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Abstract

We introduce a finite difference derivative, on a non-uniform partition, with the charac-
teristic that the derivative of the exponential function is the exponential function itself,
times a constant, which is similar to what happens in the continuous variable case.
Aside from its application to perform numerical computations, this is particularly useful
in defining a quantum mechanical discrete momentum operator.

Keywords: exact finite differences derivative, discrete quantum mechanical momentum
operator, time operator

1. Introduction

Even though the calculus of finite differences is an interesting subject on its own [1–4] that

scheme is mainly used to perform numerical computations with the help of a computer. Finite

differences methods give approximate expressions for operators like the derivative or the

integral of functions, and it is expected that we get a good approximation when the separation

between the points of the partition is small; the smaller it becomes the better.

The momentum operator of Quantum Mechanics, when considering continuous variables, is

related to the derivative of functions, but its form, when the variable takes discrete values, is not

known yet (an approach is found in Ref. [5]); we need an exact expression for the momentum

operator in discrete QuantumMechanics. Thus, to have an expression for the quantummechan-

ical momentum operator on a mesh of points, we need an exact expression for the derivate on a

mesh of points. In this chapter, we intend to modify the usual finite differences definition of the

derivative on a partition to propose an operator that can be used as a momentum operator for

discrete QuantumMechanics.

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



2. Exact first-order finite differences derivatives of functions

In this section, we intend to introduce a finite differences derivative, which has the same

eigenfunction as for the continuous variable case. We start with results valid for any function,

but we will concentrate, later in the chapter, on the exponential function because that function

is used to perform translations along several directions in the quantum realm. The resulting

derivative operator will depend on the point at which it is evaluated as well as on the partition

of the interval and on the function of interest. This is the trade-off for having exact finite

differences derivatives.

2.1. Backward and forward finite differences derivatives

An exact, backward, finite differences derivative of an absolutely continuous function g xð Þ

(this class of functions is the domain of the momentum operator in Quantum Mechanics), on

a partition P ¼ x1; ; x2;⋯; xNf g ofN non-uniformly spaced points xj
� �N

1
, is defined through the

requirement that

Dbgð Þ xj
� �

≔

g xj
� �

� g xj � ∆j�1

� �

χ2 j� 1ð Þ
¼ g0 xj

� �

, (1)

where ∆j ¼ xjþ1 � xj and the spacing function χ2 jð Þ, which is a replacement for the usual

spacing function ∆j, is obtained by solving the above equality for χ2 jð Þ,

χ2 j� 1ð Þ≔
g xj
� �

� g xj � ∆j�1

� �

g0 xj
� � ¼

1

g0 xj
� �

X

∞

k¼1

�1ð Þk�1

k!
g kð Þ xj

� �

∆
k
j�1: (2)

This is an expression which is valid for points xj different from the zeroes of g0 xð Þ.

A definition for forward finite differences at xj is

Df g
� �

xj
� �

≔

g xj þ ∆j

� �

� g xj
� �

χ1 jð Þ
¼ g0 xj

� �

, (3)

where

χ1 jð Þ≔
g xj þ ∆j

� �

� g xj
� �

g0 xj
� � ¼

1

g0 xj
� �

X

∞

k¼1

1

k!
g kð Þ xj

� �

∆j

� �k
, (4)

valid for points different from the zeroes of g0 xð Þ.

These definitions coincide with the usual finite differences derivative when the function to

which they act on is the linear function g xð Þ ¼ a0 þ a1x, a0, a1 ∈C. An exact finite differences

derivative of other functions need of more terms than the one found in the usual definition of a

finite differences derivative, as can be seen in Eqs. (2) and (4).

Numerical Simulations in Engineering and Science164



Example. For the quadratic function g xð Þ ¼ a0 þ a1xþ a2x
2, a0, a1, a2 ∈C, the spacing function

χ2 x; jð Þ becomes

χ2 x; jð Þ ¼ ∆j �
∆j

2

a1
a2
þ 2x

, (5)

where x 6¼ �a1=2a2. A plot of this function is shown in Figure 1 for ∆j ¼ 1.

