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Abstract

Fatigue and fracture problems, which lead to 95% of structural failure, have attracted
much attention of engineers and researchers all over the world. Compared with exper-
imental method, numerical simulation method based on empirical models shows its
remarkable advantages in structure design because of less cost and higher efficiency.
However, the application of numerical simulation method in fatigue lifetime prediction
is restricted by low accuracy and poor applicability in some circumstances. Most numer-
ical method is based on empirical models. This chapter first reviews various kinds of
empirical models of fatigue and fracture problems, including some modifying methods
of basic empirical models, which have been widely applied to fatigue lifetime prediction
and indicated their advantages and disadvantages. Then, FEM is introduced as an impor-
tant method to obtain stress intensity factor or crack growth route. At last, this chapter is
finished with existing problems and current trends in fatigue lifetime prediction via
numerical method.

Keywords: fatigue lifetime prediction, crack propagation, numerical method, empirical
model, Paris law, perturbation approach, extended finite element method, fractal
geometry

1. Introduction

With the development of mechanical engineering and manufacturing technology, engineering
structures applied in aircrafts and huge machines become much more complex. These struc-
tures usually bear constantly changing loads in tour of duty. Although the max stress in
structure caused by these dynamic loads is much lower than yield limit and ultimate strength
of material, structure is destroyed after a long time. Internal defects in engineering structures
appear in producing, processing, and assembling process. Internal defects lead to stress con-
centration, crack initiation, and propagation and even fatigue failure under dynamic load.

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
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236 Contact and Fracture Mechanics

According to statistical data, loss caused by improper structural fatigue lifetime design in
America equals 4.4% of gross national product, and 95% of structure failures are related to
fatigue break caused by alternating dynamic loads [1]. There are numerous historical examples
that result in great loss of human life and economic value. For example, two Comet aircraft
crashed in 1954, and the main reason is fatigue of fuselage structure [2]. Mechanical failure
caused by fatigue, which concentrates much attention of engineers and researches, has been
studied for more than 150 years [3]. However, it is still much difficult to prevent fatigue failure
because fatigue of materials is far from being completely comprehended [4].

Metallic materials are widely applied in design of structures and parts in present days; there-
fore, fatigue of metals is a problem deserving efforts. In fact, the fatigue process is constitutive
of crack initiation and crack propagation to total failure, as shown in Figure 1, and fatigue
lifetime should conclude crack initiation life and crack propagation life.

On one hand, it is widely accepted that the crack initiation phase costs a majority of fatigue
lifetime in a high-cycle fatigue regime [5]. Furthermore, crack initiation behavior has a great
influence on crack growth prediction in a unified approach for fatigue lifetime prediction [6].
Therefore, knowledge and technology of crack initiation life prediction are significant for
evaluation of fatigue lifetime of structures and deserve our efforts to study deeply. On the
other hand, there are frequently small cracks and defects in engineering structures due to
manufacturing and environment factors; therefore, fatigue crack propagation prediction plays
an important role in estimating the structural safety under dynamic loads.

Therefore, people divide structural life prediction problem into two problems: fatigue problem
and fracture problem. People pay attention to crack initiation life in fatigue problem and make
efforts to construct the relationship between structure life and stress or strain in structure. It is
assumed in fatigue problem that there is a small crack existing in structure, and crack propa-
gation behavior is studied in order to predict the remaining life of structure. These two
problems have aroused widespread concern nowadays.
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Figure 1. Schematic illustration of crack length versus time/cycles.
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Experimental method and numerical method are two significant ways to analyze fatigue
lifetime of structures. Experimental method has been widely applied since a long time ago.
However, it is much expensive to predict structural life via experimental method. Furthermore,
it is difficult to execute experiments for some complicated structures. Therefore, numerical
method based on empirical models becomes much more popular in structural life prediction,
and in some cases, those do not need high accuracy because of less cost and higher efficiency.

2. Empirical models in fatigue problem

Approaches to predict fatigue initiation life in literature can be classified into several types.
These approaches study the fatigue problem from different perspectives, involving the average
or local values of stresses and strains, the initiation of crack and defects, and macro- and
microanalysis [7]. Nevertheless, people prefer to use phenomenological models, which reflect
general material response at macroscopic scale under cyclic loads, rather than complex micro-
or mesoscopic model of material fatigue behavior in structure design [8].

