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Abstract

The present chapter introduces incompressible Newtonian fluid flow and heat transfer
by using the finite difference method. Since the solution of the Navier-Stokes equation is
not simple because of its unsteady and multi-dimensional characteristic, the present
chapter focuses on the simplified flows owing to the similarity or periodicity. As a first
section, the first Stoke problem is considered numerically by introducing the finite
difference method. In the second section, natural convection heat transfer heated from
a vertical plate with uniform heat flux is introduced together with the method how to
obtain the system of ordinary differential equations. In the third example, linear stability
analysis for the onset of secondary flow during the Taylor-Couette flow is numerically
treated using the HSMAC method.

Keywords: finite difference method, similar solution, boundary layer, linear stability
analysis, HSMAC method

1. Introduction

The governing equation for the fluid flow is known as Navier-Stokes equation, which is however

difficult to solve analytically; and therefore, a lot of numerical techniques have been proposed

and developed. Nevertheless various complex flow phenomena such as turbulent flow, multi-

phase flow, compressible flow, combustion, and phase change encountered in the fields of engi-

neering would have still difficulties to circumvent even using both present computational

resources and numerical techniques. The present chapter devotes not to elucidate such complex

phenomena, but to introduce rather simplified fluid flow by using the finite difference method.

One focuses on incompressible flows, in which physical properties such as the viscosity, the

thermal conductivity, the specific heat are constant and even the fluid density is not a thermo-

dynamic variable. This simplified assumption makes the fluid flow phenomena much easier to
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be handled and it is valid when the flow velocity is much slower than the sound velocity and/

or the temperature difference in the fluid is small enough to consider the thermal expansion

coefficient is independent to the temperature. The former situation is known the low Mach

number approximation, while the latter one the Boussinesq approximation.

Another simplification on the incompressible flows is the reduction of dimension due to the

characteristic of similarity and periodicity. For the boundary layer flows such as the Blasius

flow, the stagnation-point flow, and the von Kármán rotating disk flow have the similar solution

where the flow transition from laminar to turbulence does not occur. In those cases, a com-

bined dimensionless variable (similar variable) η is introduced and the velocity distribution

can be only a function of η. While for the onset of instability such as the Rayleigh-Bénard

convection, the Bénard-Marangoni convection, and the Taylor-Couette flow, the periodic character-

istic of flow structure is observed. At the stage of onset of instability, the non-linear term is

negligible and therefore the function of flow field is separated into the amplitude part and

periodic part, respectively. This makes the effort on numerical analysis to reduce significantly

and also to contribute the augmentation of accuracy of the results.

This chapter consists of three main bodies. First, a numerical technique for solving the boundary

value problem called the first Stokes problem or the Rayleigh problem [1] is introduced. The differ-

ential equation is transferred into an ordinary equation and it is solved by a finite difference

method using the Jacobi method. Second, similar solution of natural convection heat transfer

heated froma vertical platewith uniformheat flux is introduced togetherwith themethodhow to

obtain the systemof ordinary differential equations. The obtainedNusselt numbers are compared

with some previous studies. Third, for example, of the linear stability analysis, one shows that the

HSMACmethod can be applied to obtain the critical values for the onset of secondary flow such

as the Taylor-Couette flow. The Eigen functions of flow and pressure fields are visualized.

2. Unsteady flow due to sudden movement of the plate

2.1. Governing equations

An infinite length plate is set in a stationary fluid as an initial condition. Let us consider the

situation that the infinite length plate suddenly moves along its parallel direction at a constant

speed uw. This problem was first solved by Stokes [2] in his famous treatment of the pendulum.

Since Lord Rayleigh [3] also treated this flow, it is often called the Rayleigh problem in the

literature. One takes that x is the plate movement direction and y is distance from the plate.