In the remaining part of this chapter, we only consider the derivative of the exponential

function; this choice fixes the form of the spacing functions χ1 jð Þ and χ2 jð Þ.

3. Exact first-order finite differences derivative for the exponential

function

Let us consider the exact backward and forward finite differences derivatives of ev x, at xj,

given by

Dbe
v xð Þj ≔

ev xj � ev xj�1

χ2 v; j� 1ð Þ
¼ v ev xj and Df e

v x
� �

j
≔

ev xjþ1 � ev xj

χ1 v; jð Þ
¼ v ev xj , (6)

where v∈C can be a pure real or pure imaginary constant, and the spacing functions χ1 v; jð Þ

and χ2 v; jð Þ are defined as

χ1 v; jð Þ≔
ev ∆j � 1

v
ffi ∆j þ

v

2
∆
2
j þO ∆

3
j

� �

, (7)

and

Figure 1. Three-dimensional plot of χ2 x; jð Þ for the quadratic function g xð Þ ¼ a0 þ a1xþ a2x
2 with ∆j ¼ 1.
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χ2 v; jð Þ ≔
1� e�v ∆j

v
ffi ∆j �

v

2
∆
2
j þO ∆

3
j

� �

: (8)

Note that we recover the usual definitions of a finite differences derivative in the limit ∆j ! 0

(N ! ∞) in which case χ1 v; jð Þ ¼ χ2 v; jð Þ ! ∆j. Hereafter, the exact finite differences derivatives

that we will consider are

Dbgð Þj ≔
gj � gj�1

χ2 v; j� 1ð Þ
and Df g

� �

j
≔

gjþ1 � gj

χ1 v; jð Þ
, (9)

with χ1 v; jð Þ and χ2 v; jð Þ given in Eqs. (7) and (8), and some properties of these definitions

follow. There is a plot of χ1 v; jð Þ in Figure 2. The spacing function χ1 v; jð Þ is defined for finite

values of v and ∆j.

The summation of a derivative. As is the case for continuous systems, the summation is the

inverse operation to the derivative,

X

m

j¼n

χ1 v; jð Þ Df g
� �

j
¼

X

m

j¼n

gjþ1 � gj

� �

¼ gmþ1 � gn, (10)

where 1 ≤ n < m < N, and

X

m

j¼n

χ2 v; j� 1ð Þ Dbgð Þj ¼ gm � gn�1, (11)

where 1 < n < m ≤N.

The exponential function is also an eigenfunction of the summation operation. The usual integral of

the exponential function also has its equivalent expression in exact finite differences terms

Figure 2. Three-dimensional plot of χ1 v; jð Þ for the exponential function ev x.
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X

m

j¼n

χ1 v; jð Þv ev xj ¼
X

m

j¼n

χ1 v; jð Þ Df e
v x

� �

j
¼ ev xmþ1 � ev xn , (12)

where 1 ≤ n < m < N, and

X

m

j¼n

χ2 v; j� 1ð Þv ev xj ¼ ev xm � ev xn�1 , (13)

where 1 < n < m ≤N.

Chain rule. The finite differences versions of the chain rule are

Df g h xð Þð Þ
� �

j
¼

g h xjþ1

� �� �

� g h xj
� �� �

χ1 v; jð Þ
¼ v

g h xjþ1

� �� �

� g h xj
� �� �

ev h xjþ1ð Þ�h xjð Þð Þ � 1

ev h xjþ1ð Þ�h xjð Þð Þ � 1

v χ1 v; jð Þ

¼ Df g
� �

j

χ1 v;∆h, j

� �

χ1 v; jð Þ
,

(14)

where

Df g
� �

j
≔v

g h xjþ1

� �� �

� g h xj
� �� �

ev h xjþ1ð Þ�h xjð Þð Þ � 1
, (15)

χ1 v;∆h, j

� �

¼ e
v h xjþ1ð Þ�h xjð Þð Þ�1

v and ∆h, j ¼ h xjþ1

� �

� h xj
� �

, and

Dbg h xð Þð Þð Þj ¼ Dbgð Þj
χ2 v;∆h, j�1

� �

χ2 v; j� 1ð Þ
, (16)

where χ2 v;∆h, j�1

� �

¼ 1� e�v h xjð Þ�h xj�1ð Þð Þ
� �

=v,

Dbgð Þj ≔v
g h xj

� �� �

� g h xj�1

� �� �

1� e�v h xjð Þ�h xj�1ð Þð Þ
: (17)

and h xð Þ is any absolutely continuous complex function on a; b½ �.

