1

ajxij i ¼ 1, 2,⋯, n
(31)

The least squares function is:

J ¼
Xn

i¼1

yi � ao �
Xk

j¼1

eajxij

0
@

1
A

2

(32)

The function J is to be minimized with respect to ao, a1, a2, …, ak. The least squares estimates of

ao, a1, a2, …, ak must satisfy:

∂J

∂ao




ao,ao1,a2,⋯,ak ¼ �2

Xn

i¼1

yi � eao �
Xk

j¼1

eajxij

0
@

1
A ¼ 0 (33)

∂J

∂aj eao,eao1 ,ea2,⋯,eak




 ¼ �2
Xn

i¼1

yi � eao �
Xk

j¼1

eajxij

0
@

1
Axij ¼ 0 j ¼ 1, 2,⋯, k (34)

Simplifying Eqs.(33) and (34), the following least squares normal equations are obtained:

neao þ ea1
Xn

i¼1

xi1 þ ea2
Xn

i¼1

xi2 þ⋯þ eak
Xn

i¼1

xik ¼
Xn

i¼1

yi

eao
Xn

i¼1

xi1 þ ea1
Xn

i¼1

x2i2 þ ea2
Xn

i¼1

xi1xi2 þ⋯þ eak
Xn

i¼1

xi1xik ¼
Xn

i¼1

xi1yi

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

eao
Xn

i¼1

xik þ ea1
Xn

i¼1

xikxi1 þ ea2
Xn

i¼1

xikxi2 þ⋯þ eak
Xn

i¼1

x2ik ¼
Xn

i¼1

xikyi

(35)

The solution to the k + 1 normal equations will be the least square estimators of the regression

parameters ao, a1, a2, …, ak of the multi-stress life model. The normal equations can be solved

by any method appropriate for solving a system of linear equations. Yet, it is much more

convenient to solve the multiple linear regression problem using a matrix approach. For k

parameters and n observations, the model relating the parameters to the dependent variable

yn can be expressed in matrix notation as [45]:
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y ¼ XA (36)

where,

y ¼

y1

y2

⋮

yn

2
666664

3
777775

A ¼

ao

a1

⋮

ak

2
666664

3
777775

X ¼

1 x11 x12 ⋯ x1k

1 x21 x22 ⋯ x2k

⋮ ⋮ ⋮ ⋮ ⋮

1 xn1 xn2 ⋯ xnk

2
666664

3
777775

In general, y is an (n�1) vector of the observations, X is an (n�k) matrix of the levels of stresses,

and A is a (k�1) vector of the regression constants. The least squares estimators, eA, is the

solution for A that minimizes:

J ¼ y� XAð Þ0 y� XAð Þ (37)

by setting ∂J
∂A

¼ 0. Accordingly,

X0XeA ¼ X0y (38)

Eq. (38) is the least squares normal equations in matrix form, which is identical to the scalar

form of the normal equations given in Eq. (35). The least squares estimators eA is obtained by

multiplying both sides of Eq. (38) by the inverse of X0X [45].

eA ¼ X0Xð Þ
�1
X0y (39)

In practice, MLR calculations are always performed using a computer. Many statistical analysis

computer packages can quickly and accurately perform the necessary calculations. The more

sophisticated commercial packages will also provide a plot of the stress versus lifetime [46].

If the times-to-breakdown are presented with a Weibull distribution, then the conventional

linear regression is theoretically not applicable [47]. Only recently commercial computer pro-

grams have become available which enable linear regression with Weibull-life data [46, 48].

The calculation method is complicated, but depends on the use of information matrix using a

large sample size normal approximation [1]. The regression analysis approach has only been

standardized to estimate the parameters of the thermal life model. No other life models have

been standardized to data.

Alternatively, another analytical approach will be used in this work to estimate the parameters

of the proposed multi-stress life models using the life distribution-life-stress combined model.

The MLE will be used for estimating the model parameters. An Accelerated Life Testing

Analysis (ALTA) statistical computer package is used in this work to estimate the parameters

of the proposed life model of the insulation [48]. This approach will be discussed in the next

section. However, MLR will be used whenever the MLE is not possible.
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4. Combined Weibull-life model

Three methods for estimating the parameters of accelerated life test models were presented in

chapters two and three. First, the graphical method was illustrated using a probability plotting

method for obtaining the parameters of the life distribution. The parameters of the life model

were then estimated graphically by linearizing the model on a separate lifetime versus stress

plot. However, not all life models can be linearized. Hence, instead of estimating the parame-

ters of the life distribution and the life model graphically, an analytical technique based on

least squares was presented. However, the accuracy of the graphical method and LS estimation

is affected by the probability rank approximation. Furthermore, estimating the parameters of

each individual distribution leads to accumulation of uncertainties, depending on the number

of failures at each stress level. In addition, the slope (shape) parameters of each individual

distribution are rarely equal (common). Using the graphical method or the LS technique, one

must estimate a common shape parameter (usually the average) and repeat the analysis. By

doing so, further uncertainties are introduced on the estimates, and these are uncertainties that

cannot be qualified [48].