Since the velocity component perpendicular to the plate v is zero, the momentum equation is

simplified and is shown as a diffusion equation

∂u

∂t
¼ ν

∂
2u

∂y2
(1)

Here, u is the velocity component parallel to the plate direction, t is the time, and ν is the

kinematic viscosity. The boundary conditions for this partial differential equation are as

follows:
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y ¼ 0 : u ¼ uw

y ! ∞ : u ! 0

�

(2)

In order to reduce the partial differential equation to an ordinary equation, the following

dimensionless velocity U and the similar variable η are introduced

u ¼ uwU ηð Þ, η ¼ y

2
ffiffiffiffi

νt
p (3)

Then, the following ordinary differential equation can be obtained

d2U

dη2
þ 2η

dU

dη
¼ 0 (4)

The boundary condition for the ordinary differential equation is as follows using the similar

variable η instead of y:

η ¼ 0 : U ¼ 1

η ! ∞ : U ! 0

�

(5)

As a consequence, one needs to solve this boundary value problem. The theoretical solution

can be easily obtained and expressed using the error function

U ¼ u

uw
¼ 1� erf ηð Þ ¼ 1� 2

ffiffiffiffi

π
p

ðη

0

exp �ξ2
� �

dξ (6)

The velocity profile is shown in Figure 1.

Figure 1. Velocity profile.
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2.2. Numerical method for solving the ordinary differential equation using finite

difference method

For numerical solution, it is necessary to define the range of η, as recognized from Figure 1,

η = 4 is enough. Hence, the boundary condition shown below is used instead of Eq. (5)

η ¼ 0 : U ¼ 1

η ¼ 4 : U ¼ 0

�

(7)

As illustrated in Figure 2, in which vertical and horizontal axes are exchanged from Figure 1,

one needs to obtain each value of dimensionless velocity numerically. The approximated

velocity profile is expressed by connecting these values smoothly. For simplicity, the intervals

between neighboring two points are the same and it is noted as Δη. When the second-order

central difference method is used, Eq. (4) is as follows:

Uiþ1 � 2Ui þUi�1

Δηð Þ2
þ 2η

i

Uiþ1 �Ui�1

2 Δηð Þ
¼ 0, i ¼ 2; 3;⋯N � 1ð Þ

Here, N is total number of grids and in this chapter, the first grid point starts from 1 as its

definition. The above equation becomes

1� η
i
Δηð Þ

� �

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

αi

Ui�1 � 2Ui þ 1þ η
i
Δηð Þ

� �

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

β
i

Uiþ1 ¼ 0, i ¼ 2; 3;⋯N � 1ð Þ: (8)

Here, η
i
¼ i� 1ð Þ Δη

� �
and αi and βi are coefficients determined by the number of grids. The

boundary condition (7) is modified

Figure 2. Equidistant grids discretized.
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η ¼ 0 : U1 ¼ 1

η ¼ 4 : UN ¼ 0

(

(9)

In the following, the case ofN = 7 is considered, for example. By substituting i = 2–6 into Eq. (8),

the following simultaneous equation is obtained:

�2 β2 0 0 0

α3 � 2 β3 0 0

0 α4 � 2 β4 0

0 0 α5 � 2 β5

0 0 0 α6 � 2

0

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

A

U2

U3

U4

U5

U6

0

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

A

¼

�α2U1

0

0

0

�β6U7

0

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

A

(10)

This kind of tridiagonal matrix is often seen and can be solved by a direct numerical method,

such as Tomas method. However, the rank of the matrix is usually extremely large and one

introduces an iterative method for solving the king-size matrix.

2.3. Iterative method for matrix solver

In general, the rank of the matrix appearing in computational fluid dynamics (CFD) is large and

iterative methods such as Jacobi, Gauss-Seidel, or successive over relaxation (SOR) methodare

employed. In this subsection, the Jacobi method is explained. The matrix can be divided into

three parts of lower, diagonal, and upper as follows:

