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Abstract

In this chapter, for the reader who does not major in mathematics but chemistry, we
discuss general group theory from a mathematical viewpoint without proofs. The main
purpose of the chapter is to reduce reader’s difficulties for the abstract group theory and
to get used to dealing with it. In order to do this, we exposit definitions and theorems of
the field without rigorous and difficult arguments on the one hand and give lots of basic
and fundamental examples for easy to understand on the other hand. Our final goal is to
obtain well understandings about conjugacy classes, irreducible representations, and
characters of groups with easy examples of finite groups. In particular, we give several
character tables of finite groups of small order, including cyclic groups, dihedral groups,
symmetric groups, and their direct product groups. In Section 8, we deal with directed
graphs and their automorphism groups. It seems that some of ideas and techniques in
this section are useful to consider the symmetries of molecules in chemistry.

Keywords: group theory, finite groups, conjugacy classes, representation theory,
character tables, directed graphs, automorphisms of graphs

1. Introduction

To make a long story short, a group is a set equipped with certain binary operation, for

example, the set of all integers with the addition and the set of all nth power roots of unity

with the multiplication. One of the origins of the group theory goes back to the study of the

solvability of algebraic equations by Galois in the nineteenth century. He focused on the

permutations of the solutions of an equation and gave rise to a concept of permutation groups.

On the other hand, in 1872 Felix Klein proposed that every geometry is characterized by its

underlying transformation groups. Here the transformation group means the group that

comes from certain symmetries of the space. By using group theory, he classified Euclidean

geometry and non-Euclidean geometry. As is shown earlier, groups have been established as

important research objects on the study of permutations and symmetries of a given object. The
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group theory has achieved a good progress in modern mathematics and has various deep and

sophisticated theories itself.

Today, the group theory has multiple facets and widespread applications in a broad range of

science, including not only mathematics and physics but also chemistry. In chemistry, group

theory is used to study the symmetries and the crystal structures of molecules. For each

molecule, a certain group, which is called the point group, is defined by the symmetries on

the molecule. The structure of this group reflects many physical and chemical properties,

including the chirality and the spectroscopic property of the molecule. The group theory has

become a standard and a powerful tool to study various properties of the molecule from a

viewpoint of the molecular orbital theory, for example, the orbital hybridizations, the chemical

bonding, the molecular vibration, and so on. In general, although each of modern mathemat-

ical theories is quite abstract and sophisticated to apply to the other sciences, the group theory

has succeeded to achieve a good application by many authors, including Hans Bethe, Eugene

Wigner, László Tisza, and Robert Mulliken. It seems that such expansions of mathematics to

the other sciences are quite blessed facts for mathematicians.

Here we organize the contents of this chapter. First, we give mathematical notation and

conventions which we use in this chapter. The reader is assumed to be familiar with elemental

linear algebra and set theory. In Section 3, we review the definitions and some fundamental

and important properties of groups. In particular, we show several methods to make new

groups from known groups by considering subgroups and quotient groups. Then, we consider

to classify known groups by using the concept of group isomorphism. In Section 4, we discuss

and give many examples of finite groups, including symmetric groups, alternating groups,

and dihedral groups. Then we give the classification theorem for finite abelian groups, which

we can regard as an expansion of the Chinese remainder theorem. In Section 5, we consider to

classify elements of groups by the conjugation and discuss the decomposition of a group into

its conjugacy classes. In Section 6, we explain basic facts in representation theory of finite

groups. In particular, we review representations of groups, irreducible representations, and

characters. Finally, we give several examples of character tables of well-known finite groups. In

Section 8, we consider finite-oriented graphs and their automorphisms. The automorphism

group of a graph strongly reflects the symmetries of the graph. We remark that the reader can

read this section without the knowledge of the facts in Sections 5 and 6.

2. Notation and conventions

In this section, we fix some notation and conventions and review some definitions in the set

theory and the linear algebra:

N ≔ the set of natural numbers ¼ 1; 2; 3;…f g
Z ≔ the set of integers ¼ 0;�1;�2;�3;…f g
Q ≔ the set of rational numbers

R ≔ the set of real numbers

C ≔ the set of complex numbers ¼ aþ b
ffiffiffiffiffiffiffi

�1
p

ja; b∈R
n o
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• For any a, b∈Z\ 0f g, the greatest common divisor of a and b is denoted by gcd a; bð Þ.

• For a set X, the cardinality of X is denoted by ∣X∣. If X is a finite set, ∣X∣ means the number

of elements of X.

• For sets X and Y, the difference of sets X and Y is denoted by X\Y≔ x jx∈X; x∉Yf g.

• A map f : X ! Y is surjective if for any y∈Y; there exists some x∈X such that f xð Þ ¼ y.

• A map f : X ! Y is injective if f xð Þ ¼ f x0ð Þ for x, x0 ∈X; then x ¼ x0.

• A map f : X ! Y is bijective if f is surjective and injective. In other words, the bijective

map is one-to-one correspondence between X and Y.

• Let K be Q, R or C. For K-vector spaces V andW , a map f : V ! W is K-linear if f satisfies

f xþ yð Þ ¼ f xð Þ þ f yð Þ,

f kxð Þ ¼ kf xð Þ

for any x, y∈V and k∈K.

• A linear map f : V ! V is called a linear transformation on V.

3. General group theory

In this section, we review elemental and fundamental topics in group theory, based on the

authors’ book [1]. There are hundreds of textbooks for the group theory. Venture to say, if the

reader wants to learn more from a viewpoint of symmetries, it seems to be better to see [2]. For

high motivated readers, see [3, 4] for mathematical details.

3.1. Groups

Let G be a set. For any σ, τ∈G, if there exists the unique element σ � τ∈G, which is called the

product of σ and τ, such that the product satisfies the following three conditions, then the set G

is called a group:

• (Associativity) For any σ, τ, r∈G, σ � τð Þ � r ¼ σ � τ � rð Þ.

• (Unit) There exists some element e∈G such that for any σ∈G,

e � σ ¼ σ � e ¼ σ:

We call the element e the unit of G. According to the mathematical convention, we write 1G or

simply 1, for the unit.

• (Inverse element) For any σ∈G, there exists some element σ0 ∈G such that

σ � σ0 ¼ σ
0 � σ ¼ e:

We call σ0 the inverse element of σ and write σ�1.
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If the definition of the product is clear from the content, we often omit the symbol � and write

στ instead of σ � τ for simplicity. The product is a binary operator on G and is also called the

multiplication of G.

Here we consider the following examples:

(E1) Each of the sets Z, Q, R, and C is a group with the usual addition. For the case Z, we see

that the unit is 0 and for any n∈Z, the inverse of n is �n. In general, if the product of a group G

is additive, then G is called an additive group. We remark thatN is not a group with the usual

addition since any element does not have its inverse.

(E2) The set R�≔R 0f g with the usual multiplication of real numbers forms a group. We see

that the unit is 1 and for any r∈R�, the inverse of r is 1=r. We remark that R with the usual

multiplication is not a group since 0 does not have its inverse. In general, if the product of a

group G is multiplicative, then G is called a multiplicative group. Similarly, Q�≔Q 0f g and

C�≔C 0f g are multiplicative groups.

(E3) For any n∈N n ≥ 1ð Þ, let Un be the set of nth power roots of unity:

Un≔ exp 2kπ
ffiffiffiffiffi

�1
p

n

� �

∈C
�

�

� 0 ≤ k ≤ n� 1
n o

,

where

exp
2kπ

ffiffiffiffiffiffiffi

�1
p

n

 !

≔cos
2kπ

n

� �

þ
ffiffiffiffiffiffiffi

�1
p

sin
2kπ

n

� �

:

Then Un with the usual multiplication of C forms a group. Geometrically, Un is the set of

vertices of the regular n-gon on the unit circle in the complex plane C. For example, U6 consists

of the following points for ζ ¼ exp 2π
ffiffiffiffiffi

�1
p

6

� �

in Figure 1.

In general, for a group G, if G consists of finitely many elements, then G is called a finite group.

The number of elements of a finite group G is called the order of G, denoted by ∣G∣. If G is not a

finite group, then G is called an infinite group. The group Un is a finite group of order n, and

the groups discussed in (E1) and (E2) are infinite groups.

