
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900



Chapter 6

Silicone Adhesives in Medical Applications

Gerald K. Schalau II, Alexis Bobenrieth,
Robert O. Huber, Linda S. Nartker and
Xavier Thomas

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.71817

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons 
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, 
and reproduction in any medium, provided the original work is properly cited. 

Gerald K. Schalau II, Alexis Bobenrieth, Robert O. Huber, 
Linda S. Nartker and Xavier Thomas

Additional information is available at the end of the chapter

Abstract

This chapter will review silicone based adhesive technologies, applications and character-
ization, emphasizing those self-adhesive materials often used in skin contact applications 
including transdermal drug delivery and wound care device attachment. The silicone 
pressure sensitive adhesives used in transdermal applications today are thermoplastic 
and based on silicone polymer and silicate resin chemistries. Previous research has sug-
gested that some drugs readily diffuse through silicone adhesives, prompting their use in 
transdermal patches. A recently developed silicone acrylate hybrid adhesive technology 
combines polyacrylate and silicone molecular structures to form a stable, semi-interpene-
trated network. This technology provides ease in formulating transdermal drug delivery 
systems through improved physical stability over simple blends of acrylate and silicone 
adhesives. The ability of some silicone adhesives to affix bandages without disrupting 
the wound bed upon removal has led to the wide acceptance of a third type of silicone 
adhesive technology that unlike the aforementioned thermoplastic materials is thermo-
set. This adhesive form is based on a platinum catalyzed, cross-linking reaction between 
vinyl functional and silicon-hydride functional silicone polymers. The various silicone 
adhesive types have been characterized via classical measurements of physical perfor-
mances. Rheological techniques elucidated herein provide further understanding of the 
structure-property relationships previously unavailable using classical characterization 
approaches.

Keywords: silicone, pressure sensitive adhesive, soft skin adhesive, transdermal, 
wound care, silicone acrylate, polydimethylsiloxane, semi-interpenetrating network

1. Introduction

The term “silicone” is not always used consistently, and should only be used to refer to 

polymeric materials, avoiding the relatively common confusion with the metallic element 
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distribution, and reproduction in any medium, provided the original work is properly cited.



silicon (Si). Silicones are synthetic polymers containing Si─O─Si bonds and are used in 

many industries for their water repellency, ability to wet-out surfaces, high permeability 

to gases, stability in extreme temperatures, and resistance to thermal, radiation and chemi-
cal degradation. The variety of physical forms and physiochemical properties that silicones 
can display has led to their adoption in a diverse array of healthcare applications including 

medical devices and as active pharmaceutical ingredients (API) and excipients in medicines 
for over 60 years [1]. One class of silicone materials that has generated continued interest and 
research is silicone adhesives, specifically those self-adhering materials that do not require 
any activation immediately prior to use. Silicone adhesives are used as excipients in transder-

mal patches, and as skin contact adhesives in prosthetic and wound care device attachment. 
Recent investigations support the use of silicone based pressure sensitive adhesives for their 
skin-friendliness, but also to enhance the efficacy of the drug in transdermal drug delivery 
patch products. Recent silicone technologies like silicone based hybrid pressure sensitive 
adhesives promise potential performance advantages and improved drug delivery efficacy 
in transdermal drug delivery systems. Other silicone adhesive types are well known for their 
atraumatic removal from skin - an ability to remove cleanly from compromised skin without 

negatively impacting the wound healing process.

This chapter will review silicone based adhesive technologies, applications and characteriza-

tion, emphasizing those self-adhesive materials often used in skin contact applications. One 
type of silicone adhesive that is well established in the medical device industry but outside 

the scope of this work are room temperature vulcanizing (RTV) sealants. While these sealants 
are an interesting and useful class of materials, they will not be a focus of this chapter. Unlike 
the self-adhering adhesives discussed in this chapter, once fully crosslinked, the RTV seal-
ants are non-tacky and rubbery and designed to form a permanent bond between substrates. 
These materials have a similar chemistry to silicone caulks commonly in the construction 

industry, and have found utility adhering materials to silicone elastomers, bonding parts of 

medical devices together, and acting as encapsulants and sealants in a variety of medical 

devices, including pacemakers [2].