0 0 0 0 0

α3 0 0 0 0

0 α4 0 0 0

0 0 α5 0 0

0 0 0 α6 0

0

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

A

U2

U3

U4

U5

U6

0

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

A

þ

�2 0 0 0 0

0 � 2 0 0 0

0 0 � 2 0 0

0 0 0 � 2 0

0 0 0 0 � 2

0

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

A

U2

U3

U4

U5

U6

0

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

A

þ

0 β2 0 0 0

0 0 β3 0 0

0 0 0 β4 0

0 0 0 0 β5

0 0 0 0 0

0

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

A

U2

U3

U4

U5

U6

0

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

A

¼

�α2U1

0

0

0

�β
N�1UN

0

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

A

(11)

In the Jacobi method, only the diagonal part is put in the left-hand side (n + 1 step), while the

lower and upper parts are moved to the right-hand side (n step)
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�2 0 0 0 0

0 � 2 0 0 0

0 0 � 2 0 0

0 0 0 � 2 0

0 0 0 0 � 2

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

D

U2

U3

U4

U5

U6

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

nþ1

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

U
!
nþ1

¼

�α2U1

0

0

0

�β
N�1UN

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

b
!

�

0 0 0 0 0

α3 0 0 0 0

0 α4 0 0 0

0 0 α5 0 0

0 0 0 α6 0

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

L

U2

U3

U4

U5

U6

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

n

|fflfflfflfflffl{zfflfflfflfflffl}

U
!
n

�

0 β2 0 0 0

0 0 β3 0 0

0 0 0 β4 0

0 0 0 0 β5
0 0 0 0 0

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

U

U2

U3

U4

U5

U6

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

n

|fflfflfflfflffl{zfflfflfflfflffl}

U
!
n

(12)

Here, n is the old iteration step and n + 1 is the new iteration step. Hence, the following

equation is repeatedly used:

U
!nþ1

¼ D�1 b
!
� LþUð ÞU

!n
	 


(13)

This is equivalent to the following equation:

U
nþ1
i ¼

1

2
αiU

n
i�1 þ β

i
U

n
iþ1

� �
, i ¼ 2; 3; 4; 5; 6ð Þ (14)

By using Eq. (9), Eq. (14) is computed repeatedly and then the value of each grid gradually

converges to a certain solution. The Gauss-Seidel and SOR methods are known as the faster

convergence method.

3. Similarity solution for natural convection heated from a vertical plate

3.1. Introduction

In this section, let us consider the natural convection heat transfer for a vertical plate heated

with uniform heat flux in the wide range of Prandtl number from zero to infinity. In order to

explain the numerical method as how to solve the governing equations, one assumes that the

flow and temperature fields formed in the vicinity of the heated plate have a similarity and

then one introduces the finite difference method to obtain numerical results.

3.2. Governing equations

One assumes that the flow is incompressible laminar and boundary layer equations are used in

this analysis. The governing equations with presuming the Boussinesq approximation are
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shown in Eqs. (15)–(17) together with the boundary condition (18). Here, one defines that x

axis is in the vertical direction and its velocity component is u, and y axis is in the direction

perpendicular to the vertical plate and its velocity component is v.

Continuity of mass

∂u

∂x
þ

∂v

∂y
¼ 0 (15)

Momentum equation

u
∂u

∂x
þ v

∂u

∂y
¼ ν

∂
2u

∂y2
þ gβ T � T

∞
ð Þ (16)

Energy equation

u
∂T

∂x
þ v

∂T

∂y
¼ α

∂
2T

∂y2
(17)

Boundary equation

y ¼ 0 : u ¼ v ¼ 0, q ¼ �k ∂T=∂yð Þ

y ! ∞ : u ! 0, T ! T
∞

�

(18)

Here, β is the thermal expansion coefficient, g is the acceleration due to gravity, α is the thermal

diffusivity, k is the thermal conductivity, and T is the temperature.