The derivative of a product of functions. The exact finite differences derivative of a product of

functions is

Df gh
� �

j
¼

gjþ1hjþ1 � gjhj

χ1 v; jð Þ
¼ gjþ1

hjþ1 � hj

χ1 v; jð Þ
þ
gjþ1 � gj

χ1 v; jð Þ
hj

¼ gjþ1 Df h
� �

j
þ hj Df g

� �

j
¼ e�v ∆jgjþ1 Dbhð Þjþ1 þ hj Df g

� �

j
,

(18)

where 1 ≤ j < N. Also, for the backwards derivative, we have
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Dbghð Þj ¼ gj Dbhð Þj þ hj�1 Dbgð Þj ¼ gj Dbhð Þj þ ev ∆j�1hj�1 Df g
� �

j�1
, (19)

where 1 < j ≤N.

The derivative of the ratio of two functions. For the finite differences, backward derivative of the

ratio of two functions we have

Db
g
h

� �

j
¼

1

χ2 v; j� 1ð Þ

gj

hj
�
gj�1

hj�1

� 	

¼
1

χ2 v; j� 1ð Þ
�
gj hj � hj�1

� �

hjhj�1
þ

gj � gj�1

� �

hj

hjhj�1

0

@

1

A

¼
Dbgð Þj

hj�1
� gj

Dbhð Þj

hjhj�1
,

(20)

Db
g

h

� �

j
¼

Dbgð Þj

hj
� gj�1

Dbhð Þj

hjhj�1
, (21)

Df
g

h

� �

j
¼

Df g
� �

j

hjþ1
� gj

Df h
� �

j

hjhjþ1
, (22)

Df
g

h

� �

j
¼

Df g
� �

j

hj
� gjþ1

Df h
� �

j

hjhjþ1
: (23)

Additional properties. A couple of equalities that will be needed below are

1

χ2 v; jð Þ
�

1

χ1 v; jð Þ
¼ v, and

χ1 v; jð Þ

χ2 v; jð Þ
¼ ev ∆j : (24)

For instance, these equalities imply that

Df g
� �

j
¼ e�v ∆j Dbgð Þjþ1: (25)

Summation by parts. An important result is the summation by parts. The sum of equalities (18)

and (19) combined with equalities (10) and (11) provide the exact finite differences summation

by parts results,

X

m

j¼n

χ2 v; jð Þgjþ1 Dbhð Þjþ1 þ
X

m

j¼n

χ1 v; jð Þhj Df g
� �

j
¼ gmþ1hmþ1 � gnhn, (26)

where 1 ≤ j < N, and

X

m

j¼n

χ2 v; j� 1ð Þgj Dbhð Þj þ
X

m

j¼n

χ1 v; j� 1ð Þhj�1 Df g
� �

j�1
¼ gmhm � gn�1hn�1, (27)

where 1 < j ≤N.

The integration by parts theorem of continuous functions is the basis that allows to define

adjoint, symmetric and self-adjoint operations for continuous variables [8, 9]. Therefore, the
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summation by parts results can be used in the finding of an appropriate momentum operator

for discrete quantum systems. The summation by parts relates two operators between them-

selves and with boundary conditions on the functions.

4. The matrix associated to the exact finite differences derivative

It is advantageous to use a matrix to represent the finite differences derivative on the whole

interval so that we can consider the whole set of derivatives on the partition at once. Let us

consider the backward and forward exact finite differences derivative matrices Db, f given by

ð28Þ

and

ð29Þ

We have used the definition for the backward derivative Dbgð Þj for all the rows of the back-

ward derivative matrix Db but not for the first line in which we have instead used the forward

derivative Df g
� �

1
. A similar thing was done for the forward derivative matrix Df . These

matrices act on bounded vectors g ¼ g1; g2;⋯; gN
� �T

∈C
N .