(E4) Let K be Q, R, or C. We denote by M 2;Kð Þ the set of 2� 2 matrices with all entries in K:

M 2;Kð Þ≔ a b

c d

� � �

�

�

�

a; b; c; d∈K

� 	

:

Furthermore, we denote by GL 2;Kð Þ the set of elements of M 2;Kð Þ whose determinant is not

equal to zero:

GL 2;Kð Þ≔ A∈M 2;Kð Þ j detA 6¼ 0f g:

Then M 2;Kð Þwith the usual addition of matrices forms an additive group. The unit of M 2;Kð Þ is
zero matrix, and for any A ¼ aij


 �

∈M 2;Kð Þ, its inverse is �A≔ �aij

 �

. Since GL 2;Kð Þ does not
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have the zero matrix, the set GL 2;Kð Þ is not an additive group. On the other hand, the set

GL 2;Kð Þ with the usual multiplication of matrices forms a multiplicative group. The unit of

GL 2;Kð Þ is the unit matrix E2, and for any A ¼ aij

 �

∈GL 2;Kð Þ, its inverse is the inverse matrix

A�1 as follows:

E2≔
1 0

0 1

� �

, A�1 ¼
1

detA

a22 �a12

�a21 a11

� �

:

The group GL 2;Kð Þ is called the general linear group of degree 2. Similarly, we can consider

the general linear group GL n;Kð Þ of degree n for any n∈N.

Both M 2;Kð Þ and GL 2;Kð Þ are infinite groups. But the most significant difference between

them is the commutativity of the products. Although we see Aþ B ¼ Bþ A in M 2;Kð Þ for any

A, B∈M 2;Kð Þ, the equation AB ¼ BA does not hold in GL 2;Kð Þ in general. For example, if

A ¼
1 1

0 1

� �

and B ¼
1 0

1 1

� �

, then we see

AB ¼
2 1

1 1

� �

, BA ¼
1 1

1 2

� �

:

For a group G, if στ ¼ τσ holds for any σ, τ∈G, then G is called an abelian group. The group

GL 2;Kð Þ is a non-abelian group, and all the groups as mentioned before except for GL 2;Kð Þ are

abelian groups.

3.2. Subgroups

Since group theory is an abstract itself, it had better for beginners to have sufficiently enough

examples to understand it. In order to make further examples, we consider several methods to

make new groups from known groups. The first one is a subgroup.

Figure 1. The sixth roots of unity.
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Let G be a group. If a nonempty subset H of G satisfies the following two conditions, then H is

called a subgroup of G:

• For any σ, τ∈H, στ∈H.

• For any σ∈H, σ�1
∈H.

We can consider H itself is a group by restricting the product of G to H. For any group G, the

one point subset 1Gf g is a subgroup of G. We call this subgroup the trivial subgroup of G. Let

us consider some other examples:

(E5) The additive group Z is a subgroup of Q, R, and Z. For any n∈Z, the subset

nZ≔ 0;�n;�2n;…f g⊂Z

of Z consisting of multiples of n is a subgroup of Z. Since 0Z ¼ 0f g is the trivial subgroup, and
since nZ ¼ �nð ÞZ, we usually consider the case n∈N.

(E6) Consider the group U6 consisting of 6th power roots of unity. Then we can consider U2

and U3 are subgroups of U6.

(E7) Let K be Q, R, or C. The subset

SL 2;Kð Þ≔ A∈GL 2;Kð Þ jdetA ¼ 1f g⊂GL 2;Kð Þ

of GL 2;Kð Þ consisting of matrices whose determinants are equal to one is a subgroup of

GL 2;Kð Þ. We call SL 2;Kð Þ the special linear group of degree 2.

In general, we can construct a subgroup from a subset of a group. Let S be a subset of a group

G. Then the subset

Sh i≔ s
e1
1 s

e2
2 ⋯semm jm∈Z ≥ 0; si ∈ S; ei ¼ �1

� 


of G consisting of elements which are written as a product of some elements in S, and their

inverses are a subgroup of G. Remark that if m ¼ 0, the product se11 ⋯semm means 1G and that for

any σ ¼ s
e1
1 s

e2
2 ⋯semm ∈ Sh i, its inverse is given by σ�1 ¼ s�em

m s
�em�1

m�1 ⋯s
�e1
1 . We call Sh i the subgroup

of G generated by S. The elements of S are called generators of the subgroup Sh i. Here we give

some examples:

(E8) The additive group Z is generated by 1. For any n ≥ 1, the group Un of nth power roots of

unity is generated by ζ ¼ exp 2π
ffiffiffiffiffiffiffi

�1
p

=n

 �

. In general, a group generated by a single element is

called a cyclic group. Thus, Z is an infinite cyclic group, and Un is a finite cyclic group. Remark

that �1 and ζ
�1 ¼ exp �2π

ffiffiffiffiffiffiffi

�1
p

=n

 �

are also generators of Z and Un, respectively.

(E9) It is known that the additive groups Q, R, and C and the multiplicative groups GL 2;Kð Þ
and SL 2;Kð Þ for K ¼ Q,R,C are not finitely generated group.

Next, we consider a relation between the orders of a finite group and its subgroup. Let G be a

group and H a subgroup of G. For any σ∈G, the subset

Symmetry (Group Theory) and Mathematical Treatment in Chemistry24



σH≔ στ∈G jτ∈Hf g

is called a left coset of H in G. We can see that σH ¼ τH if and only if there exists some h∈H

such that σ ¼ τh.

(E10) In the additive group Z, for any n∈N, consider the subgroup nZ. Then, since the product

of Z is written additively, a left coset of nZ is given by

σþ nZ ¼ σþ nτ jτ∈Zf g

for an element σ∈Z. On the other hand, if we take the remainder r of the division of σ by n,

then we see σþ nZ ¼ rþ nZ. Hence all left cosets of nZ in Z are given by

nZ, 1þ nZ, n� 1ð Þ þ nZ:

For simplicity, we write r½ �n for rþ nZ.

(E11) Consider the finite cyclic group U6 and its subgroup U2 ¼ �1f g of order 2. Set

ζ≔exp 2π
ffiffiffiffiffiffiffi

�1
p

=6

 �

. Then we can see that

ζU2 ¼ �ζf g ¼ ζ; ζ4
� 


¼ ζ
4
U2, ζ

2
U2 ¼ ζ

5
U2, ζ

3
U2 ¼ U2:

Hence there exist three left cosets of U2.

In example (E11), we can see that the order of U2 times the number of left cosets of U2 is equal

to six, which is the order of U6. This is no coincidence. In general, for a finite group G and a

subgroup H of G, the number of left cosets of H is called the index of H in G and is denoted by

G : H½ �. Then we have the following:

Theorem 3.1 (Lagrange). As the above notation C, we have ∣G∣ ¼ ∣H∣ G : H½ �. Namely, the order of

any subgroup of a finite group G is a divisor of ∣G∣.

As a corollary, we obtain the following:

Corollary 3.2. If G is a finite group of prime order, then G is a cyclic group.

3.3. Quotient groups

For a group G and its subgroup H, the set of left cosets of H is denoted by

G=H≔ σH jσ∈Gf g:

In general, this set does not have a natural group structure. Here we consider a condition to

make it a group.

Let N be a subgroup of G. If σnσ�1 ∈N for any n∈N and any σ∈G, then N is called a normal

subgroup of G. If G is abelian group, any subgroup of G is a normal subgroup. For a normal

Group Theory from a Mathematical Viewpoint
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subgroup N of G, we define the product on G=N by using that on G. Namely, for any

σN, τN∈G=N, define

σN � τN≔ στð ÞN:

Then this definition is well defined, and G=N with this product forms a group. The unit is

1GN ¼ N, and for any σN∈G=N, its inverse is given by σNð Þ�1 ¼ σ
�1N. We call G=N the

quotient group of G by N.

(E12) The most important example for quotient groups is

Z=nZ ¼ 0½ �n; 1½ �n;…; n� 1½ �n
� 


for n∈N. For any a, b∈Z, we have

a½ �n þ b½ �n ¼ aþ b½ �n, � a½ �n ¼ �a½ �n:

For example, in the group Z=6Z, we have

1½ �6 þ 3½ �6 ¼ 4½ �6, 2½ �6 þ 7½ �6 ¼ 9½ �6 ¼ 3½ �6, � 4½ �6 ¼ �4½ �6 ¼ 2½ �6:

For any 0 ≤ r ≤ n� 1, since we see

r½ �n ¼ 1½ �n þ 1½ �n þ⋯þ 1½ �n ∈Z=nZ,

the group Z=nZ is a cyclic group of order n generated by 1½ �n.

3.4. Homomorphisms and isomorphisms

As mentioned above, we have many examples of groups. Here, we consider relations between

groups and examine which ones are essentially of the same type of groups. To say more

technically, we classify groups by using isomorphisms.