2. Silicone chemistry

While the term “silicone” persists in common vernacular, “polyorganosiloxane” is a more 
appropriate term, and has found acceptance in most scientific literature. Polyorganosiloxanes 
are organosilicon polymers, the most common of which are the trimethylsiloxy-terminated 
polydimethylsiloxanes (Figure 1) [3].

Figure 1. Chemical structure of typical polydimethylsiloxanes.
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The silicon in polyorganosiloxanes can be combined with one, two or three organic groups, 
commonly ─CH

3
, ─CH═CH

2
 or ─H, with the remaining valence(s) satisfied with oxygen [4]. 

Branched silicone structures are made possible by substitution of dimethyl siloxane units (i.e., 
(CH

3
)

2
SiO

2/2
) with those that contain additional Si─O connections (e.g., CH

3
SiO

3/2
 or SiO

4/2
) [4]. 

It is through the fact that different siloxane units can be combined with one another in the 
same molecule that the great variety of silicone compounds arises [3].

Silicones exhibit an inorganic backbone chain (Si─O)
n
 and organic, (typically methyl) side 

groups [5]. It is this unusual combination and the resulting physiochemical properties that 
are responsible for many characteristics of the silicone adhesives. The silicon to oxygen bonds 
of the backbone are longer and more open than carbon to oxygen bonds permitting the char-

acteristic flexibility of the siloxane chain. By way of comparison, the rotational energy around 
a ─CH

2
─CH

2
 bond is over four times greater than that of a typical (CH

3
)

2
Si─O bond. This 

flexibility is responsible for the characteristic low surface tension observed in silicones which 
allows them to quickly “wet out” onto surfaces including skin [5].

In addition to increased flexibility, the silicon-oxygen bonds are also stronger than carbon-
carbon bonds. The bond energy of a Si─O bond along the backbone of a silicone polymer is 

452 kJ/mol while the typical C─C bond of the backbone of an organic polymer is only about 

348 kJ/mol [5]. The inherently strong backbone of silicone polymers can help explain the 
acknowledged chemical stability silicone polymers possess toward a variety of degradation 

routes including moisture, UV, and a wide range of temperatures. This is equally important 
at very low and very high temperatures, where some types of silicones maintain their charac-

teristic physical properties and utility from −100°C up to 260°C [6].

Silicones in general, are hydrophobic, (i.e., having little or no affinity for water), so one 
may anticipate silicones to be extremely lipophilic, given the common perspective equating 
hydrophobicity with lipophilicity (i.e., having a strong affinity with lipids). However, in the 
case of silicones, only relatively small silicone polymers are lipophilic. Polydimethylsiloxane 
(PDMS) polymers in excess of six to eight (CH

3
)

2
SiO units have little affinity with lipids 

while larger polymers are essentially lipophobic. These hydrophobic and lipophobic prop-

erties impact the ability to solubilize drugs, oils, botanicals and other traditional active 

ingredients into a silicone matrix [4]. The relatively poor miscibility of silicones with many 
compounds may be a key to the noted release efficiency of those same compounds from 
silicones.

3. Silicone pressure sensitive adhesive: description and applications

Silicone pressure sensitive adhesives (PSA) are comprised of high molecular weight silanol-
functional silicone polymers and silanol functional MQ siloxane resins. While a simple mix-

ture of silicone polymer and resin can yield an adhesive with adequate peel adhesion and tack 
properties, sufficient cohesive strength is lacking. The silicone pressure sensitive adhesives 
most often used in medical applications are the product of a silanol condensation reaction 

between the polymer and resin components yielding a network structure, commonly referred 
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to as standard pressure sensitive adhesives (Figure 2). These materials have suitable cohesive 
strength for medical device and transdermal drug delivery system applications, and upon 

removal from the skin the adhesive layer is removed intact. These adhesives are typically sup-

plied in a volatile solvent which is removed during the coating process.