2.1. Empirical models of high-cycle fatigue

Wohler is the pioneer in this field, who established the traditional stress-based approach in the
nineteenth century [9]. He carried out a few fatigue experiments on metallic materials and
indicated the relationship between fatigue crack initiation life and cyclic stress. He proposed to
apply S — N curves in description of fatigue behavior of metals in his paper. Effectiveness of
this method in high-cycle fatigue analysis is demonstrated afterward by many researchers.
There are several kinds of expression of S — N curve, mainly including exponential function
expression and power function expression. Basquin was the first person who suggested using
exponential function to construct the expression of S — N curve in the twentieth century. The
typical exponential function expression is written as follows:

e N = C (1)

where m and C are constants, which can be determined based on experiment data, N stands for
the number of loading cycles, and Spax is the maximum value of stress at specific stress ratio.
The power function expression with two parameters is usually expressed in the following
form:

S"N =C )

where S, is the stress amplitude at specific ratio. The power function expression with three
parameters is expressed as

(Smax — C)"N =D 3)

or
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A

S = C <1 + W) 4)

where D, A, and « are constants. The parameter C in Egs. (3) and (4) nearly equals fatigue limit.

2.2. Empirical models of low-cycle fatigue

Stress level is usually high in low-cycle fatigue, and the maximum value of stress is nearly
close to the ultimate strength of material. The number of loading cycles in low-cycle fatigue,
which is not more than 10° times, is much less than that in high-cycle fatigue. Plastic deforma-
tion plays an important role in low-cycle fatigue, in which the accumulation of plastic defor-
mation results in structural failure. Because low-cycle fatigue lifetime is much sensitive to the
change of stress level, S — N curve is unable to reflect the low-cycle fatigue performance of
material. Therefore, ¢ — N curve is applied to low-cycle fatigue analysis. The most widely
accepted low-cycle fatigue lifetime model based on ¢ — N curve is proposed by Basquin [10],
which is expressed as follows:

/

e, =2 =L N (5)

Q

where ¢, is the amplitude of elastic strain, E is the elasticity modulus of material, a} is the

fatigue strength coefficient of material, and b is the fatigue strength exponent. Because the
relationship between plastic strain and fatigue lifetime is not taken into consideration in
Basquin formula, Coffin [11] and Manson [12] proposed an empirical model when studying
the relationship between fatigue lifetime and plastic strain amplitude. The expression of
Coffin-Manson model is.

i

& =2 (2Ny)" + ¢ (2N ©6)

in which ¢, stands for the amplitude of total strain and ¢; and ¢ stand for the fatigue ductility

coefficient and fatigue ductility exponent separately. The relationships between plastic strain,
elastic strain, total strain, and fatigue lifetime are shown in Figure 2.

2.3. Improved models considering mean stress or stress ratio

There are many factors, such as residual stress, temperature, multiaxial stress, and geometrical
feature, that influence structural fatigue lifetime, in which mean stress or stress ratio concen-
trates the most attention.

2.3.1. Walker formula

Mean stress and stress ratio are of great significance for structural fatigue lifetime. Walker
formula considers sensitivity of different materials to mean stress; therefore, it shows well
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Figure 2. Elastic strain-life curve and plastic strain-life curve.

effect for all materials [13, 14]. An equivalent local strain parameter is defined in Walker
formula; its expression is

1—-r
€0y = (Zga)r <Ur£‘ax) (7)

r is the material parameter. In order to construct the relationship between Walker formula and
fatigue lifetime, Jaske et al. [15] carried out many experiments on different kinds of materials
and proposed following expression based on experimental data:

log <€u5e/g§q)

log ( / )

log Ny = Ao + Ajtanh™ 8)

where Ay and A; are regression coefficients and ¢, and ¢, are the upper and lower limits of this
reverse hyperbolic tangent function, respectively. The strain-life curve is shown in Figure 3.
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Figure 3. Strain-life curve of Walker formula.
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There are too many parameters to be fitted in this method, which need plenty of experimental
data. That disadvantage constricts badly the application of Walker formula in engineering.

2.3.2. Morrow’s modifying method

Morrow’s modifying method and SWT modifying method are two commonly used methods.
Morrow mean stress modifying formula is shown as follows [16]:

of \
&= ( - Z—T) (2Ny)' + ¢} (1 - ‘;—;1) (2Ny) )

f

Considering the greater influence made by mean stress in long life period, further modifying
method is given:

o Om b c
€= (1 = ?}) (2Nf)" + ¢ (2Np) (10)

where ¢, is strain amplitude and o,, is mean stress. Morrow’s modifying method aims at elastic
strain; therefore, it is only suitable when stress amplitude is constant or mean stress is com-
pression stress.