Let G and H be groups. If a map f : G ! H satisfies

f στð Þ ¼ f σð Þf τð Þ for any σ, τ∈G,

then f is called a homomorphism. A bijective homomorphism f : G ! H is called an isomor-

phism. Namely, an isomorphism is a map such that it is one-to-one correspondence between

the groups and that it preserves the products of the groups. If G and H are isomorphic, we

write G ffi H.

(E13) Set

R>0≔ x∈R jx > 0f g,

and consider it as a multiplicative subgroup of R�. The exponent map exp : R ! R>0 is an

isomorphism from the additive group R to R>0.
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(E14) Let K beQ, R, or C. Then the determinant map det GL 2;Kð Þ ! K� is a homomorphism. It

is, however, not an isomorphism since f is not injective. For example, det E2 ¼ det �E2ð Þ ¼ 1.

On the other hand, SL 2;Kð Þ is a normal subgroup of GL 2;Kð Þ. For any σ, τ∈GL 2;Kð Þ, we can

see that

σSL 2;Kð Þ ¼ τSL 2;Kð Þ ⇔ detσ ¼ detτ:

Define the map f : GL 2;Kð Þ=SL 2;Kð Þ ! K� by

σSL 2;Kð Þ↦detσ:

Then f is an isomorphism. Indeed f is injective. For any x∈K�, if we consider the element

σ≔

x 0

0 1

� �

∈GL 2;Kð Þ, we have f σSL 2;Kð Þð Þ ¼ x. Hence f is surjective. Moreover, we have

f σSL 2;Kð Þð Þ τSL 2;Kð Þð Þð Þ ¼ f στð ÞSL 2;Kð Þð Þ ¼ det στð Þ
¼ detσð Þ detτð Þ ¼ f σSL 2;Kð Þð Þf τSL 2;Kð Þð Þ:

(E15) For any n∈N, define the map f : Z=nZ ! Un by k½ �n ↦ exp 2kπ
ffiffiffiffiffiffiffi

�1
p

=n

 �

. Then f is an

isomorphism since f is bijective, and

f k½ �n þ l½ �n

 �

¼ f kþ l½ �n

 �

¼ exp 2 kþ lð Þπ
ffiffiffiffiffiffiffi

�1
p

=n
� �

¼ exp 2kπ
ffiffiffiffiffiffiffi

�1
p

=n
� �

exp 2lπ
ffiffiffiffiffiffiffi

�1
p

=n
� �

¼ f k½ �n

 �

f l½ �n

 �

:

Let G and H be isomorphic groups. Then, even if G and H are different as a set, they have the

same structure as a group. This means that if one is abelian, finite or finitely generated, then so

is the other, respectively. In other words, for example, an abelian group is never isomorphic to

a non-abelian group and so on.

4. Finite groups

In this section, we give some examples of important finite groups.

4.1. Symmetric groups

For any n∈N, set X≔ 1; 2;…; nf g. A bijective map σ : X ! X is called a permutation on X. A

permutation σ is denoted by

σ ¼
1 2 ⋯ n

σ 1ð Þ σ 2ð Þ ⋯ σ nð Þ

� �

:

Remark that this is not a matrix. We can omit a letter i 1 ≤ i ≤ nð Þ if the letter i is fixed. For

example, for n ¼ 4:

Group Theory from a Mathematical Viewpoint
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1 2 3 4

3 2 4 1

� �

¼
1 3 4

3 4 1

� �

We call the permutation

ε≔

1 2 ⋯ n

1 2 ⋯ n

� �

the identity permutation.

Let Sn be the set of permutations on X. For any σ, τ∈Sn, define the product of σ and τ to be

the composition σ ∘ τ as a map. Then the set Sn with this product forms a group. We call it the

symmetric group of degree n. The unit is the identity permutation, and for any σ∈Sn, its

inverse is given by

σ
�1 ¼

σ 1ð Þ σ 2ð Þ ⋯ σ nð Þ

1 2 ⋯ n

� �

:

The symmetric group Sn is a finite group of order n!.

Since S1 is the trivial group, and

S2 ¼ ε;

1 2

2 1

� �� 	

,

we see that Sn is abelian if n ≤ 2. For n ¼ 3, we have

S3 ¼ ε;

1 2

2 1

� �

;

1 3

3 1

� �

;

2 3

3 2

� �

;

1 2 3

2 3 1

� �

;

1 2 3

3 1 2

� �� 	

,

and

1 2

2 1

� �

2 3

3 2

� �

¼
1 2 3

2 3 1

� �

6¼
1 2 3

3 1 2

� �

¼
2 3

3 2

� �

1 2

2 1

� �

:

Hence, S3 is non-abelian. Similarly, for any n ≥ 3, Sn is non-abelian.

Here we consider another description of permutations. For distinct letters a1,…, am ∈X, the

permutation

a1 a2 ⋯ am�1 am

a2 a3 ⋯ am a1

� �

is denoted by a1; a2;⋯; amð Þ and is called a cyclic permutation of length m. We call a cyclic

permutation of length 2 a transposition. Namely, any transposition is of type

i; jð Þ ¼
i j

j i

� �

:
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A cyclic permutation of length 1 is nothing but the identity permutation:

1ð Þ ¼ 2ð Þ ¼ ⋯ ¼ nð Þ ¼ ε:

In general, a permutation cannot be written as a single cyclic permutation but a product of

some cyclic permutations which do not have a common letter. For example, consider

σ ¼
1 2 3 4 5

3 5 4 1 2

� �

:

Then we see

σ : 1↦ 3↦ 4↦ 1, 2↦ 5↦ 2,

and hence

σ ¼ 1; 3; 4ð Þ 2; 5ð Þ ¼ 2; 5ð Þ 1; 3; 4ð Þ:

Remark that two cyclic permutations which do not have a common letter are commutative. For

any cyclic permutation a1; a2;⋯; amð Þ, we have

a1; a2;⋯; amð Þ ¼ a1; a2ð Þ a2; a3ð Þ⋯ am�1; amð Þ:

By using the above facts, we see

Theorem 4.1. Every permutation can be written as a product of transpositions.

An expression of a permutation as a product of transpositions is not unique. For example,

1; 3; 2ð Þ ¼ 1; 2ð Þ 1; 3ð Þ ¼ 1; 3ð Þ 2; 3ð Þ:

However, we have

Theorem 4.2. For any permutation σ, consider expressions of σ as a product of transpositions. Then

the parity of the number of transpositions is invariant.

For a permutation σ, if σ is written as a product of even (resp. odd) numbers of transpositions,

then σ is called even permutation (resp. odd permutation). For example, the cyclic permuta-

tion a1; a2;⋯; amð Þ is even (resp. odd) permutation if m is odd (resp. even).

4.2. Alternating groups

In this subsection, we consider important normal subgroups of the symmetric groups. Let An

be the set of even permutations of Sn. For any σ∈An, if we write σ as a product of trans-

positions, σ ¼ τ1⋯τk, then we see

σ
�1 ¼ τkτk�1⋯τ1 ∈An:
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Clearly, if σ, τ∈An, then στ∈An. Thus, the subset An is a subgroup of Sn. We call An the

alternating group of degree n. It is easily seen that An is a normal subgroup of Sn. For

example, for n ¼ 3 and 4, we have

A3 ¼ ε; 1; 2; 3ð Þ; 1; 3; 2ð Þf g,

A4 ¼ ε; 1; 2; 3ð Þ; 1; 3; 2ð Þ; 1; 2; 4ð Þ; 1; 4; 2ð Þ; 1; 3; 4ð Þ; 1; 4; 3ð Þ; 2; 3; 4ð Þ; 2; 4; 3ð Þ;f

1; 2ð Þ 3; 4ð Þ; 1; 3ð Þ 2; 4ð Þ; 1; 4ð Þ 2; 3ð Þg:

For any σ∈Sn, we have

σAn ¼
1; 2ð ÞAn, if σ is odd permutation,

An, if σ is even permutation:

�

Hence Sn : An½ � ¼ 2. Therefore, from Lagrange’s theorem, we see that An is a finite group of

order n!=2.

4.3. Dihedral groups

For any n∈N n ≥ 3ð Þ, consider a regular polygon Vn with n sides, and fix it. A map σ : Vn ! Vn

is called a congruent transformation on Vn if σ preserves the distance between any two points

in Vn. Namely, σ is considered as a symmetry on Vn. Set

Dn≔ σ : Vn ! Vn j σ is a congruent transformationf g:

For any σ, τ∈Dn, define the product of σ and τ to be the composition σ ∘ τ as a map. Then the

set Dn with this product forms a group. We call it the dihedral group of degree n. The unit is

the identity transformation.