3.3. Non-dimensionalization

First, dimensionless variables, such as velocity and temperature, are set as follows using the

unknown reference value denoted with subscripts a and b:

X ¼
x

xa
, Y ¼

y

ya
, U ¼

u

ua
, V ¼

v

va
, θ ¼

T � Tb

Ta
(19)

Equation (19) is substituted into Eqs. (15)–(18), and one gets

∂U

∂X
þ

vaxa
yaua
|ffl{zffl}

1½ �

∂V

∂Y
¼ 0

U
∂U

∂X
þ

vaxa
yaua
|ffl{zffl}

1½ �

V
∂U

∂Y
¼

νxa
ya

2ua
|fflffl{zfflffl}

2½ �

∂
2U

∂Y2
þ
gβ Tb � T

∞
ð Þxa

ua2
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

3½ �

þ
gβTaxa
ua2

|fflfflffl{zfflfflffl}

4½ �

θ
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U
∂θ

∂X
þ

vaxa
yaua
|ffl{zffl}

1½ �

V
∂θ

∂Y
¼

αxa
ya

2ua
|fflffl{zfflffl}

5½ �

∂
2θ

∂Y2

Y ¼ 0 : U ¼ V ¼ 0, qya
� �

= kTað Þ
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

6½ �

¼ �∂θ=∂Y

Y ! ∞ : U ¼ 0, θ ¼ T
∞
� Tbð Þ=Ta

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

7½ �

8

>>>><

>>>>:

At the moment stage, xa is recognized as the height of the vertical plate.

Putting [3] = 0, and one obtains Tb ¼ T∞.Hence [7] becomes θ ¼ 0.

Putting [6] = 1, and one gets
qya
kTa

¼ 1 ) Ta ¼
qya
k

Putting [5] = 1, and one gets αxa
ya

2ua
¼ 1 ) ya ¼

αxa
ua

� �1=2

Putting [1] = 1, vaxayaua
¼ 1 ) va ¼

yaua
xa

Putting [4] = 1,
gβTaxa
ua2

¼ 1 ) ua ¼ gβTaxa
� �1=2

¼ gβ
qya
k xa

� �1=2
¼ gβ

q
k

αxa
ua

� �1=2
xa

 �1=2

∴ ua ¼ gβ
q

k

� �2

αxa
3

� �1=5

¼
gβqxa

4

kα2

 �2=5
α

xa
¼ Ra∗Prð Þ2=5

α

xa
, ∵Ra∗ ¼

gβqxa
4

kαν
(20)

ya ¼
αxa
ua

 �1=2

¼
αxa

Ra∗Prð Þ2=5 α
xa

 !1=2

¼
xa

2

Ra∗Prð Þ2=5

 !1=2

¼ xa Ra∗Prð Þ�1=5 (21)

Ta ¼
qya
k

¼
q

k

xa

Ra∗Prð Þ1=5
¼

qxa
k

Ra∗Prð Þ�1=5 (22)

va ¼
yaua

xa
¼

xa
Ra∗Prð Þ1=5

Ra∗Prð Þ2=5 α
xa

xa
¼ Ra∗Prð Þ1=5

α

xa
(23)

In the above process, finally one obtains the dimensionless equations as follows:

∂U

∂X
þ

∂V

∂Y
¼ 0 (24)

U
∂U

∂X
þ V

∂U

∂Y
¼ Pr

∂
2U

∂Y2
þ θ (25)

U
∂θ

∂X
þ V

∂θ

∂Y
¼

∂
2θ

∂Y2
(26)
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Y ¼ 0 : U ¼ V ¼ 0, ∂θ=∂Y ¼ �1

Y ! ∞ : U ¼ 0, θ ¼ 0

�

(27)

The dimensionless variables are summarized as follows:

X ¼
x

xa
, Y ¼

y

xa Ra∗Prð Þ�1=5
, U ¼

u
α

xa
Ra∗Prð Þ2=5

,

V ¼
v

α

xa
Ra∗Prð Þ1=5

, θ ¼
T � T∞

qxa
k

Ra∗Prð Þ�1=5

(28)

Furthermore, one assumes that the velocity and temperature fields has a similarity along the

direction of vertical plate, so one puts X = 1. These equations are useful for analyzing low

Prandtl number cases and summarized as follows:

Low Prandtl number

Continuity of mass

dV

dη
¼

1

5
η
dU

dη
� 3U

 �

(29)