Silicone PSA have a long history of use in transdermal drug delivery systems but may also 
be used to attach prostheses and wound care devices. One recent innovative example of the 
utilization of silicone PSA in medical device attachment is the Embrace® MINIMIZE Silicone 
Scar Aid which consists of a silicone PSA coated onto silicone elastomer (rubber) sheeting. 
A unique applicator allows the dressing to be applied to relieve tension on healing skin to 
minimize scar formation [7, 8].

Another application where silicone PSA have found wide acceptance is in the field of trans-

dermal drug delivery. Second to the active pharmaceutical ingredient (API) or drug, the pres-

sure-sensitive adhesive used in a transdermal drug delivery system can be viewed as the most 

critical component. Without proper and sustained adhesion to the skin, drug delivery from 
this dosage form does not occur.

Multiple transdermal drug delivery system (TDDS) designs are reported in the literature and 
are commercially available including reservoir, matrix, and drug-in-adhesive (DIA) systems; 
slight variants and combinations of each of these patch designs are also found. The func-

tional requirements of the pressure sensitive adhesives in each patch design can vary with the 
design. (Table 1) [9, 10].

Regardless of the patch design, basic requirements for the adhesive that is in direct contact 
with the skin include sufficient moisture resistance to stay adhered while perspiring and 
showering and biocompatibility (i.e., the adhesive must be non-irritating and non-sensitizing 

Figure 2. Schematic of the standard silicone PSA.
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at a minimum). The adhesive must also have acceptable tack to adhere quickly on contact, 
good wetting behavior to achieve sufficient adhesion for the duration of wear (typically from 

12 h to 7 days) and possess sufficient cohesive strength to enable removal without residual 
adhesive remaining on the skin. In most transdermal patch designs, the adhesive must also 
resist cold flow, or creep, the property of an adhesive to deform, especially at ambient tem-

perature prior to use or at skin temperature when in use.

The TDDS design with the most straightforward adhesive requirements is a matrix patch 
with a rim adhesive layer around the periphery of the patch. In this type of patch design, the 
adhesive functions are not significantly different from other device attachment applications as 
the adhesive must simply adhere the patch to the skin for the intended wear period. If the rim 
adhesive layer comes into contact with the drug loaded matrix layer, the adhesive must also 
be compatible with the matrix layer components. Resistance to cold flow for a rim adhesive 
is esthetically pleasing but does not result in unintended drug exposure or impact the drug 
contact surface area, so is not usually a mandatory function.

Reservoir patch designs are typically characterized by a liquid reservoir compartment with 
solubilized API separated from the skin contact PSA by a semipermeable membrane. For a 
reservoir patch design with an adhesive layer across the face of the entire patch, the adhesive 

must adhere to the membrane and provide adequate adhesion to skin, as well as be compat-
ible with the drug and allow diffusion of the drug and any penetration enhancers to the skin 
interface. The adhesive properties must be resilient to the drug and enhancer(s) reaching satu-

ration in the adhesive layer.

Adhesive functional requirement Patch construction

Matrix with rim 

adhesive

Reservoir with rate controlling 

membrane/face adhesive

Drug-in-adhesive

Biocompatibility + + +

Moisture resistance + + +

Acceptable tack + + +

Good adhesion + + +

Good cohesive strength + + +

Adherence to backing layer + + +

Adherence to rate controlling 
membrane

+ + (in some 

cases)

Compatible with drug and excipients + (in some cases) + +

Permeable to drug and enhancers + +

Cold flow resistance + (esthetic only) ++ ++

Stabilize drug and excipients +

Table 1. Adhesive functional requirements for common transdermal patch designs.
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Figure 3. Schematic of amine compatible silicone adhesives.