On the other hand, combining the life distribution and the life model relationships in one

statistical model that describes both can be accomplished by including the life model into the

pdf of the life distribution of failure data. Thus, the parameters of that combined model can be

estimated using the complete likelihood function (L). Accordingly, a common shape parameter

(β) is estimated from the combined model, thus eliminating the uncertainties of averaging the

individual shape parameters. All uncertainties are accounted for in the form of confidence

intervals that are quantifiable because they are obtained based on the overall model. Besides,

the MLE technique is independent of any kind of probability ranks or a plotting method.

Therefore, the MLE offers a very powerful method in estimating the parameters of life models

[48].

The goal of the ML parameter estimation is to determine the parameters that maximize the

probability (likelihood) of the life data. Statistically, the method of the ML is considered to be

more robust and yields estimators with good statistical properties (unbiasedness, sufficiency,

consistency, and efficiency). Due to its nature, the ML is a powerful tool in estimating the

parameters of life models. In addition, the ML provides an efficient method for quantifying

uncertainty through confidence intervals.

4.1. Maximum likelihood estimation of combined Weibull-life model

For life data analysis, the two-parameter Weibull distribution pdf is commonly used to repre-

sent the scatter of the failure data,

f t;α;β
� �

¼

β

α

t

α

� �β�1

exp �

t

α

� �β
" #

(40)

where t is the time-to-breakdown, α is the scale parameter (lifetime at 63.2%), and β is the

shape parameter or the slope of the Weibull cumulative distribution. The parameters of the life
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model can be statistically calculated by combining the life model to the Weibull distribution.

For example, the combined Weibull-life model can be derived by setting the scale parameter

α=L(V) for the electrical life model, or α=L(V,T) for the electrical-thermal multi-stress life model

[13]. The maximum likelihood parameter estimation of combined Weibull-life model will be

presented in this chapter for both single-stress and multi-stress life models. The inverse power

law (IPL) of the electrical life model and exponential-Arrhenius of the electrical-thermal life

model will be used as examples to show the procedure for deriving the parameters of the

combined Weibull-life model.

4.2. Weibull-inverse power law electrical life model

The combined Weibull-IPL model can be derived by setting α ¼ L Vð Þ ¼ kV�n, yielding the

following Weibull pdf,

f t;Vð Þ ¼ βKVn KVntð Þβ�1 exp � KVntð Þβ
� �

(41)

where K = 1/k. This is a three-parameter model (K, β, n) where the parameters can be deter-

mined experimentally using life test data.

4.2.1. Parameter estimation of Weibull-IPL model using MLE method

Substituting the IPL electrical life model into the Weibull-Log-Likelihood function yields (Λ)

yields:

Λ ¼
XM

j¼1

XN

i¼1

ln eβ eKVenj eKVenj ti

� �~β�1

exp � eKVenj ti

� �~β
� �� 	

(42)

where M is the number of electrical life test groups; N is the number of times-to-breakdown in

jth life test; Vj is the jth life voltage; ti is the ith time-to-breakdown in the jth group; eβ is an

estimate of the Weibull shape parameter; eK = 1/k, k is the IPL Parameter; en is the second

parameter of IPL.

The ML estimates of the parameters can be found by solving for eβ, eK, en such that [45].

∂Λ

∂eβ
¼ 0,

∂Λ

∂eK
¼ 0,

∂Λ

∂en ¼ 0:

where,

∂Λ

∂eβ
¼

XM

j¼1

XN

i¼1

1

eβ
þ
XM

j¼1

XN

i¼1

ln eKVenj ti
� �

�
XM

j¼1

XN

i¼1

eKVenj ti
� �~β

ln eKVenj ti
� �

(43)

∂Λ

∂eK
¼

XM

j¼1

XN

i¼1

eβ
eK
�

eβ
eK

XM

i¼1

XN

i¼1

eKVenj ti
� �~β

(44)
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∂Λ

∂en ¼ eβ
XM

j¼1

XN

i¼1

ln V j

� �
� eβ

XM

j¼1

XN

i¼1

ln V j

� � eKVenj ti
� �~β

(45)

4.3. Electrical-thermal life model

In this dissertation, a new electrical-thermal relationship has been proposed for predicting the

lifetime of magnet wire insulation at service conditions when the voltage and temperature are

the accelerated stresses in a test. This new combined model is given by:

L V;Tð Þ ¼ C exp
A

V
þ

B

T

� �
(46)

where L is the lifetime at 63.2% probability of breakdown; V is the voltage; T is the temperature;

C, A, and B: are constants to be estimated by analyzing the joint voltage-temperature life data.

The proposed lifetime relationship can be linearized by finding the natural logarithm of both

sides of Eq. (46). A family of linear curves can be obtained by plotting the lifetime versus either

of the stresses, Vor T, and keeping the other one constant. In this case, the constant B represents

the slope of the linearized Arrhenius equation when the voltage is constant, and A represents

the slope of the exponential electrical function model when the temperature is constant [45].