The matrix formulation of the derivative operators allows the derivation of some useful results

for the derivative itself.

4.1. Higher order derivatives

Many properties can be obtained with the help of the derivative matrices Db, f . Expressions for

the exact second finite differences derivative associated to the exponential function are

obtained through the square of the derivative matrices Db, f . These expressions are
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D2
bg

� �

1
¼ v

g2 � g1
χ1 v; 1ð Þ

¼ v Df g
� �

1
, (30)

D2
bg

� �

2
¼ v

g2 � g1
χ2 v; 1ð Þ

¼ v Dbgð Þ2, (31)

D2
bg

� �

j
¼

1

χ2 v; j� 1ð Þ

gj � gj�1

χ2 v; j� 1ð Þ
�

gj�1 � gj�2

χ2 v; j� 2ð Þ

� 	

¼
Df g
� �

j
� Df g
� �

j�1

χ2 v; j� 1ð Þ
, j ¼ 3,⋯, N: (32)

These expressions have the exponential function ev x as one of their eigenfunctions with

eigenvalue v2, as is also the case of the continuous variable derivative. Higher order derivatives

can be obtained in an analogous way.

The derivative matrices are singular, which means that they do not have an inverse matrix,

but, at a local level, the inverse operator to the derivative is the summation, as we have already

shown in a previous section.

4.2. Eigenfunctions and eigenvectors of Db, f

Now that we have the matrices Db, f representing the backward and forward derivatives, we

are interested in finding their eigenvalues λ∈C and its corresponding eigenvectors eλ. There-

fore, we begin by finding the values of λ for which the matrices Db, f � λ I are not invertible,

that is, when they are singular.

On one hand, for the backward finite difference matrix Db, the characteristic polynomial is

Db � λ Ij j ¼ λ λþ
1

χ1 v; 1ð Þ
�

1

χ2 v; 1ð Þ

� 	

1

χ2 v; 2ð Þ
� λ

� 	

1

χ2 v; 3ð Þ
� λ

� 	

⋯
1

χ2 v;N � 1ð Þ
� λ

� 	

¼ 0, (33)

whose roots are λ0 ¼ 0, λv ¼ �1=χ1 v; 1ð Þ þ 1=χ2 v; 1ð Þ ¼ v and λj ¼ 1=χ2 v; jð Þ, 2≤ j ≤ N �1. Let

us denote by eλ ¼ eλ,1; eλ,2;⋯; eλ,Nð ÞT to the eigenvector corresponding to the eigenvalue λ.

The system of equations for the components of the eigenvectors is

�
eλ,k

χ2 v; kð Þ
þ

1

χ2 v; kð Þ
� λ

� 	

eλ,kþ1 ¼ 0, (34)

with k ¼ 1,⋯, N � 1. Then, the eigenvectors are

e0 ¼ C

1

1

⋮

1

0

B

B

B

@

1

C

C

C

A

, ev ¼ C

ev x1

ev x2

⋮

ev xN

0

B

B

B

@

1

C

C

C

A

, ej ¼ C

0

0

⋮

0

yjþ1

⋮

yN

0

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

A

, (35)

where C is the normalization constant, and
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ym ¼
Y

N�1

k¼m

1�
χ2 v; kð Þ

χ2 v; jð Þ

� 	

, (36)

where 2 ≤ j < m ≤N. The quantities ym usually are very small.

On the other hand, for the forward finite difference matrix, Df , the characteristic polynomial is

Df � λ I










 ¼ �1ð ÞN�1
λ v� λð Þ

1

χ1 v; 1ð Þ
þ λ

� 	

1

χ1 v; 2ð Þ
þ λ

� 	

⋯
1

χ1 v;N � 2ð Þ
þ λ

� 	

¼ 0, (37)

Thus, the eigenvalues for the forward derivative are λ0 ¼ 0, λv ¼ v and λj ¼ �1=χ1 v; jð Þ, 1≤ j ≤

N �2, and the corresponding eigenvectors are

e0 ¼ C

1

1

⋮

1

0

B

B

B

@

1

C

C

C

A

, ev ¼ C

ev x1

ev x2

⋮

ev xN

0

B

B

B

@

1

C

C

C

A

, ej ¼ C

w1

w2

⋮

wj

0

⋮

0

0

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

A

, (38)

where

wm ¼
Y

m�1

k¼1

1�
χ1 v; kð Þ

χ1 v; jð Þ

� 	

(39)

and 1 ≤m < j ≤N � 2. The quantities wm are also very small; in fact, they vanish for the equally

spaced partition.