In a drug-in-adhesive (DIA) patch design, the adhesive plays an even greater role in the overall 
function of the patch. While this type of patch construction is clearly the easiest to manufacture, 
many formulation challenges exist, particularly with a monolithic (i.e., single layer) design. In 
addition to the requirements stated above, the adhesive matrix must also stabilize the API and 
excipients in either a dissolved or dispersed state, and allow controlled release of the drug and 
enhancers. Cold flow reduction is even more challenging in monolithic patch designs too, as they 
commonly require a greater adhesive coat weight than constructs that use face adhesive layers.

It is unlikely that any single, off the shelf, adhesive system can meet the demands for all patch 
formulations and patch types. Silicone PSA, along with acrylic and polyisobutylene (PIB) PSA, 
are commonly used in transdermal patch applications. The end-use properties of silicone 
PSA (tack, adhesion, cohesive strength) can easily be modified or customized by varying the 
resin-to-polymer ratio, the degree of cross-linking and the residual silanol functionality during 

preparation. Silicone PSA are soluble in a variety of volatile polar and non-polar hydrocarbon 
solvents and additional customization may be achieved via the solvent in which the silicone 

PSA is dispersed as well as the concentration of the PSA in solvent. Solvent and concentra-

tion may be matched to provide optimal conditions for drug and excipient dissolution for 
TDDS manufacturing. Hot melt forms of silicone adhesives are also available. The capability to 
uniquely customize silicone PSA is essential for use in transdermal drug delivery applications 
and is likely responsible for their use therein. There are instances where more customization 
is required than can be achieved with standard silicone adhesives. For the silicone chemistry 
described above and noted in Figure 2, it is important to note that exposure to amines and 
amino-functional drugs and excipients will cause certain silicone PSA to lose tack and their 
ability to instantly adhere to the skin. Standard silicone PSA can be chemically treated to reduce 
the silicon-bonded hydroxyl (silanol) content of the adhesive to render the PSA resistant to loss 
of tack, commonly referred to as amine-compatible silicone adhesives (Figure 3) [11].
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Silicone PSA is utilized in a variety of marketed TDDS either as the primary adhesive 
system or in combination with acrylic adhesives. Table 2 provides a list of commercial 

TDDS that utilize silicone PSA as a component of the patch construction as of the time of 
this publication, the respective actives, and other relevant information is also included. 
The table highlights the evolution of TDDS designs from the first silicone-containing res-

ervoir patch in 1981 to recent approvals of more sophisticated microreservoir and mul-

tilayer designs that incorporate different adhesive types to achieve demanding dosage 
requirements.

In recent years, the nomenclature for silicone PSA listed in the FDA Inactive Ingredient 
Database (IID) has been standardized to allow patch formulators to more easily identify 
prior use and maximum potency. Previously, reference to the use of silicone PSA in trans-

dermal patches varied from a description of an adhesive laminate to numeric product codes. 
The preferred substance name for standard silicone adhesives is now dimethiconol/tri-

methylsiloxysilicate crosspolymer, and the preferred substance name for amine-compatible 
silicone adhesives is trimethylsilyl-treated dimethiconol/ trimethylsiloxysilicate crosspoly-

mer. Reference is made to various types of adhesive with the addition of a nominal resin/
polymer ratio [12].