Momentum equation

U
dV

dη
� V

dU

dη
þ Pr

d2U

dη2
þ θ ¼ 0 (30)

Energy equation

U

5
η
dθ

dη
� θ

 �

� V
dθ

dη
þ
d2θ

dη2
¼ 0 (31)

Boundary conditions

η ¼ 0 : U ¼ V ¼ 0, dθ=dη ¼ �1

η ! ∞ : U ¼ θ ¼ 0

�

(32)

The dimensionless variables and non-dimensional numbers are defined as follows:

η ¼
y

x Rax
∗Prð Þ�

1
5

, U ¼
u

α

x
Rax

∗Prð Þ
2
5

, V ¼
v

α

x
Rax

∗Prð Þ
1
5

,

θ ¼
T � T∞

qx

k
Rax

∗Prð Þ�
1
5

, Rax
∗ ¼

gβqx4

ανk
, Pr ¼

ν

α

(33)

The local Nusselt number can be obtained by the following derivation:
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Nux ¼
hxx

k
¼

qx

Tw � T
∞

ð Þk
¼

qx

Taθwk
¼

gβq
α2k

� �1=5
k

qx1=5

|fflfflfflfflffl{zfflfflfflfflffl}

Ta
�1

qx

θwk

¼
gβq
α2k

� �1=5 x4=5

θw
¼

gβqx4

α2k

 �1=5
1

θw
¼ Ra∗xPr

� �1=5 1

θw

(34)

Nux ¼ Rax
∗Prð Þ

1
5 θjη¼0

� ��1
¼ RaxNuxPrð Þ

1
5 θjη¼0

� ��1
(35)

Therefore, the local Nusselt number can be obtained just from the dimensionless temperature

at the wall using Eq. (36)

Nux

RaxPrð Þ
1
4

¼ θjη¼0

� ��5
4

(36)

High Prandtl number

If the Prandtl number is higher than unity, the following equations are useful:

Continuity of mass

dV

dη
¼

1

5
η
dU

dη
� 3U

 �

(37)

Momentum equation

U
dV

dη
� V

dU

dη
þ Pr

d2U

dη2
þ Prθ ¼ 0 (38)

Energy equation

U

5
η
dθ

dη
� θ

 �

� V
dθ

dη
þ
d2θ

dη2
¼ 0 (39)

Boundary conditions

η ¼ 0 : U ¼ V ¼ 0, dθ=dη ¼ �1

η ! ∞ : U ¼ θ ¼ 0

�

(40)

The dimensionless variables and non-dimensional numbers are defined as follows:

η ¼
y

x Rax
∗ð Þ�

1
5

, U ¼
u

α

x
Rax

∗ð Þ
2
5

, V ¼
v

α

x
Rax

∗ð Þ
1
5

,

θ ¼
T � T

∞

qx

k
Rax

∗ð Þ�
1
5

, Rax
∗ ¼

gβqx4

ανk
, Pr ¼

ν

α

(41)
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Nux

Raxð Þ
1
4

¼ θjη¼0

� ��5
4

(42)

3.4. Numerical results

Figure 3 shows the numerical result for the various Prandtl number cases. The upper figures

indicate the vertical velocity and lower ones the temperature. The left-hand side figures show

the cases of Pr ≥ 1, while the right-hand side ones the cases of Pr ≤ 1

Table 1 shows the summary of the local Nusselt number for various Prandtl number cases

together with the reference of Churchill and Ozoe for comparison [4]. The agreement is quite

good except for the extreme cases such as Pr! 0 and ∞. In such extreme cases, a small amount

of discrepancy exists. In this study, the boundary condition for Pr ! 0

η ¼ 0 : dU=dη ¼ V ¼ 0, dθ=dη ¼ �1

η ! ∞ : U ¼ θ ¼ 0

�

and that for Pr ! ∞

Figure 3. Vertical velocity and temperature distributions for various Prandtl numbers. The left-hand side indicates high

Prandtl number cases while the right-hand side low Prandtl number cases.
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η ¼ 0 : U ¼ V ¼ 0, dθ=dη ¼ �1

η ! ∞ : dU=dη ¼ θ ¼ 0:

�

are used. Owing to this kind of special treatments for the boundary condition of such extreme

cases, one can obtain accurate numerical results for the system of ordinary equations. The

results between the solution of the present method and that of Le Fevre [5] for the case of

constant temperature of heated wall are identical to each other. The value for Pr ! ∞ is 0.5027

and that for Pr = 0 is 0.6004.