Each congruent transformation on Vn is determined by the correspondence between vertices of

Vn. Indeed, attach the number 1, 2,…, n to vertices of Vn in counterclockwise direction. For any

σ∈Dn, if σ 1ð Þ ¼ i, then the vertices 2, 3,…, n are mapped to iþ 1, iþ 2,…, n, 1, 2,…i� 1,

respectively, Cor mapped to i� 1, i� 2,…, 1, n, n� 1,…, iþ 1, respectively. If we express this

by using the notation for permutations, we have

σ ¼
1 2 ⋯ n� 1 n

i iþ 1 ⋯ i� 2 i� 1

� �

or
1 2 ⋯ n� 1 n

i i� 1 ⋯ iþ 2 iþ 1

� �

:

The former case is a rotation, and the latter case is the composition of a rotation and a

reflection. For n ¼ 3, see Figure 2. Thus the dihedral group Dn is a finite group of order 2n

and is naturally considered as a subgroup of Sn. For n ¼ 3, since D3 is a subgroup of S3, and

since both groups are of order 6, we see that D3 ¼ S3.

Let σ∈Dn be the rotation of Vn with angle 2π
n
in the counterclockwise direction and τ∈Dn be

the reflection of Vn which fixes the vertex 1. Namely,

σ ¼
1 2 ⋯ n� 1 n

2 3 ⋯ n 1

� �

, τ ¼
1 2 ⋯ n� 1 n

1 n ⋯ 3 2

� �

:
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Then the reflection of Vn which fixes the vertex i is written as σ
i�1

τσ
� i�1ð Þ. Hence Dn is

generated by σ and τ. Moreover, we have

Dn ¼ 1; σ; σ2;…; σn�1; τ; στ; σ2τ;…; σn�1
τ

� 


:

4.4. The structure theorem for finite abelian groups

In this subsection, we give a complete classification of finite abelian groups up to isomor-

phism. To begin with, we review the direct product of groups.

Let G and H be groups. Consider the direct product set

G�H≔ g; hð Þ jg∈G; h∈Hf g,

and define the product of elements g; hð Þ, g0; h0ð Þ∈G�H to be

g; hð Þ � g0; h0ð Þ≔ gg0; hh0ð Þ:

Then G�H with this product forms a group. The unit is 1G; 1Hð Þ, and for any g; hð Þ∈G�H, its

inverse is given by g�1; h�1

 �

∈G�H. We call the group G�H the direct product group of G

and H. Similarly, for finitely many groups G1, G2,…, Gn, we can define its direct product group

G1 �⋯� Gn. For each 1 ≤ i ≤ n, if Gi is a finite group of order mi, then G1 �⋯� Gn is a finite

group of order m1m2⋯mn. The following theorem is famous in elementary number theory.

Theorem 4.3 (Chinese remainder theorem). For any m, n∈N such that gcd m; nð Þ ¼ 1. Then we

have

Z=mnZ ffi Z=mZ� Z=nZ:

An isomorphism f : Z=mnZ ! Z=mZ� Z=nZ is given by

x½ �mn ↦ x½ �m; x½ �n

 �

:

Figure 2. The transformations of the regular triangle.
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(E16) Consider the case m ¼ 2 and n ¼ 3. Each element x½ �6 of Z=6Z is mapped to the following

element by the above isomorphism f :

1½ �6 ↦ 1½ �2; 1½ �3

 �

, 2½ �6 ↦ 2½ �2; 2½ �3

 �

¼ 0½ �2; 2½ �3

 �

, 3½ �6 ↦ 3½ �2; 3½ �3

 �

¼ 1½ �2; 0½ �3

 �

,

4½ �6, ↦ 4½ �2; 4½ �3

 �

¼ 0½ �2; 1½ �3

 �

, 5½ �6 ↦ 5½ �2; 5½ �3

 �

¼ 1½ �2; 2½ �3

 �

, 0½ �6 ↦ 0½ �2; 0½ �3

 �

:

(E17) If gcd m; nð Þ 6¼ 1, the theorem does not hold. For example, consider the case of m ¼ n ¼ 2.

Any element x∈Z=2Z� Z=2Z satisfies that xþ x is equal to zero. On the other hand, for the

element y≔ 1½ �4 ∈Z=4Z, yþ y is not equal to zero. Hence the group structures of Z=2Z� Z=2Z

and Z=4Z are different.

Now, we show one of the most important theorems in finite group theory.

Theorem 4.4 (structure theorem for finite abelian groups). Let G be a nontrivial finite abelian

group. Then G is isomorphic to a direct product of finite cyclic groups of prime power order:

G ffi Z=pe11 Z�⋯� Z=perr Z:

The tuple pe11 ; p
e2
2 ;…; perr


 �

is uniquely determined by G, up to the order of the factors.

(E18) The list of finite abelian groups of order 72 up to isomorphism is given by

Z=9Z� Z=8Z, Z=9Z� Z=4Z� Z=2Z, Z=9Z� Z=2Z� Z=2Z� Z=2Z,

Z=3Z� Z=3Z� Z=8Z, Z=3Z� Z=3Z� Z=4Z� Z=2Z,

Z=3Z� Z=3Z� Z=2Z� Z=2Z� Z=2Z:

5. Conjugacy classes

In this section, we consider the classification of elements of a group by using the conjugation.

The results of this section are used in Section 6.

Let G a group. For elements x, y∈G, if there exists some g∈G such that x ¼ gyg�1; then we say

that x is conjugate to y and write x � y. This is an equivalence relation on G. Namely, for any

x∈G, we have x � x by observing x ¼ 1Gx1
�1
G . If x � y, then x ¼ gyg�1 for some g∈G. Thus

y ¼ g�1x g�1

 ��1

, and hence y � x. If x � y and y � z, then x ¼ gyg�1 and y ¼ hzh�1 for some

g, h∈G. Thus x ¼ ghð Þz ghð Þ�1, and hence x � z. For any x∈G, the set

C xð Þ≔ y∈G jy � xf g

is called the conjugacy class of x in G. If G is abelian group, for any x∈G, there exists no

element conjugate to x except for x, and hence C xð Þ ¼ xf g. Here we give a few examples.

(E19) (Dihedral groups) For n ≥ 3, the conjugacy classes of Dn are as follows:

1. If n is even:
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1f g, σ; σ
�1

� 


, σ
2
; σ

�2
� 


,…, σ

n�2
2

; σ

2�n
2

n o

, σ

n
2

� 


,

τ; σ
2
τ;…; σ

n�2
τ

� 


, στ; σ
3
τ;…; σ

n�1
τ

� 


:

2. If n is odd:

1f g, σ; σ
�1

� 


, σ
2
; σ

�2
� 


,…, σ

n�1
2

; σ

1�n
2

n o

,

τ; στ;…; σ
n�1

τ

� 


:

Indeed, for the case where n is even, we can see the above from the following observation. For

any x∈Dn, since

xσix�1 ¼
σ
j
σ
i
σ
�j ¼ σ

i, if x ¼ σ
j,

σ
j
τσ

i
τσ

�j ¼ σ
�i, if x ¼ σ

j
τ,

(

the conjugates of σi are σ�i. On the other hand, for any x∈Dn, since

xσiτx�1 ¼
σ
j
σ
i
τσ

�j ¼ σ
iþ2j

τ, if x ¼ σ
j,

σ
j
τσ

i
ττσ

�j ¼ σ
iþ2 j�ið Þ

τ, if x ¼ σ
j
τ,

(

the conjugates of σiτ are σkτ for any k such that k 	 i mod2ð Þ. These facts induce Part (1).

(E20) (Symmetric groups) For any σ∈Sn, we can write σ as a product of cyclic permutations

which do not have a common letter, like

σ ¼ a1⋯akð Þ b1⋯blð Þ⋯ c1⋯cmð Þ:

Furthermore, we may assume k ≥ l ≥⋯ ≥m since the cyclic permutations appeared in the right

hand side are commutative. Then we call k; l;…;mð Þ is the cycle type of σ.

Theorem 5.1. Elements σ, σ0 ∈Sn are conjugate if and only if the cycle types of σ and σ
0 are equal.