The matrices, Db, f , have the same eigenvalues λ0 and λv, and eigenvectors which are the

discretization of the function gv xð Þ ¼ C ev x on the partition x1; x2;⋯; xNf g (the eigenvector

1; 1;⋯; 1ð ÞT correspond to the eigenvalue v=0). This is the same eigenfunction that is found in

the continuous variable case because the exponential function is indeed an eigenfunction of the

continuous derivative. We note that the local derivatives Db, f g
� �

j
have the same eigenfunctions

as the matrices Db, f which are global objects. The other eigenvectors are fluctuations around

the null vector, which is the trivial eigenvector of the derivative.

4.3. The commutator between coordinate and derivative

Since the following equality holds:

Db xð Þj ¼
xj � xj�1

χ2 v; j� 1ð Þ
¼

∆j�1

χ2 v; j� 1ð Þ
¼ 1þ

v

2
∆j�1 þO ∆

2
j�1

� �

, (40)

from a local point of view, we have
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Db xgð Þj ¼ xj Db gð Þj þ gj�1 Db xð Þj ¼ xj Db gð Þj þ gj�1

∆j�1

χ2 v; j� 1ð Þ
, (41)

and then, the commutator between x and Db, acting on g, is given by

Db; x½ �gð Þj ¼ gj�1 1þ
v

2
∆j�1 þO ∆

2
j�1

� �� �

:

Thus, the commutator between Db and x becomes one in the limit of small ∆j, or large N,

because it also happens that gj�1 ! gj.

We now consider the commutator between the coordinate matrix Q≔diag x1; x2;⋯; xNð Þ, and

the forward derivative matrix Df . That commutator is

ð42Þ

The small ∆j (N ! ∞) approximation of this commutator is just

ð43Þ

There is coincidence with the local calculation; as expected, this matrix approaches the identity

matrix in the small ∆j limit. Note that this matrix is composed of backward translations of the

first N � 1 points and a forward translation of the point N � 1 without periodicity; the value of

the first point is lost.

4.4. Translations

It is well known that the derivative is the generator of the translations of its domain [8].

Therefore, here we investigate briefly how translations are carried out by means of the deriv-

ative matrices Db, f used as their generators. We will focus on the translation of the common

eigenvector ev ¼ ev x1
; ev x2

;⋯; ev xNð ÞT of both matrices.
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Let the linear transformation represented by the matrix formed by means of the standard

definition of a translation operator and of the exponential operator, given by

es Db, f ¼
X

∞

k¼0

s Db, f

� �k

k!
, (44)

where s∈R. Since ev is an eigenvector of Db, f with eigenvalue v (see Eqs. (35) and (38)), it

follows that Dk
b, f ev ¼ vk ev, k ¼ 1, 2,⋯, and then,

es Db, f ev ¼
X

∞

k¼0

s vð Þk
k!

ev ¼ es vev ¼ C

ev sþx1ð Þ

ev sþx2ð Þ

⋮

ev sþxNð Þ

0

B

B

B

@

1

C

C

C

A

, (45)

that is, es v is an eigenvalue of es Db, f with corresponding eigenvector ev, but the right-hand side

of this equality is also a translation by the amount s of the domain of the derivative operators.

We point out that s is arbitrary and then the vector e0v ¼ es Db, f ev is the function ev x evaluated at

the points of the translated partition P0 ¼ x1 þ s; x2 þ s;⋯; xN þ sf g. Thus, we can perform not

only discrete translations but continuous translations as well.

The usual periodic, discrete translation found in the papers of other authors [6, 7] is obtained

when the separation between the partition points is the same (denoted by ∆, a constant) and

with periodic boundary conditions ev,1 ¼ ev,N.