Drug Patch Marketer Construction Silicone PSA 

components

Nitroglycerin (1981) Transderm-Nitro® Novartis Reservoir Silicone face adhesive 

layer

Fentanyl (1990) Duragesic® Janssen Pharms Reservoir Silicone face adhesive 

layer

Estradiol (1996) Vivelle-Dot® Novartis Microreservoir 
monolithic matrix

Silicone matrix 
adhesive continuous 

phase with 

acrylate polymer 

microreservoirs

Nicotine (1997) Generic (OTC) Aveva Multilayer matrix Silicone matrix 
adhesive continuous 

phase with acrylate 

face adhesive

Estradiol / 
Norethindrone Acetate 
(1998)

CombiPatch® Noven Microreservoir 
monolithic matrix

Silicone matrix 
adhesive continuous 

phase with 

acrylate polymer 

microreservoirs

Fentanyl (2005) Generic Mylan 
Technologies

Drug-in-adhesive 
monolitic

Silicone matrix 
adhesive continuous 

phase

Fentanyl (2006) Generic Lavipharm Labs Multilayer matrix w/ 
membrane

Silicone matrix 
adhesive, continuous 

phase and face 

adhesive layer
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4. Silicone and acrylate adhesive blends

Silicone and acrylic PSA chemistries as well as combinations of the two are commonly utilized 
in transdermal drug delivery [13]. The selection of the adhesive is typically drug and TDDS 
design specific and each adhesive type has its own advantages and disadvantages. Silicone 
adhesives may be more challenging during patch formulation due to the immiscibility with 

Drug Patch Marketer Construction Silicone PSA 

components

Methylphenidate (2006) Daytrana® Noven Microreservoir 
monolithic matrix

Silicone matrix 
adhesive continuous 

phase with 

acrylate polymer 

microreservoirs

Fentanyl (2007) Generic Actavis Labs Reservoir Silicone face adhesive 

layer

Fentanyl (2007) Generic Mayne Pharma Reservoir Silicone face adhesive 

layer

Rivastigmine (2007) Excelon® Patch Novartis Multilayer matrix Silicone face adhesive 

layer

Rotigotine (2007) Neupro® UCB Microreservoir 
monolithic matrix

Silicone matrix 
adhesive continuous 

phase

Capsaicin (2009) Qutenza® Acorda Drug-in-adhesive 
monolitic

Silicone matrix 
adhesive continuous 

phase

Clonidine (2009) Generic Aveva Multilayer matrix w/ 
membrane

Silicone matrix 
adhesive continuous 

phase with acrylate 

face adhesive

Fentanyl (2011) Generic Mallinckrodt Inc Multilayer matrix w/ 
membrane

Silicone matrix 
adhesive, continuous 

phase and face 

adhesive layer

Estradiol (2012) Minivelle® Noven Microreservoir 
monolithic matrix

Silicone matrix 
adhesive continuous 

phase with 

acrylate polymer 

microreservoirs

Estradiol (2014) Generic Mylan 
Technologies

Microreservoir 
monolithic matrix

Silicone matrix 
adhesive continuous 

phase with 

acrylate polymer 

microreservoirs

Table 2. Commercial TDDS patches utilizing silicone PSA.
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many drugs and common excipients in the silicone matrix; while acrylic adhesives are often 
easier to formulate due to the increased solubility of drugs and miscibility of excipients. 
However, higher drug utilization is often observed from TDDS that employ a silicone PSA 
over comparable patches that use an acrylic PSA [13, 14]. Yeoh [14] has provided a review 

of marketed fentanyl patches and has shown patches utilizing silicone adhesives have much 

greater fentanyl depletion during use and lower residual drug content after their intended 

use than comparable patches that use an acrylic adhesive. Minimizing the amount of residual 
drug in the patch at the end of the labeled use period, particularly with opiate drugs, is a focus 

of a recent FDA Guidance [15].