For example, conjugacy classes of S4 are given by

Cycle type Conjugacy class

1; 1; 1; 1ð Þ 1S4
f g

2; 1; 1ð Þ 1; 2ð Þ; 1; 3ð Þ; 1; 4ð Þ; 2; 3ð Þ; 2; 4ð Þ; 3; 4ð Þf g

2; 2ð Þ 1; 2ð Þ 3; 4ð Þ; 1; 3ð Þ 2; 4ð Þ; 1; 4ð Þ 2; 3ð Þf g

3; 1ð Þ 1; 2; 3ð Þ, 1; 2; 4ð Þ, 1; 3; 2ð Þ, 1; 3; 4ð Þf , 1; 4; 2ð Þ, 1; 4; 3ð Þ, 2; 3; 4ð Þ, 2; 4; 3ð Þg

4ð Þ 1; 2; 3; 4ð Þ, 1; 2; 4; 3ð Þ, 1; 3; 2; 4ð Þf , 1; 3; 4; 2ð Þ, 1; 4; 2; 3ð Þ, 1; 4; 3; 2ð Þg
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In the above examples, we verify that the number of elements of any conjugacy class is a

divisor of the order of the group. In general, we have

Theorem 5.2. Let G be a finite group. For any x∈G, ∣C xð Þ∣ is a divisor of ∣G∣.

6. Representation theory of finite groups

In this section, we give a brief introduction to representation theory of finite groups. There are

also hundreds of textbooks for the representation theory. One of the most famous and standard

textbooks is [5]. For high motivated readers, see [6–8] for mathematical details.

6.1. Representations

In this subsection, we assume that G is a finite group. Let V be a finite-dimensional C-vector

space. Consider the following situation. For any σ∈G and any v∈V, there exists a unique

element σ � v∈V such that

1. σ � vþwð Þ ¼ σ � vþ σ �w,

2. σ � αvð Þ ¼ α σ � vð Þ,

3. σ � τ � vð Þ ¼ στð Þ � v,

4. 1G � v ¼ v

for any σ, τ∈G, α∈C and v,w∈V . Then we say that G acts on V and V is called a G-vector

space.

The conditions (1) and (2) mean that for any σ∈G, the map r σð Þ : V ! V defined by v↦σ � v is

a linear transformation on V. Furthermore, from the conditions (3) and (4), we see that for any

σ∈G, the linear transformation r σ
�1


 �

is the inverse linear transformation of r σð Þ. Namely,

each r σð Þ is a bijective. Set

GL Vð Þ≔ f : V ! V j f is abijective linear transformationf g,

and consider it as a group with the product given by the composition of maps. Then we obtain

the group homomorphism r : G ! GL Vð Þ by σ↦ r σð Þ. In general, for a finite group G and for a

finite-dimensional C-vector space V , a homomorphism r : G ! GL Vð Þ is called a representa-

tion of G. Then V is a G-vector space by the action of G on V given by

σ � v≔ r σð Þð Þ vð Þ

for any σ∈G and v∈V. The dimension dimCV of V as a C-vector space is called the degree of

the representation r. Observe the following examples:

(E21) For any finite group G, and any C-vector space V, we can consider the trivial action of G

on V by σ � v≔v for any σ∈G and v∈V. Namely, we can consider the homomorphism

triv : G ! GL Vð Þ by assigning σ to the identity map on V for any σ∈G. This is called the

trivial representation of G.
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(E22) For any n∈N, consider the cyclic group Un and the action of Un on C given by the usual

multiplication exp 2kπ
ffiffiffiffiffiffiffi

�1
p

=n

 �

� z≔exp 2kπ
ffiffiffiffiffiffiffi

�1
p

=n

 �

z of the complex numbers for any k∈Z

and z∈C. The action of exp 2kπ
ffiffiffiffiffiffiffi

�1
p

=n

 �

on C is the rotation on C in the counterclockwise

direction centered at the origin with angle 2kπð Þ=n. If we take 1∈C as a basis of the C-vector

space C, we can identify GL Cð Þ with the general linear group GL 1;Cð Þ ¼ C� by considering

the matrix representation. Under this identification, the corresponding representation

r : Un ! GL Cð Þ ¼ C� is given by the natural inclusion map Un
´C�.

(E23) Consider the symmetric group S3 and the numerical vector space C3. The group S3

naturally acts on C3 by the permutation of the components given by

σ �
x1

x2

x3

0

B

@

1

C

A
≔

x
σ
�1 1ð Þ

x
σ
�1 2ð Þ

x
σ
�1 3ð Þ

0

B

@

1

C

A
:

If we take the standard basis e1, e2, e3 as a basis of C3, we can identify GL C3

 �

with the general

linear group GL 3;Cð Þ by considering the matrix representation. Under this identification, the

corresponding representation r : S3 ! GL C3

 �

¼ GL 3;Cð Þ is given by σ↦ e
σ 1ð Þ eσ 2ð Þeσ 3ð Þ


 �

.

Similarly, we can obtain the representation r : Sn ! GL Cnð Þ ¼ GL n;Cð Þ that is given by

σ↦ e
σ 1ð Þ eσ 2ð Þ⋯e

σ nð Þ

 �

:

This is called the permutation representation of Sn.

Next we consider subrepresentations of a representation. Let r : G ! GL Vð Þ a representation.

If there exists a subspace W of V such that

σ �w∈W ⇔ r σð Þð Þ wð Þ∈Wð Þ

for any σ∈G and w∈W , then W is called a G-subspace of V. For any σ∈G, the restriction

r σð ÞjW : W ! W of r σð Þ is a bijective linear transformation on W , and we obtain the represen-

tation rjW : G ! GL Wð Þ given by σ↦ r σð ÞjW. It is called a subrepresentation of r.

(E24) Consider the permutation representation r : S3 ! GL C3

 �

¼ GL 3;Cð Þ as in (E23). Let us

consider subspaces

W1≔

x

x

x

0

B

@

1

C

A

�

�

�

�

�

�

�

x∈C

8

>

<

>

:

9

>

=

>

;

, W2≔

x

y

z

0

B

@

1

C

A

�

�

�

�

�

�

�

x; y; z∈C; xþ yþ z ¼ 0

8

>

<

>

:

9

>

=

>

;

of C3. It is easily seen that these are S3-subspaces and the subrepresentation rjW1
is the trivial

representation. Geometrically,W1 andW2 in C3 are drawn in Figure 3. In a precise sense, if we

naturally consider R3 as a subset of C3, then Figure 3 shows W1 ∩R
3 and W2 ∩R

3 in R3.

For a G-vector space V, if there exist G-subspaces W1 and W2 of V such that any element v∈V

can be uniquely written as
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v ¼ w1 þw2 w1 ∈W1;w2 ∈W2ð Þ,

then V is called the direct sum ofW1 andW2 and is written as V ¼ W1 ⊕W2. Similarly, we can

define the direct sum of G-subspaces W1,W2,…,Wm for any m ≥ 3. Let r, rjW1
, and rjW2

be the

correspondent representations of G to V, W1, and W2, respectively. We also say that the

representation r is the direct sum of rjW1
and rjW2

.

(E25) As the notation in (E24), V is the direct sum ofW1 andW2. Indeed, for the standard basis

e1, e2, e3 of V, we see that e1 þ e2 þ e3 and e1 � e2, e1 � e3 are bases of W1 and W2, respectively.

Thus, for any x ¼ x1e1 þ x2e2 þ x3e3 ∈C3, we can rewrite

x ¼
x1 þ x2 þ x3

3
e1 þ e2 þ e3ð Þ þ

x1 � 2x2 þ x3
3

e1 � e2ð Þ þ
x1 þ x2 � 2x3

3
e1 � e3ð Þ:

Furthermore, we verify that this expression is unique by direct calculations.

In general, we have

Theorem 6.1 (Maschke). Let r : G ! GL Vð Þ a representation and W a G-subspace of V. Then there

exists a G-subspace W 0 such that V ¼ W⊕W 0.

6.2. Irreducible representations

In subsection 4.4, we have discussed the classification of finite abelian groups by using the

concept of group isomorphisms. Here we consider the classification of finite-dimensional

representations of finite groups by using irreducible representations and equivalence relations

among representations.

Figure 3. The subspaces W1 and W2 in C3.
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Let G be a finite group and r : G ! GL Vð Þ its representation. The trivial subspaces 0f g and V

are G-subspaces of V. If V has no G subspace other than these, V is called the irreducible G-

space, and r is called the irreducible representation of G.

(E26) Any one-dimensional representation is trivial. For example, the representation r : Un !

GL Cð Þ ¼ C� in (E23) is irreducible. Let us consider the other example. For any σ∈Sn, set

sgn σð Þ≔
1 if σ is even permutation,

�1 if σ is odd permutation:

�

Then we can easily see that the map sgn : Sn ! C� ¼ GL Cð Þ is a homomorphism and, hence, is

a representation ofSn. This irreducible representation is called the signature representation ofSn.