4.5. Fourier transforms between coordinate and derivative representations

In this section, we define continuous and discrete Fourier transforms and establish some of

their properties regarding the Fourier transform of continuous and discrete derivatives. The

derivative eigenvalue �ip should be understood, and we will omit it from the formulae below

for the sake of simplicity of notation.

Given a function g pð Þ in the L1-space and a non-uniform partition P ¼ x�N; x�Nþ1;⋯; xNf g,
with x�N ¼ �xN, the function.

Fgð Þ xj
� �

≔
1
ffiffiffiffiffiffi

2π
p

ð

∞

�∞

e�ixjpg pð Þdp, (46)

is the continuous Fourier transform of g pð Þ at xj. Having introduced the summation with

weights χ1 v; jð Þ of Eq. (10), here we define two discrete Fourier transforms at p as

F bgð Þ pð Þ≔ p

2 sin pxNð Þ
X

N

j¼�N

χ2 Δj

� �

e�ixjþ1pgjþ1: (47)

F f g
� �

pð Þ≔ p

2 sin pxNð Þ
X

N

j¼�N

χ1 Δj

� �

e�ixjpgj (48)
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Now, the discrete derivative of the product e�ixpg at xj, with derivative eigenvalue �ip, is

readily computed to give (see Eq. (18)).

Df e
�ixpg

� �

j
¼ �ip gjþ1 e�ixp

� �

j
þ e�ixjp Df g

� �

j
: (49)

The summation of this equality, with weights χ1 �ip; jð Þ, results in

X

N�1

j¼�N

χ1 jð Þ Df e
�ixpg

� �

j
¼ �ip

X

N�1

j¼�N

χ1 jð Þgjþ1e
�ixjp þ

X

N�1

j¼�N

χ1 jð Þe�ixjp Df g
� �

j
, (50)

or

X

N�1

j¼�N

χ1 jð Þe�ixjp �iDf g
� �

j
¼ p

X

N�1

j¼�N

χ2 jð Þe�ixjþ1pgjþ1 þ
X

N�1

j¼�N

χ1 jð Þ �iDf e
�ixpg

� �

j
: (51)

According to Eqs. (10), (24), (47) and (48), this equality can be rewritten in terms of discrete

Fourier transforms.

F f �iDf g
� �� �

pð Þ ¼ p F bgð Þ pð Þ � i p
e�ixNpgN � e�ix�Npg�N

2 sin pxNð Þ
: (52)

Another expression for the finite differences of the derivative of a function is obtained as

follows. Considering the relationship (see Eq. (18), the second expression with g ¼ e�ixp)

Df e
�ixpg

� �

j
¼ ei∆jpe�ixjþ1p Dbgð Þjþ1 þ gj Df e

�ixp
� �

j
: (53)

The summation of this equality, with weights χ1 jð Þ, results in

X

N�1

j¼�N

χ2 jð Þe�ixjþ1p �iDbgð Þjþ1 ¼ p
X

N�1

j¼�N

χ1 jð Þe�ixjpgj þ
X

N�1

j¼�N

χ1 jð Þ �iDf e
�ixpg

� �

j
, (54)

and, according to Eq. (10), this equality can be rewritten as the discrete Fourier transform

F b �iDbgð Þð Þ pð Þ ¼ p F f g
� �

pð Þ � i p
e�ixNpgN � e�ix�Npg�N

2 sin pxNð Þ
: (55)

These are the equivalent to the well-known identities found in continuous variables theory.

Thus, the multiplication by p in forward p-space corresponds to the backward finite differences

derivative in coordinate space. Additionally, the multiplication by p in backward p-space

corresponds to the forward finite differences derivative in coordinate space, when choosing

vanishing or periodic boundary conditions.

The integration by parts of the simple relationship
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d eixjp

dp
¼ i xje

ixjp (56)

results in

i xj

ð
∞

�∞
dp eixjph pð Þ ¼ �

ð
∞

�∞
dp eixjp

d h pð Þ
dp

þ eixjph pð Þ
�
∞

p¼�∞ (57)

or in terms of continuous Fourier transforms,

xj Fhð Þj ¼ F i
d h

dp

� 	

j

� ihffiffiffiffiffiffi
2π

p eixjph pð Þ





∞

p¼�∞
: (58)

These equalities are like the usual properties between the spaces related by the Fourier trans-

form.