2.3.3. SWT modifying method

Expression of Smith-Watson-Topper (SWT) parameter modifying method is [17]

12

o
Omaxés =~ (2N7)* + 0} (2Ny)"* (11)
where
Omax = Om 1 0q (12)
O-ﬂ.lk
St
k
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Figure 4. Fatigue limit curve and Goodman simplified straight line.
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SWT mean stress modifying method is not valid for compression mean stress, and it will
obtain too conservative result when the stretching mean stress is large.

2.3.4. Goodman’s modifying method

We can acquire the fatigue limit points of material at different stress ratio r = 0min/0max under
infinite life requirement with the support of large amount of experimental data. Draw these
points in rectangular coordinate system whose X-axis is mean stress 0, = (Omin + Tmax)/2 and
Y-axis is stress amplitude 0, = (0max — Omin)/2; thus, the fatigue limit curve is fitted based on
these points. It is unpractical to carry out many experiments on all materials and structures in
engineering, so we usually use a simplified straight line to replace the fatigue limit curve.
Goodman simplified straight line, which is one of these straight lines, is widely accepted due to
its simplicity and conservative estimation [18], as shown in Figure 4. Goodman simplified
straight line can be expressed in the following relationship:

Og4 Om
Ay m_q 1
5., (13)

where S, stands for the fatigue strength of material and S, stands for the ultimate tensile
strength of material. However, it has been proved that Goodman modifying method is only
appropriate for low-ductility material, such as high-strength steel and cast iron.

3. Empirical models in fracture problem

3.1. Paris law

Paris et al. [19] made great contribution in this field who was pioneer suggesting that crack
growth rate, da/dN, was a function of the maximum stress intensity factor Ky,ax in 1961. Then,
Liu [20] related the crack growth to the stress intensity factor range AK subsequently. Paris and
Erdogan [21] proposed the well-known Paris law, which can be presented as follows:

da

— = C(AK)" 14
&= C(AK) (19
where C and m can be obtained from experiment data, and they are usually considered as

constants for a particular metal and environment [22]. Since then researchers have made efforts to
study on Paris law and its deviation; however, we are still far from a complete comprehension [23].

It is believed that the relationship between crack propagation and AK can be divided into three
distinct regions, as shown in Figure 5. The crack propagation is slow in region A, and concept
of a fatigue threshold stress intensity factor range AKy, is proposed by Mcclintock [24], beneath
which cracks are regarded not to grow. In region B, the “mid growth” range, crack propaga-
tion is stable, and Paris law is supposed to be held. Region C is associated with fast crack
propagation leading to final failure. Therefore, calculation of number of loading cycles in
region B, which could be gained from Paris law, is significant for prediction of fatigue crack
growth life.
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Figure 5. Schematic diagram of the relationship between crack growth and AK.

3.2. Improved models
3.2.1. Models considering mean stress or stress ratio

Since Paris law is proposed, much related work is done, and many modifying methods are put
forward [22, 25-27]. It is commonly accepted that crack growth rate of material is related to mean
stress or stress ratio. Several models, in which Forman formula [28] and Walker formula [29] are
most famous, take this factor into consideration. Forman formula also considers the fracture
toughness as an important factor; its expression is

da C(AK)"

AN~ (1-R)K.— AK 15

Forman formula is valid for dealing with experimental data of many kinds of materials,
especially high-hardness alloy, but it is hard to obtain the fracture toughness K. for high-
ductility material. According to following relationship:

Kmin
R = 16
Kmax ( )
AK = Kmax — Kmin (17)
Forman formula can be transformed as follows:
da  CKpmax(AK)"™! 18)

dN B K¢ — Kmax

Forman formula explains the reason why crack growth enlarges sharply when stress intensity
factor is close to fracture toughness.
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Walker formula is another wide-applied crack propagation model in engineering, which
expresses the influence made by stress ratio on crack growth rate. Furthermore, it takes
maximum of stress intensity factor into consideration:

da

AN =Cl(1- R)meaX]n (19)
Three parameters C, m, and n can be acquired based on experimental data of crack propaga-
tion experiments with different stress ratios. Walker formula is valid when R > 0 and R < 0.