Combining silicone and acrylic pressure sensitive adhesives to form an immiscible polymer 

blend can provide benefits for transdermal drug delivery through selective modification of the 
solubility and/or diffusivity of the drug in the polymer blend matrix [16]. These micro-reser-

voir systems allow the drug to be solubilized in high concentrations in the discontinuous poly-

acrylate phase [17] and have been shown to be beneficial in decreasing patch size and required 
drug loading [18]. This technique has been successfully implemented in several commercial 
transdermal patches on the market including CombiPatch®, Daytrana® and Minivelle® 
(Noven Pharmaceuticals) as well as Vivelle Dot® (Novartis Pharmaceuticals) [16] A review 
of label claims for two patches that provide a 0.5 mg/day dose of estradiol reveals that a 5 cm2 

Vivelle Dot® patch, which employs the Dot Matrix® technology, can deliver 22.4% of the drug, 
whereas the 12.5 cm2 Climera® with an acrylic PSA construction only delivers 9.0% of the drug 
[19]. These immiscible blends do have a major limitation in that they will exhibit macro phase 
separation in the coating mass if mixing is discontinued which may be exacerbated upon addi-
tion of other formulation ingredients such as penetration enhancers [20]. One potential means 
to prevent macro phase separation of the two immiscible adhesives is to covalently link the two 

polymer chemistries together, creating a silicone-acrylate hybrid material.

5. Silicone-acrylate hybrid

Hybrid adhesives, in which silicone and acrylic chemistries are combined, have been described 

following different routes [21, 22]. One approach is the reaction product of a (meth)acrylate-
functional silicone PSA and ethylenically unsaturated monomers, [21] whereas a second route 

toward a hybrid adhesive describes an alkoxysilyl-functional acrylic prepolymer that is fur-

ther condensed or “bodied” with silicone PSA precursors (i.e., OH-functional silicate resin 
and OH-terminated PDMS) in the presence of a condensation catalyst [22]. These hybrid adhe-

sives, although produced via opposite approaches, likely have the potential for making very 

similar materials depending on the exact formulation and extent of covalent coupling between 
the acrylate and silicone phases. As with the simple blends of silicone and acrylic adhesives 
mentioned above, the hybrid materials result in an immiscible matrix and exhibit a typical 
domain (droplets of incompatible material) in continuous phase appearance. However, unlike 
simple blends, the hybrid adhesives are capable of much finer domain sizes and demonstrate 
superior phase stability during formulation and in a cast film as shown in Figure 4 [20].
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Figure 5. Drug flux from silicone-acrylate hybrid PSA based patches; (A) estradiol 1.5 wt%; (B) clonidine at 1, 1.5 and 
2.5 wt%; [23].

Figure 4. Optical micrograph (100X magnification) of (A) 50:50 blend of silicone PSA and non-functional acrylic PSA and 
(B) silicone-acrylate hybrid adhesive (50% acrylate) [20].
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Drug delivery using silicone-acrylate hybrid adhesives (SilAc I and SilAc II) differing in the ratio 
of high and low Tg acrylic monomers has been reported, and delivery of estradiol (Figure 5A), 

clonidine (Figure 5B), and ketoprofen was demonstrated across human cadaver epidermis from 

these matrices. The authors also noted that the use of silicone-acrylate hybrid PSA, singularly or 
as blends with silicone PSA resulted in a more desirable wet blend compatibility/stability than 
those obtained with blends [23].

Due to the inherent immiscibility of silicone and acrylate polymers, the hybrid adhesives con-

tain micro-domains which can be observed using transmission electron microscopy (TEM) as 
presented in Figure 6. Further analysis of the phase behavior reveals the ability to selectively 
control the domain arrangement (i.e., silicone-in-acrylate or acrylate-in-silicone) of these 
materials by the choice of casting solvent, with the phase having the highest affinity with the 
casting solvent remaining external, (i.e., heptane casting solvent exhibiting a silicone continu-

ous phase and polyacrylate discontinuous phase (Figure 6A) or vice versa, (Figure 6B)). Phases 
can also be controlled through changing the volume fraction of silicone or acrylate through 

blending or addition of specific co-solvents.

The selective control of the phase arrangement provides potential options for tuning both the 

adhesive properties as well as tailored drug release profiles as illustrated in Figure 7.