5. Quantum mechanical momentum and time operators

We can apply the results of previous sections to discrete Quantum Mechanics theory. Let us

rewrite Eq. (26) in terms of complex wave functions ψ,f∈ ℓ
2 P; a; b½ �ð Þ defined on the partition

P ¼ x1; x2;⋯; xNf g of a; b½ �. We obtain

XN�1

j¼1

χ2 v; jð Þψ∗

jþ1 �iℏDbfð Þjþ1 �
XN�1

j¼1

χ∗

1 v; jð Þfj �iℏDfψ
� �

∗

j
¼ �iℏ ψ∗

NfN � ψ∗

1f1

� �
: (59)

This equality is rewritten as

ψjbPbf
� �

b
� bP fψjf
� �

f
¼ �iℏ ψ∗

NfN � ψ∗

1f1

� �
, (60)

where the momentum-like operators bPb and bPf are defined as

bPb ≔� iℏDb, bPf ≔� iℏDf , (61)

and the bilinear forms ψjfð Þb and ψjfð Þf are defined as

ψjfð Þb ≔
XN�1

j¼1

χ2 v; jð Þψ∗

jþ1fjþ1, (62)

ψjfð Þf ≔
XN�1

j¼1

χ∗

1 v; jð Þψ∗

j fj: (63)

We recognize Eqs. (60) and (61) as the finite differences versions of the equation that is used to

define the adjoint operator and the symmetry of an operator in continuous Quantum
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Mechanics. Thus, we propose that the momentum-like operators bPb and bPf are the “adjoint” of

each other, on a finite interval a; b½ �, when

ψjbPbf
� �

b
¼ bP fψjf

� �

f
, (64)

together with the boundary condition on the wave functions ψ and f,

ψN ¼ eiθψ1, fN ¼ eiθf1, (65)

where θ∈ 0; 2π½ Þ is an arbitrary phase. This gets rid of boundary terms.

With these definitions, we are closer to have a finite differences version of a self-adjoint

momentum operator on an interval [12, 13] for use in discrete QuantumMechanics. We believe

that our results will lead to a sound definition of a discrete momentum operator and to the

finding of a time operator in Quantum Mechanics [10–13].

6. The particle in a linear potential

As an application of the ideas presented in this chapter, we consider the particle under the

influence of the linear potential

V xð Þ ¼
∞, x ≤ 0,

c x, x > 0,


(66)

where c > 0. The eigenfunction corresponding to this potential is

ψE xð Þ ¼ d Ai

ffiffiffiffiffiffiffiffiffi
2mc

ℏ
2

3

r
x�

E

c

� 	" #

, (67)

where Ai denotes the Airy function and d is the normalization factor, m is the mass of the

quantum particle and ℏ is Planck’s constant divided by 2π. The boundary condition

ψE x ¼ 0ð Þ ¼ 0 provides an expression for the energy eigenvalues E, which is

En ¼ �

ffiffiffiffiffiffiffiffiffi
ℏ
2c2

2m

3

s

αnþ1, n ¼ 0, 1,⋯ (68)

where αnf g are the roots of the Airy function, which are negative quantities.

In this case, the energy values are discrete and non-uniformly spaced, and the operator conjugate

to the Hamiltonian would be a time-type operator with a discrete derivative bT ¼ �iℏDb, f . The

eigenfunctions of this time-type operator are calculated as in Eq. (38)

xjth i ¼
XM

n¼0

e�i t Enψn xð Þ, (69)
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where ψn xð Þ is the eigenfunction of the Hamiltonian with energy En, Eq. (67). A plot of these

time-type eigenstates, with M ¼ 600, is found in Figure 3. We can identify the classical trajec-

tories with initial conditions x0; p0
� �

¼ En

c ; 0
� �

in that figure; they are the regions in which the

probability is higher. We can also identify the interference pattern between them.

In conclusion, we can have an exact derivative without the need of many terms, and this

allows for the definition of adjoint operators related to the derivative on a mesh of points.
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