According to the relationship between stress ratio and amplitude of stress intensity factor,
another commonly used form of Walker formula is obtained:

da
dN max (AK) 20)

3.2.2. Model based on crack closure theory

In 1971, Elber [30] found that crack opened completely only when the stress was larger than a
certain value, and he developed a modified Paris law based on this theory. The stress when
crack is completely open is defined as crack opening stress ¢,,, and the stress when crack
begins to close is defined as crack closing stress o.. It has been demonstrated that crack
opening stress is nearly equal to crack closing stress. The modified formula is written as
follows:

dﬂ m
and
dn _ C(UAK)" = U"C(AK)" 22)
AN -

U is the crack closure parameter, and its expression is

AKeﬁf Aaeﬁf (Umax - Uop)
U="3K =~ %o Ao O (23)

where efficient stress amplitude Ao, is the difference between maximum stress omax and crack
opening stress g.

3.2.3. Model considering crack retardation caused by high load

In Weeler’s opinion [31], when structure bears cyclic load with constant amplitude; an occa-
sional overload enlarges the size of plastic zone on crack tip, which would prevent crack from
growing to some degree. On the basis of Weeler’s research, Willenberg [32] assumed that crack
retardation is due to residual compression stress o,.;, which is related to plastic deformation
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caused by high load. Combining the expression of Forman formula, crack growth rate in
retardation period is acquired:

d C(AKg)"
ch\ZI (- R;)Kﬁ)— AKg 24)
The effective stress intensity factor range is
MK = f|(Omar)gg = (Omin)y| V0 25)
and the effective stress ratio is
R = (0min) o/ (Tmax ) (26)
The maximum and minimum values of effective cyclic stress are
(Omax) e = Omax — Ores (27)
(Omin)ofp = Omin — Ores (28)

Then, crack growth rate in retardation period can be estimated as the residual stress oy, is
known. However, the residual stress o,.; can only be obtained via experimental method.

3.2.4. Model considering crack propagation threshold

In 1972, Donahue [33] took threshold of stress intensity factor range AKy, into consideration
and proposed a generalized Paris law. The modified expression is

da

N C(AK — AKy)" (29)

The following expression was proposed by McEvily and Greoeger [34] in their research about
fatigue crack propagation threshold in 1977:

d&l 2 AK
& C(aK = AK) (1 e Km) (30)

in which material constant m equals 2.

Furthermore, if considering stress ratio at the same time, Paris law can be modified into the
following expression:

da  C[(AK)" — (AKy)"]
AN~ (1-R)K.—AK

(31)

It can be figured out that the above equation is further modified on the basis of Forman
formula.
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In 1999, McEvily found it out that the following modification is suitable for many alloys’
fatigue crack propagation:

da 2

—— = C(AK.p — AK, 2
N C(AKg fth) (32)
where AK,m;, stands for the effective stress intensity factor range near crack propagation
threshold. This modifying method considers the influences created by crack closure and small

crack’s elastic-plastic behavior, and it is useful to predict the long crack propagation under
cyclic positive stress.

3.2.5. Model based on perturbation series expansion method

Perturbation series expansion method, which is a common method to deal with nonlinear
problems, has been widely used in fluid mechanics, structure dynamics, and damage identifi-
cation. In this method, the parameter in ideal model is regarded to have a small perturbation in
order to study the properties of system. This parameter can be expanded into series form:

a= e (33)

where ¢ is a positive small constant.

Qiu and Zheng [35] proposed a novel numerical calculation method to investigate the fatigue
crack growth evolution in aluminum alloy sheets accounting for the measurement error. The
initial crack length is considered as a modified parameter with a small correction term due to
the measurement error; the solution to the crack growth equation is expressed in the form of a
perturbation series, and a series of modified equations for predicting the crack length history
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Figure 6. Comparison of the measured and predicted crack length history in Ref. [35].
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are derived. The proposed method is verified to be indeed feasible and effective for predicting
fatigue crack growth evolution by comparing numerical results with experimental data, as
shown in Figure 6.

4. Finite element method

There are many kinds of numerical method to obtain stress intensity factor or crack growth
route after continuous study of many researchers. Finite difference method (FDM), boundary
element method (BEM), mesh-less method, and finite element method (FEM) are four common
methods. Many studies have been carried out based on these numerical methods: Christen
applied FEM to two-dimensional crack problem and obtained the displacement field and
stress field; Nayroles [36] combined the moving least square method (MLSM) with mesh-less
method to solve boundary problem. FEM is the most widely used method in above four
methods at present [37, 38]. Considering singularity on crack tip, element’s density is increased
in order to obtain the precious results. Therefore, FEM's rate of convergence is low, and precision
is unsatisfactory. People developed precious numerical solution methods based on several kinds
of theories, in which semi-analytic numerical solution and new type elements are hot issues.