4. Linear stability of Taylor-Couette flow

4.1. Governing equations

In the text book of Chandrasekar [6], various examples of the linear stability analysis such as

the Rayleigh-Bénard convection, the Taylor-Couette flow, and the Rayleigh-Taylor instability were

studied extensively. More recently, Koschmieder [7] described the research focusing on the

Bénard cells and the Taylor vortices. In this section, only the Taylor-Coette flow is considered.

Figure 4 shows the schematic model considered for the Taylor-Couette flow. In this section, the

fluid flow inside of the co-axial double cylindrical enclosure is assumed to be incompressible

Newtonian, isothermal and axisymmetric. The gray part represents the computational

domain. It is known that the stationary secondary flow is generated at a certain condition

under the influence of centrifugal force due to the rotation of primary basic flow which is in

azimuthal direction. The continuity of mass and momentum equations are shown in the

cylindrical coordinate system as follows:

∂ur
∂r

þ
ur
r
þ

∂uz
∂z

¼ 0 (43)

∂ur
∂t

þ ur
∂ur
∂r

þ uz
∂ur
∂z

�
uθ

2

r
¼ �

1

r

∂p

∂r
þ ν

∂
2ur
∂r2

þ
1

r

∂ur
∂r

�
ur
r2

þ
∂
2ur
∂z2

 �

(44)

∂uθ
∂t

þ ur
∂uθ
∂r

þ uz
∂uθ
∂z

þ
uruθ
r

¼ ν
∂
2uθ
∂r2

þ
1

r

∂uθ
∂r

�
uθ
r2

þ
∂
2uθ
∂z2

 �

(45)

Pr 0 0.01 0.1 1 10 100 ∞

Nux

Raxð Þ1
=4

N/A 0.4564

0.456

0.5234

0.524

0.5495

0.550

0.5631

0.5627

Nux

RaxPrð Þ1
=4

0.7107

0.6922

0.6694

0.670

0.5970

0.597

0.4564

0.456

N/A

Table 1. Local Nusselt number for various values of Prandtl number (the upper: present results, the lower: Churchill and

Ozoe [4]).
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∂uz
∂t

þ ur
∂uz
∂r

þ uz
∂uz
∂z

¼ �
1

r

∂p

∂z
þ ν

∂
2uz
∂r2

þ
1

r

∂uz
∂r

þ
∂
2uz
∂z2

 �

� g (46)

Here, it is indicated that r is the radial, θ is the azimuthal, and z is the axial components.

4.2. Basic state and linearization

The cylindrical enclosure is long enough to neglect the top and bottom ends. In that situation,

the basic states for the azimuthal component of velocity and pressure are as follows:

Azimuthal velocity

uθ rð Þ ¼ �
r22Ω2 � r21Ω1

r21 � r22
rþ

r21r
2
2 Ω2 �Ω1ð Þ

r21 � r22

1

r
(47)

Pressure

p r; zð Þ ¼

ð

r uθ rð Þf g2

r
dr� rgzþ p0 (48)

Here, Ω1 is the angular velocity at the inner cylinder, Ω2 is the angular velocity at the outer

cylinder, p is the pressure, r is the density, and g is the acceleration due to gravity. In order

to derive disturbance equations for the linear stability, the three components of velocity

and pressure are represented as a summation of basic state and infinitesimal disturbance as

follows:

Figure 4. Schematic model for the Taylor-Couette flow.
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uθ r; z; tð Þ ¼ uθ rð Þ þ v
0
r; z; tð Þ, ur r; z; tð Þ ¼ u