(E27) As the notation in (E24), rjW1
is irreducible since it is one-dimensional. The representa-

tion rjW2
is also irreducible. Indeed, if W2 is not irreducible, there exists a one-dimensional G-

subspace W in W2 since W2 is a 2-dimensional G-vector space. Take w∈W (w 6¼ 0). Then w is

an eigenvector of rjW2
σð Þ for any σ∈S3. However, we can see that there is no such vector in

W2 by direct calculations.

By observing (E25), (E26), and (E27), we see that C3 is a direct sum of the irreducible G-

subspaces W1 and W2. In general, by using Maschke’s theorem above, we obtain.

Theorem 6.2. For any representation r : G ! GL Vð Þ of a finite group G, the G-vector space V can be

written as a direct sum of some irreducible G-subspaces. Namely, r can be written as sum of some

irreducible representations of G.

Remark that the expression of a direct sum of irreducible representations is not unique in

general. For example, let r : G ! GL C2

 �

be the trivial representation. Then for the standard

basis e1, e2 of C
2, we have

C2 ¼ Ce1 ⊕Ce2 ¼ Ce1 ⊕C e1 þ e2ð Þ ¼ Ce1 ⊕C e1 þ 2e2ð Þ ¼ ⋯:

In order to do the classification of representations, we consider the equivalency of representa-

tions. Let r1 : G ! GL V1ð Þ and r2 : G ! GL V2ð Þ be representations of G. If there exists a

bijective linear map ι : V1 ! V2 such that

ι σ � vð Þ ¼ σ � ι vð Þ, σ∈G, v∈V1,

then we say that V1 is isomorphic to V2 as a G-vector space and write V1 ffi V2. We also say that

r1 is equivalent to r2 and write r1 � r2.

(E28) For any group G. let unit : G ! GL Cð Þ ¼ C� be the trivial representation of G. Then any

trivial representation r : G ! GL Vð Þ is equivalent to unit. The representation unit is called the

unit representation of G.

The following theorem is one of the most important theorems in representation theory of finite

groups.
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Theorem 6.3. Let G be a finite group.

1. The number of irreducible representations of G up to equivalent is finite. Furthermore, it is equal to

the number of the conjugacy classes of G.

2. For any representation r : G ! GL Vð Þ, r is equivalent to a direct sum of some irreducible

representations:

V ffi W1 ⊕W2 ⊕⋯⊕Wm.

Furthermore, the tuple of the components is uniquely determined by G, up to the order.

6.3. Characters

In this subsection, for a given representation, we give a method to determine whether it is

irreducible or not by using characters. Let r : G ! GL Vð Þ be a representation. Take a basis

v1,…,vn of V, and fix it. By using this basis, we can consider r σð Þ as an n� nð Þ-matrix

Aσ ¼ aij

 �

, which is the matrix representation of r σð Þ. Then set

χr σð Þ≔Tr Aσð Þ ¼ a11 þ a22 þ⋯þ ann ∈C

for any σ∈G. Remark that this definition is well defined since it does not depend on the choice

of a basis of V . Indeed, ifw1,…,wn is another basis of V, the matrix representation of r σð Þwith

respect to this basis is given by P�1AσP for a some regular matrix P. Hence

Tr P�1AσP

 �

¼ Tr Aσð Þ. We call the map χr : G ! C the character of r. Remark that for elements

σ, τ∈G, if σ � τ, then r σð Þ � r τð Þ in GL Vð Þ. Thus, χr σð Þ ¼ χr τð Þ. Namely, χr is constant on

each of the conjugacy classes of G.

(E29) Consider the example (E25). Let r : S3 ! GL C3

 �

be the permutation representation of

S3. The conjugacy classes of S3 are as follows:

Hence, in order to calculate the values of the character χr of r, it suffices to calculate its values

on 1S3
, 1; 2ð Þ, and 1; 2; 3ð Þ. If we take the standard basis e1, e2, e3 of C3, we have

r σð Þ ¼ eσ 1ð Þ eσ 2ð Þ eσ 3ð Þ


 �

, and hence

χr 1S3
ð Þ ¼ 3, χr 1; 2ð Þð Þ ¼ 1, χr 1; 2; 3ð Þð Þ ¼ 0:

In general, as in (E29), for a representation r : G ! GL Vð Þ, χr 1Gð Þ is the degree of the repre-

sentation, which is equal to dimC Vð Þ.

Cycle type Conjugacy class

1; 1; 1ð Þ 1S3
f g

2; 1ð Þ 1; 2ð Þ; 1; 3ð Þ; 2; 3ð Þf g

3ð Þ 1; 2; 3ð Þ; 1; 3; 2ð Þf g
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Now, we define the inner product of characters. For complex functions φ,ψ : G ! C on G, set

φ;ψh i ¼
1

∣G∣

X

σ∈G

φ σð Þψ σð Þ

where z means the complex conjugation of z∈C. We call it the inner product of ϕ and ψ. The

following theorems are quite important and useful from the viewpoint to find and to calculate

all of the irreducible representations.

Theorem 6.4.

1. (Orthogonality) Let ri : G ! GL V ið Þ (i ¼ 1, 2) be irreducible representations. Then

χr1
;χr2

D E

¼
1 if r1 � r2,

0 if r1= � r2:

�

2. For a representation r : G ! GL Vð Þ,

r is irreducible⇔ χr;χr

� �

¼ 1:

(E30) We have the three irreducible representations of S3. By direct calculations, we obtain the

following list:

Hence we see that in each of cases, we have χr;χr

� �

¼ 1.

By Theorem 6.3, we see that for any representation r : G ! GL Vð Þ, V can be written as

V ffi W ⊕m1

1 ⊕W ⊕m2

2 ⊕⋯⊕W ⊕mk

k

where each W i is an irreducible G-vector space and W i is not isomorphic to W j as a G-vector

space if i 6¼ j. For each 1 ≤ i ≤ k, the number mi is called the multiplicity of W i in V.

Theorem 6.5. As the notation above, let ri be the irreducible representation of G correspond to the G-

vector space W i. Then we have

1. χr ¼ m1χr1
þ⋯þmkχrk

.

2. χ
r
;χ

ri

D E

¼ mi.

Namely, each of the multiplicity of the irreducible G-vector spaces in V is calculated by the inner

product of the characters

3. ∣G∣ ¼
Pk

i¼1 χri
1ð Þ2.

σ 1S3
1; 2ð Þ 1; 3ð Þ 2; 3ð Þ 1; 2; 3ð Þ 1; 3; 2ð Þ

χunit σð Þ 1 1 1 1 1 1

χsgn σð Þ 1 �1 �1 �1 1 1

χ
rjW2

σð Þ 2 0 0 0 �1 �1
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Namely, the sum of the squares of the degrees of the irreducible representations is equal to the order of G.

From the above theorems, we verify that if we want to know all irreducible representations of

G, it suffices to calculate its characters. The list of all values of all characters is called the

character table of G. Finally, we give a few examples of the character tables of finite groups.

(E31) Observe (E30). Since we have

χunit 1ð Þ2 þ χsgn 1ð Þ2 þ χrjW2
1ð Þ2 ¼ 4þ 1þ 1 ¼ 6 ¼ ∣S3∣,

it turns out that unit, sgn , and rjW2
are all irreducible representations ofS3 up to equivalence.

Hence the list in (E30) is the character table of S3.

(E32) Consider the cyclic group Un. Since Un is abelian, any conjugacy class consists of a single

element, and there exist n conjugacy classes. Hence there exist n distinct irreducible represen-

tations. Now, for any 0 ≤ l ≤n� 1, define the map rl : Un ! GL Cð Þ ¼ C
� by

ζk ↦ ζkl 0 ≤ k ≤ n� 1ð Þ

where ζ ¼ exp 2π
ffiffiffiffiffiffiffi

�1
p

=n

 �

. Then we obtain

Hence we see that r0, r1,…, rn�1 are nonequivalent one-dimensional representations, and

hence the above list is the character table of Un. In general, all irreducible representations of

an abelian group are of degree 1.