4.1. Extended finite element method

Collapsed singular isoparametric elements, which can reflect the singularity on crack tip cor-
rectly, were introduced by Barsoum [39]. This method is popular because of its high precision
and executing simplicity. In this method, planar eight-node isoparametric element is degenerated
into singular isoparametric element, as shown in Figure 7. Stress intensity factor is calculated
based on the displacements of nodes A and B; the expression is.

E 2n
Ki=7 f(4UA — vg) (34)

E
1—p?°

elasticity modulus, Poisson ratio, and displacement perpendicular to crack surface. Chen and

In plane stress problem, E' = E; in plane strain problem, E' = E, u, and v are, respectively,

5

7 crack tip
3(B

crack surface / 2(A )I IL/4| |

Figure 7. Eight-node singular isoparametric element.
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Kuang [40] use interpolation method to acquire the displacements of nodes A and B on the
basis of Barsoum’s research and obtain the following expression of stress intensity factor:
E' 2n

= P oa—v0) (35)

I
Lin [41] proposed the 1/4 node displacement method, as shown in Figure 8; the corresponding
calculation equation of stress intensity factor is
E' 2n

Ky = o TUA (36)

Belytschko [42] applied extended finite element method (XFEM) to calculating stress intensity
factor and neglected the high-order terms of asymptotic displacement function. The calcula-
tion results were not satisfying enough. Karihaloo and Xiao [43] took high-order terms of
asymptotic displacement function and outer elements of crack tip into consideration, thus
obtaining results of high accuracy. However, calculation efficiency of this method is relatively
low. Although researchers have obtained precious results with the help of new type elements,
there are still many factors that influence calculation results that need to be studied.

4.2. Fractal finite element method

In the aspect of semi-analytic numerical method, weighted function method and boundary
collocation method develop fast. These methods are able to acquire results of high accuracy
when dealing with particular models; however, calculation accuracy cannot be guaranteed
when dealing with general models.

Fractal finite element method is also a semi-analytic method. Fractal geometry is introduced
into ordinary FEM, which not only improves calculation accuracy but also shortens calculation
time and saves storage capacity of a computer. In fractal finite element method, an artificial
boundary Iy is introduced to divide the structure with crack into two parts: singular field D

crack surface

crack tip

Figure 8. Mesh of 1/4 node element displacement method.
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near crack tip and normal field Q) far away from crack tip, as shown in Figure 9. Ordinary
finite element mesh is constructed in normal field; self-similar mesh needs to be constructed
based on fractal theory in singular field.

Self-similar mesh is shown in Figure 10. In singular field, infinite curves {I';,I'5, I3, ---} similar to
Iy are generated based on the proportionally coefficient £(0 < & < 1) regarding crack tip as
centre. The density of fractal mesh is controlled by . Based on appropriate global interpolation
function and fractal transforming technique, plenty of unknown degrees on slave nodes are

/_\_/___.-

B
crack

artificial boundary

TN~

Figure 9. Illustration of division of structure with crack.

master node

Qma] ﬁ%

e

fractal field

rl)

Figure 10. Self-similar mesh in singular field.
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transformed into a series of generalized coordinates. Stress intensity factor on crack tip can be
calculated via solving generalized coordinates, thus saving calculation time and storage capacity
obviously.

5. Conclusion

This chapter reviews the most common empirical models and numerical methods of structural
fatigue lifetime prediction. The main advantages and disadvantages of these methods are discussed.

Numerical method based on empirical models, as one of significant ways to analyze structural
fatigue life, becomes popular in structural life prediction nowadays because of less cost and
higher efficiency.

S — N curve and ¢ — N are applied to high-cycle and low-cycle fatigue problems, respectively.
And there are many modified models considering mean stress or stress ratio. However, this
chapter further shows that part of these models are too complicated to apply to engineering,
and other models are only valid in some specific cases.

Paris law is the most significant model of crack propagation problem. But it only considers the
stress intensity factor as the factors make influences on crack propagation. Many improved
models considering stress ratio, crack closure, crack retardation, and crack propagation thresh-
old have been put forward.

FEM is the most popular numerical method to obtain stress intensity factor or crack growth
route. Extended finite element method and fractal finite element method are two mainly
developing trends of FEM. However, it is still difficult to achieve high efficiency and accuracy
of numerical method at the same time.
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