0
r; z; tð Þ, uz r; z; tð Þ ¼ w

0
r; z; tð Þ,

p r; z; tð Þ ¼ p r; zð Þ þ p
0
r; z; tð Þ

(49)

After neglecting the second-order disturbance, the following linearized equations are obtained:

∂u
0

∂r
þ
u

0

r
þ

∂w
0

∂z
¼ 0 (50)

∂u
0

∂t
¼ �

1

r

∂p
0

∂r
þ ν

∂
2u

0

∂r2
þ
1

r

∂u
0

∂r
�
u

0

r2
þ

∂
2u

0

∂z2

 �

þ
2uθv

0

r
(51)

∂v
0

∂t
¼ ν

∂
2v

0

∂r2
þ
1

r

∂v
0

∂r
�

v
0

r2
þ

∂
2v

0

∂z2

 �

�
duθ
dr

þ
uθ
r

 �

u
0

(52)

∂w
0

∂t
¼ �

1

r

∂p
0

∂z
þ ν

∂
2w

0

∂r2
þ
1

r

∂w
0

∂r
þ

∂
2w

0

∂z2

 �

(53)

By considering the periodicity of the secondary flow which could be happened, each compo-

nent of infinitesimal disturbance is assumed to be given in the following form. Here, a is the

axial wavenumber (real number) and s is angular frequency (complex number)

u
0

~u rð Þ
¼

v
0

~v rð Þ
¼

w
0

~w rð Þ
¼

p
0

~p rð Þ
¼ exp iazþ stð Þ (54)

4.3. Linear stability analysis

The dimensionless simultaneous ordinary equations are summarized as follows:

Basic velocity

Uθ Rð Þ ¼
μ� η2

1� η2
Rþ

η2 1� μ
� �

1� η2
1

R
(55)

Disturbance equations for amplitude functions

D∗

~U þ ik ~W ¼ 0 (56)

S~U ¼ �D~P þ DD∗ � k2
� �

~U þ ReΩ
2Uθ

R
~V (57)

S~V ¼ DD∗ � k2
� �

~V � ReΩ D∗Uθ

� �

~U (58)

S ~W ¼ �ik~P þ D∗D� k2
� �

~W (59)

Here, the dimensionless variables and non-dimensional numbers are as follows. The outer

radius r2 is taken as the characteristic length
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R ¼
r

r2
, Uθ ¼

uθ
Ω1r2

, ~U ; ~V ; ~W
� �

¼
~u; ~v; ~wð Þ

Ω1r2
, ~P ¼

~p

rνΩ1
,

ReΩ ¼
Ω1r

2
2

ν
, k ¼ r2a, η ¼

r1
r2
, μ ¼

Ω2

Ω1
, S ¼

s

ν=r22
, D ¼

d

dR
, D∗ ¼

d

dR
þ

1

R

(60)

The boundary conditions are as follows:

R ¼ η : ~U ¼ ~V ¼ ~W ¼ 0 Inner wallð Þ

R ¼ 1 : ~U ¼ ~V ¼ ~W ¼ 0 Outer wallð Þ:

(

(61)

After Chandrasekar [6], the following two non-dimensional numbers are introduced to verify

the computational results:

Ta ¼
4Ω1

2r41
ν2

1� μ
� �

1� 4μ
� �

1� η2ð Þ2
¼ 4Re 2

Ω

η4 1� μ
� �

1� 4μ
� �

1� η2ð Þ2
, κ ¼

1� μ=η2

1� μ
(62)

In this section, it is assumed that S = 0. This indicates that the secondary flow caused by the

centrifugal instability is stationary and it contains toroidal vortices. To deal with the simulta-

neous ordinary differential equations for the boundary value problem, a one-dimensional

staggered grid system is employed as shown in Figure 5. All the equations are discretized by

the fourth order central difference method with a given wavenumber k using the HSMAC

method [8] during which ReΩ is obtained by the Newton method. The following equations are

used for correction of the pressure and velocity simultaneously. Here, the subscript i indicates

grid location, while the superscripts m and n indicate the iteration of the corrections for the

convergence of Eq. (56) and the time step, respectively. The more detailed explanation can be

found in the recent papers published by the present author [9, 10]