(E33) (Dihedral groups) For n ≥ 3, consider the dihedral groups Dn. First, for any a, b ¼ �1,

there exist the four one-dimensional representations εa,b : Dn ! C
� defined by

εa,b xð Þ ¼ �1ð Þak if x ¼ σk,

�1ð Þakþb if x ¼ σkτ:

(

These maps are characterized by the images of σ and τ, which are �1ð Þa and �1ð Þb, respec-
tively. Next, for any 1 ≤ l ≤n� 1, we can consider the two-dimensional representations

rl : Dn ! GL 2;Cð Þ given by

σ 1Un
ζ ζ2 ⋯ ζn�1

χr0
σð Þ 1 1 1 1 1

χ
r1

σð Þ 1 ζ ζ2 ⋯ ζn�1

⋮ ⋮

χrn�1
σð Þ 1 ζn�1 ζn�2 ⋯ ζ
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rl xð Þ ¼

cos 2klπ=n � sin 2klπ=n

sin 2klπ=n cos 2klπ=n

 !

if x ¼ σ
k,

cos 2klπ=n � sin 2klπ=n

sin 2klπ=n cos 2klπ=n

 !

0 1

1 0

 !

if x ¼ σ
k
τ:

8

>

>

>

>

>

<

>

>

>

>

>

:

i. The case where n is even. For any 1 ≤ l ≤ n�2
2 , since we can see χ

rl
;χ

rl

D E

¼ 1 by direct

calculation, rls are irreducible representations of Dn. Since we have

χε1,1
1ð Þ2þ χε1,�1

1ð Þ2 þ χε�1,1
1ð Þ2 þ χε�1,�1

1ð Þ2

þχr1
1ð Þ2 þ⋯þ χrn�2

2

1ð Þ2 ¼ 2n ¼ ∣Dn∣,

it turns out that εa,b and rl for a, b ¼ �1 and 1 ≤ l ≤ n�2
2 are all irreducible representations of Dn

up to equivalence. The character table of D4 is give as follows:

ii. The case where n is odd. Similarly, we can see that ε1,b and rl for b ¼ �1 and 1 ≤ l ≤ n�1
2 are all

irreducible representations ofDn up to equivalence. The character table ofD5 is give as follows:

7. Direct products

In chemistry, groups appear in symmetries of molecules. The structures of some of them are

given by direct products of finite groups. Here we consider direct product groups and its

irreducible representations.

x 1D4
f g σ,σ3

�

σ
2f g στ; σ3

τ

� 


τ; σ2
τf g

χε1,1
xð Þ 1 1 1 1 1

χε1,�1
xð Þ 1 1 1 �1 �1

χε�1,1
xð Þ 1 �1 1 �1 1

χε�1,�1
xð Þ 1 �1 1 1 �1

χr1
σð Þ 2 0 �2 0 0

x 1D5
f g σ; σ4

� 


σ
2; σ3

� 


τ; στ;…; σ4
τ

� 


χε1,1
xð Þ 1 1 1 1

χε1,�1
xð Þ 1 1 1 �1

χ
r1

σð Þ 2 2 cos 2π=5 2 cos 4π=5 0

χr2
σð Þ 2 2 cos 4π=5 2 cos 2π=5 0
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Let G and H be finite groups. Set

G�H≔ g; hð Þ jg∈G; h∈Hf g,

and define the product on G�H by

g; hð Þ � g0; h0ð Þ≔ gg0; hh0ð Þ:

Then G�H with this product forms a group. This is called the direct product group of G and

H. The unit is 1G; 1Hð Þ, and the inverse of g; hð Þ is g�1; h�1

 �

. If G andH are finite groups, then it

is clear that ∣G�H∣ ¼ ∣G∣ ∣H∣. For conjugacy classes C and C0 of G and H, respectively, the

direct product set C� C0 is a conjugacy class of G�H, and any conjugacy class of G�H is

obtained by this way.

In order to construct irreducible representations of G�H, we consider tensor products of

vector spaces. For G-vector space V and H-vector space W , let F be the vector space with basis

v;wð Þjv∈V; w∈Wf g and R the subspace of F generated by

v1 þ v2;wð Þ � v1;wð Þ � v2;wð Þ,

v;w1 þw2ð Þ � v;w1ð Þ � v;w2ð Þ,

αv;wð Þ � α v;wð Þ, v;αwð Þ � α v;wð Þ,

for any v, v1, v2 ∈V, w,w1,w2 ∈W , and α∈C. The quotient vector space F=R is called the

tensor product of V and W and is denoted by V⊗W. The coset class of v;wð Þ is denoted by

v⊗w. If v1,…, vm and w1,…,wn are bases of V and W , respectively, then elements vi ⊗wj

(1 ≤ i ≤m and 1 ≤ j ≤n) form a basis of V⊗W . Hence dim V⊗Wð Þ ¼ dimVð Þ dimWð Þ.

For any g∈G and h∈H, we can define the action of G�H on V⊗W by

g; hð Þ �
X

m

i¼1

X

n

j¼1

αijvi ⊗wj≔
X

m

i¼1

X

n

j¼1

αij gvið Þ⊗ hwj


 �

,

and hence, V⊗W is a G�H-vector space. For the representations r : G ! GL Vð Þ and

r
0
: G ! GL Wð Þ corresponding to the G-vector spaces V and W , respectively, we denote by

r⊗ r
0
: G ! GL V⊗Wð Þ the representation corresponding to the G�Hð Þ-vector space V⊗W .

Then we have

Theorem 7.1. (1) As the notation above, if r and r
0 are irreducible, so is r⊗ r

0.

(2) If r1,…, rk (resp. r
0
1,…, r0l) are all irreducible representations of G (resp. H) up to equivalence, then

ri ⊗ rj0 (1 ≤ i ≤m and 1 ≤ j ≤ n) are all irreducible representations of G�H up to equivalence.

(E34) For V ¼ C and W ¼ C, the tensor product V⊗W of V and W is a one-dimensional C-

vector space with basis 1⊗ 1. Thus, we have a bijective linear map V⊗W ! C given by

a 1⊗ 1ð Þ↦ a:

In general, we identify C⊗C with C through this map.
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Let us consider the direct product U2 � U3. Under the identification C⊗C ¼ C, the character

table is given as follows:

where ζ ¼ exp 2π
ffiffiffiffiffiffiffi

�1
p

=3.

(E35) Consider the direct product U2 �S3. Its character table is given as follows:

8. Graphs and their automorphisms

In this section, we consider directed graphs and their automorphism groups. Here we do not

assume for the reader to know the facts in Sections 5 and 6.

8.1. Graphs

According to literatures, there are several different definitions of a graph. Briefly Ca directed

graph Γ consists of vertices and oriented edges whose endpoints are vertices. (For details for

the definition of graphs, see page 14 of [9].) For an oriented edge e, we denote by i eð Þ and t eð Þ
the initial vertex and the terminal vertex of e. Each oriented edge e has the inverse edge e such

that e 6¼ e and e ¼ e. It is clear that i eð Þ ¼ t eð Þ and t eð Þ ¼ i eð Þ. An oriented edge e such that

i eð Þ ¼ t eð Þ is called a loop. For any v, w∈V Γð Þ, we assume that there may exist more than one

oriented edge whose initial vertex is v and terminal vertex w. If this is the case, we say that Γ

has multiple oriented edges.

(E36) A directed graph is easy to understand if it is drawn by a picture. See Figure 4. The

vertices v, w, x, y, z are depicted by small circles. The oriented edges a, b, c, d, e, f , g, h are

σ 1; 1ð Þf g 1;ζð Þf g 1; ζ2

 �� 
 �1; 1ð Þf g �1;ζð Þf g �1; ζ2


 �� 


χ
r0 ⊗ r0

σð Þ 1 1 1 1 1 1

χr0 ⊗ r1
σð Þ 1 ζ ζ2 1 ζ ζ2

χr0 ⊗ r2
σð Þ 1 ζ2 ζ 1 ζ2 ζ

χr1 ⊗ r0
σð Þ 1 1 1 �1 �1 �1

χr1 ⊗ r1
σð Þ 1 ζ ζ2 �1 �ζ �ζ2

χr1 ⊗ r2
σð Þ 1 ζ2 ζ �1 �ζ2 �ζ

σ 1; 1S3
ð Þf g 1; i; j


 �
 �� 


1; i; j; k

 �
 �� 
 �1; 1S3

ð Þf g �1; i; j

 �
 �� 


�1; i; j;k

 �
 �� 


χr0 ⊗unit σð Þ 1 1 1 1 1 1

χ
r0 ⊗ sgn σð Þ 1 �1 1 1 �1 1

χr0 ⊗ rjW2
σð Þ 2 0 �1 2 0 �1

χr1 ⊗unit σð Þ 1 1 1 �1 �1 �1

χr1 ⊗ sgn σð Þ 1 �1 1 �1 1 �1

χr1 ⊗ rjW2
σð Þ 2 0 �1 �2 0 1
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depicted by arrows from the initial vertex to the terminal vertex, and their inverse edges are

omitted for simplicity.