Considering that the lifetime is a random variable, the above model can be converted to a

probabilistic model by setting the scale parameter α of the Weibull distribution equals to L(V,T)

of Eq. (46). Therefore, assuming the time-to-breakdown of the electrical insulation, under

combined electrical and thermal stresses, is statistically distributed according to a Weibull

distribution, then the Weibull pdf can be written as [45]

f t;V;Tð Þ ¼
β

C
exp �

A

V
þ

B

T

� �
t

C
exp �

A

V
þ

B

T

� �� �β�1

exp �
t

C
exp �

A

V
þ

B

T

� �� �β

(47)

This Weibull pdf will be used to estimate the parameters of the electrical-thermal life model.

4.3.1. Parameter estimation of Weibull-electrical-thermal life model using MLE

The combined Weibull-electrical-thermal model has four parameters to be estimated using the

joint voltage-temperature life data. Using the MLE method, the log-likelihood function of the

combined Weibull-electrical-thermal pdf is given by [45]:

Λ¼ ln Lð Þ ¼
XM

j¼1

XP

i¼1

XN

l¼1

ln
eβ
eC
exp �

eA
V i

þ
eB
Tj

 !
tl
eC
exp �

eA
V i

þ
eB
Tj

 ! !~β�1

exp �
tl
eC
exp �

eA
V i

þ
eB
Tj

 ! !~β
2
4

3
5

(48)

whereM is the number of thermal life test groups at voltage Vi; P is the number of electrical life

test groups at temperature Tj; N is the number of times-to-breakdown in the jith electrical-

thermal life test; Vi is the i
th life voltage at the jth life temperature; Tj: is the j

th life temperature at

the ith life voltage; tl is the lth time-to-breakdown in the jith group; eβ is the estimate of the
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Weibull shape parameter; eC is an estimate of a parameter of the combined E-T life model; eA is

an estimate of a parameter of the combined E-T life model; eB is an estimate of a parameter of

the combined E-T life model.

The parameter estimates eβ; eC; eA; eB
� �

can be found by solving:

∂Λ

∂eβ
¼ 0,

∂Λ

∂eC
¼ 0,

∂Λ

∂eA
¼ 0,

∂Λ

∂eB
¼ 0:

where,

∂Λ

∂eβ
¼
XM

j¼1

XP

i¼1

XN

l¼1

1

eβ
þ
XM

j¼1

XP

i¼1

XN

l¼1

ln
tl
eC
exp �

eA
V i

þ
eB
Tj

 ! !
�

XM

j¼1

XP

i¼1

XN

l¼1

tl
eC
exp �

eA
V i

þ
eB
Tj

 ! !~β

ln
tl
eC
exp �

eA
V i

þ
eB
Tj

 ! ! (49)

∂Λ

∂eC
¼
XM

j¼1

XP

i¼1

XN

l¼1

�
eβ
eC
þ
eβ
eC

XM

j¼1

XP

i¼1

XN

l¼1

tl
eC
exp �

eA
V i

þ
eB
Tj

 ! !~β

(50)

∂Λ

∂eA
¼
XM

j¼1

XP

i¼1

XN

l¼1

eβ �1

V i

� �
þ
XM

j¼1

XP

i¼1

XN

l¼1

β

V i

� �
:

tl
eC
exp �

A

V i
þ
eB
Tj

 ! !~β

(51)

∂Λ

∂eB
¼
XM

j¼1

XP

i¼1

XN

l¼1

eβ �1

Tj

� �
þ
XM

j¼1

XP

i¼1

XN

l¼1

β

Tj

� �
:

tl
eC
exp �

A

V i
þ
eB
Tj

 ! !~β

(52)

4.4. Failure lifetime percentiles

Once the combined Weibull-Lifetime model parameters are estimated, the failure time percen-

tiles, or the time-to-breakdown, tp, as well as the life lines of the MW insulation at different

breakdown probabilities, p = Fp(t;α,β) can be derived from Eq. (2) by substituting α=L(V,T). For

the Weibull-IPL model, by substituting Eq. (21) into Eq. (20), the lifetime percentile is given by,

tp ¼ kV�en � ln 1� pð Þ½ �1=
~β (53)

where ek, en, and eβ are the ML estimates of k, n, and β of the combined Weibull-IPL model.

Likewise, for the Weibull-Electrical-Thermal model, the lifetime percentile can be obtained by

substituting Eq. (46) into Eq. (20). Thus yields,

tp ¼ eC exp
eA
V
þ
eB
T

 !
� ln 1� pð Þ½ �1=

~β (54)

where eC, eA, eB, and eβ are the ML estimates of C, A, B, and β of the combinedWeibull-Electrical-

Thermal model.
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Nomenclature

ALTA accelerated life testing analysis

α Weibull scale parameter

β Weibull shape parameter

cdf cumulative distribution function

IPL inverse power law

LS least squares

L lifetime

ML maximum likelihood

MLE maximum likelihood estimation

MLR multiple linear regression

pdf probability density function

SLR simple linear regression

t time-to-breakdown

T absolute temperature

V applied voltage

Vs reference voltage
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