Figure 5. The staggered grids in the radius direction together with the points of each variable definition.
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mþ1~P
nþ1

i
¼ m~P

nþ1

i
þ mðδ~PÞ

nþ1
i

¼ m~P
nþ1

i
�

�m ~U
nþ1

iþ1 þ 27m ~U
nþ1

i
� 27m ~U

nþ1

i�1 þ m ~U
nþ1

i�2

24ðΔRÞ
þ
�m ~U

nþ1

iþ1 þ 9m ~U
nþ1

i
þ 9m ~U

nþ1

i�1 � m ~U
nþ1

i�2

16RPi

þ ik � m ~W
nþ1

i

Δτf2=ðΔRÞ2 þ k
2g

(63)

mþ1 ~U
nþ1

i ¼ m ~U
nþ1

i þ
Δτ

ΔR
� m δ~P

� �nþ1

i
,

mþ1 ~U
nþ1

i�1 ¼ m ~U
nþ1

i�1 �
Δτ

ΔR
� m δ~P

� �nþ1

i
(64)

mþ1 ~W
nþ1

i ¼ m ~W
nþ1

i � ik Δτð Þ � m δ~P
� �nþ1

i
(65)

Table 2 shows the computational results for various rotation speeds at η = 0.5. When μ > 0.25,

the basic flow is always stable due to the Rayleigh’s criterion. The present results exhibit

slightly smaller values of Taylor number than those of Chandrasekar. Figures 6 and 7 show

the amplitude functions and Eigen functions, respectively, for the case of μ = 0 (the outer

cylinder is stationary), and Figures 8 and 9 show the case of μ =�0.5 (the outer cylinder rotates

with half angular velocity in opposite direction to the inside rotation).

The simultaneous ordinary equations from (56) to (59) were divided into the real and

imaginary parts. However, only four equations among the eight equations are necessary to

solve in this problem because of the symmetricity and anti-symmetricity of the complex

variables. In Figures 6 and 8, the real part of ~U, ~V, ~P and the imaginary part of ~W are

shown. For the visualization shown in Figures 7 and 9, the Stokes stream function Ψ is

defined as follows:

Present (201 grids) Chandrasekar [6]

κ μ Critical wave number Critical Ta number Wavenumber Ta number

0 1/4 6.286 15316 6.4 15332

0.4 1/6 6.293 19518 6.4 19542

0.6 2/17 6.299 22617 6.4 22644

1.0 0 6.325 33062 6.4 33100

4/3 �1/8 6.403 53210 6.4 53280

1.6 �1/4 6.715 98520 6.4 99072

1.8 �4/11 7.819 197715 7.8 199540

1.9 �9/21 8.733 288761 8.6 293630

2.0 �1/2 9.602 417734 9.6 428650

Table 2. Computational results and comparison with Chandrasekar (η = 0.5).
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~Uℜ � cos kZð Þ ¼
1

R

∂Ψ

∂Z
, ~Wℑ � sin kZð Þ ¼

1

R

∂Ψ

∂R
(66)

Here, the subscripts ℜ and ℑ represent the real part and the imaginary part, respectively. The

visualization of other variables, such as the azimuthal velocity and the pressure, are treated in

the similar manner using the trigonometric functions.

Figure 7. Visualization of Eigen functions for two wavelengths (η = 0.5, μ = 0, k = 6.325). From left to right, Stokes stream

function, azimuthal velocity, and pressure.

Figure 6. Amplitude functions (η = 0.5, μ = 0, k = 6.325).
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Figure 8. Amplitude functions (η = 0.5, μ = �0.5, k = 9.602).

Figure 9. Visualization of Eigen functions for two wavelengths (η = 0.5, μ = �0.5, k = 9.602). From left to right, Stokes

stream function, azimuthal velocity, and pressure.
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