We denote by V Γð Þ and E Γð Þ the sets of the vertices and the oriented edges of Γ, respectively. If

both V Γð Þ and E Γð Þ are finite set, we call Γ a finite graph. Here, we consider only finite graphs.

Remark that ∣E Γð Þ∣ is always even since E Γð Þ is written as e1; e1;…; em; emf g. For any v, w∈V Γð Þ,

if there exists a successive sequence of oriented edges such that the initial vertex of the first

edge is v and the terminal vertex of the last edge w, then the graph is called a connected graph.

For example, see Figure 5. In the following, we assume that all graphs are connected.

8.2. Automorphisms of graphs

Let Γ and Γ
0 be graphs. A morphism of directed graphs from Γ to Γ

0 is a map

σ : V Γð Þ∪E Γð Þ ! V Γ
0ð Þ∪E Γ

0ð Þ

which maps vertices to vertices and edges to edges, such that

σ i eð Þð Þ ¼ i σ eð Þð Þ, σ t eð Þð Þ ¼ t σ eð Þð Þ, σ eð Þ ¼ σ eð Þ

for any e∈E Γð Þ. Namely, σ maps the initial vertex, the terminal vertex, and the inverse edge of

an oriented edge to those of the corresponding oriented edge, respectively. For simplicity, we

write σ : Γ ! Γ
0. If σ is bijective, then it is called an isomorphism. An isomorphism from Γ to Γ

is called an automorphism of Γ. Let Aut Γð Þ be the set of all automorphisms of Γ. Then Aut Γð Þ

with the composition of maps forms a group. We call it the automorphism group of Γ. Let us

consider a few easy examples of Aut Γð Þ.

(E37) See Figure 6. The graph Γ1 consists of one vertex v and two oriented edges e and e. Hence

all morphisms from Γ1 to Γ1 are automorphisms since if σ : Γ ! Γ is a morphism, then

σ vð Þ ¼ v, and σ eð Þ ¼ e or σ eð Þ ¼ e. If σ eð Þ ¼ e, then σ eð Þ ¼ e as a consequence, and hence σ is

the identity map on Γ. If σ eð Þ ¼ e, then σ eð Þ ¼ e as a consequence, and hence σ is the

Figure 4. An example of a graph.
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orientation-reversing automorphism on Γ. Thus, Aut Γ1ð Þ ¼ σ1; σ2f g ffi Z=2Z where σ1 eð Þ ¼ e

and σ2 eð Þ ¼ e.

On the other hand, the graph Γ2 consists of one vertex v and four oriented edges e, e, f , and f . It

is easily seen that there are eight possible automorphisms on Γ2. Namely, all of them map v to

v, and the correspondences of edges are given by

σ1 : e; fð Þ↦ e; fð Þ, σ2 : e; fð Þ↦ e; fð Þ, σ3 : e; fð Þ↦ e; f

 �

, σ4 : e; fð Þ↦ e; f

 �

,

σ5 : e; fð Þ↦ f ; eð Þ, σ6 : e; fð Þ↦ f ; e

 �

, σ7 : e; fð Þ↦ f ; eð Þ, σ8 : e; fð Þ↦ f ; e

 �

:

Hence Aut Γ2ð Þ ¼ σ1;…; σ8f g. It turns out that σ2, σ3, and σ5 are generators of Aut Γ2ð Þ. In (E41),

we study the structure of Aut Γ2ð Þ more.

Next, in order to describe the group structure of Aut Γð Þ more simply, we consider semidirect

products of groups. For high motivated readers, see [10] for details and more examples. The

Figure 5. Examples of a connected and a non-connected graph.

Figure 6. Graphs which have one vertex.
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semidirect product groups are kinds of generalizations of direct product groups. Let G be a

group, K a subgroup of G, and H a normal subgroup of G. Furthermore, if we have

G ¼ hk jh∈H; k∈Kf g, H ∩K ¼ 1Gf g,

then we call G the semidirect product group of H and K and denote it by G ¼ H⋊K.

(E38) Recall the dihedral group Dn ¼ 1; σ; σ2;…; σn�1; τ; στ; σ2τ;…; σn�1
τ

� 


. Set H≔

1; σ; σ2;…; σn�1
� 


and K≔ 1; τf g. Then we can see that the subset H is a normal subgroup of

Dn, H ∩K ¼ 1f g, and Dn ¼ hk jh∈H; k∈Kf g. Thus Dn ¼ H⋊K.

Remark that for any g∈G, we can write g ¼ hk for some h∈H and k∈K and that this expres-

sion is unique. Namely, if g ¼ hk ¼ h0k0 for h, h0 ∈H and k, k0 ∈K, then we have

h0ð Þ
�1
h ¼ k0k�1 ∈H ∩K. Hence h0ð Þ

�1
h ¼ k0k�1 ¼ 1G, and hence h ¼ h0 and k ¼ k0. Therefore, if

∣G∣ < ∞, we see that ∣G∣ ¼ ∣HkK∣. We also remark that if hk ¼ kh for any h∈H and k∈K, then G

is isomorphic to the direct product group of H and K, namely, G ffi H � K. Thus, the semidirect

product is a generalization of the direct product.

Now, let Γ be a graph. For any v, w∈V Γð Þ, we number the oriented edges of Γ with v as initial

vertex and w as terminal vertex. Then every oriented edge e can be uniquely represented as

e ¼ v;w; kð Þ. In particular, we can arrange the numbering such that e ¼ w; v; kð Þ for any

e ¼ v;w; kð Þ∈E Γð Þ.

(E39) See Figure 7. We can arrange a numbering of the oriented edges as

e ¼ v;w; 1ð Þ, e ¼ w; v; 1ð Þ, f ¼ v;w; 2ð Þ, f ¼ w; v; 2ð Þ, g ¼ v;w; 3ð Þ, g ¼ w; v; 3ð Þ,

h ¼ w;w; 1ð Þ, h ¼ w;w; 2ð Þ:

Let T be the subgroup of Aut Γð Þ consisting of automorphisms that fix all vertices pointwise:

T≔ t∈Aut Γð Þ j t vð Þ ¼ v; v∈V Γð Þf g:

Let M be the subgroup of Aut Γð Þ consisting of automorphisms that fix the numberings of

edges:

M≔ m∈Aut Γð Þ j m v;w; kð Þ ¼ v0;w0
; kð Þ for any v;w∈V and any number k

� 


:

Then we have Aut Γð Þ ¼ T⋊M

Figure 7. An example of a graph.
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(E40) Recall the graph Γ1 in (E37). Since every automorphism fixes the vertex v, we see that

Aut Γ1ð Þ ¼ T and M ¼ 1f g. Similarly, if a graph Γ has only one vertex, then Aut Γð Þ ¼ T.

(E41) Recall the graph Γ2 in (E37). We have Aut Γ2ð Þ ¼ T and M ¼ 1f g. Set H≔ σ2; σ3h i and

K≔ σ5h i. Then it is seen that H ffi Z=2Z� Z=2Z, K ffi Z=2Z, and Aut Γ2ð Þ ffi H⋊K.

(E42) Consider the directed graph Γ depicted as the regular n-gon. Then we see that T ¼ 1f g

since if an automorphism fixes all vertices then it must fix all edges. Thus, Aut Γð Þ ¼ M.

Furthermore, we can see that M ffi Dn ¼ σ; τh i where σ is the 2π=n-angled rotation and τ is

the reflection.

(E43) Consider the directed graph Γ in Figure 8. We arrange a numbering of the oriented edges as

e ¼ w; v; 1ð Þ, e ¼ v;w; 1ð Þ, f ¼ w; v; 2ð Þ, f ¼ v;w; 2ð Þ, g ¼ w; v; 3ð Þ, g ¼ v;w; 3ð Þ:

The subgroup T consists of automorphisms which permute the oriented edges e, f , g, and hence

T ffi S3. On the other hand, the subgroup Q consists of two automorphisms given by the

identity map and

σ : v;wð Þ↦ w; vð Þ, e; f ; gð Þ↦ e; f ; g

 �

,

and hence Q ffi Z=2Z. Therefore Aut Γð Þ ffi S3⋊Z=2Z.

The readers are strongly encouraged to consider further examples by oneself. It makes their

understandings better and deeper.

As a remark, we mention the irreducible representations of a semidirect product group. As

mentioned in Section 7, the irreducible representations of a direct product group G�H can be

calculated with those of G and H. The situation for semidirect products groups, however, is

much more complicated. In general, in order to study the irreducible representations of

semidirect product groups, we require some arguments in advanced algebra.

Figure 8. An example of a graph.
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