The impact of casting solvent and silicone content on the material properties has been con-

ducted using a dynamic rheometer (Figure 8A). Blends of silicone PSA and silicone-acrylate 
hybrid PSA (nominally 50% silicone) were prepared in either heptane or ethyl acetate to yield 
a range of materials. For materials delivered from ethyl acetate, between 76% and 78% sili-
cone, a precipitous change in tan delta is observed followed by incremental decrease as the 

silicone content rises. Tan delta is a rheological property that approximates the internal fric-

tion of a material. When tan delta is greater than one, a material is more viscous than elastic, 

Figure 6. Transmission electron micrograph of silicone-acrylate hybrid adhesive films, silicone phase appears dark due 
to the electron density (A) cast from heptane and (B) cast from ethyl acetate.
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and when it is less than one it is more elastic than viscous. TEM analysis suggests this is the 
result of phase inversion when the silicone becomes the external phase. This change is not 
observed for materials delivered from heptane as the silicone remains the external phase over 
the entire range. Films containing either 1.0 wt% estradiol (Figure 8B), 2.5 wt% ibuprofen 
(Figure 8C), or 2.5 wt% lidocaine (Figure 8D) were prepared using blends of hybrid PSA 

Figure 8. Rheology and drug release as a function of silicone content and dispersion solvent; (A) tan delta of the adhesive 
matrix; (B) estradiol (E2) 6 h cumulative release; (C) ibuprofen (IBU) 1 h cumulative release; (D) lidocaine (Lido) 1 h 
cumulative release [24].

Figure 7. Illustration of silicone-acrylate hybrid adhesive microstructure and potential impact on drug solubility and 
release.
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with silicone PSA to investigate the impact of phase arrangement on the release behavior. All 
three API demonstrate a change in drug release characteristics between 75 and 80% silicone 
content, which is where rheology suggests the phase inversion occurs [24].

6. Silicone pressure sensitive adhesive: strength characterization

The characterization of PSA materials is a critical part of innovation development and pro-

duction quality control. Historically, tape properties such as peel adhesion, shear and tack 
have been used to characterize the performance of pressure sensitive adhesives targeted for 

transdermal applications. However, these tests often have high variability resulting in wide 
specification limits and poor correlation of test data with adhesive performance in real life 
applications [25]. Furthermore, tape property tests can be substrate dependent. That is to say, 
they are influenced by the substrate on which the PSA is coated and also by the substrate on 
which the adhesive performance is measured. Despite the drawbacks of tape property testing, 
they are still commonplace and so, warrant some discussion.

Peel tests are well described in the literature and are common to the majority of adhesives. 
The peel test typically occurs at 90o or 180° and the force to remove the adhesive from a sub-

strate (e.g., stainless steel in many cases) is measured. In the case of silicone PSA, the typical 
adhesive thickness tested is relatively thin, commonly between two and five mil (approxi-
mately 51–127 micron). A distinction between peel adhesion and tack of an adhesive is often 
made. From an analytical test perspective, the distinction between peel adhesion and tack 
measurements is the time allowed for the adhesive to bond with the substrate. When measur-

ing tack, the measurement is taken almost instantaneously after the adhesive comes in contact 

with the test substrate, whereas peel adhesion is measured after the adhesive is left in contact 

with the substrate for a longer time period. The time between application and testing allows 
the adhesive to wet out on the surface and the adhesion to build.

Shear testing may have greater relevance to skin contact adhesive applications than the afore-

mentioned peel adhesion and tack tests. Since PSA are condensed materials that have the 
ability to flow, the extent of cold flow must be characterized to fully understand and antici-
pate the surface area of adhesive in contact with skin, which can impact the amount of drug 

delivered from a transdermal patch. Shear tests of fully formulated adhesive matrices may 
be even more relevant to the performance of the final TDDS. If the skin/adhesive interface 
changes over time, the transdermal drug diffusion will also change. Typically, a shear test is 
the measurement of the time for the adhesive to detach from a surface (e.g., stainless steel) 
under a constant weight.

The advantages of tape property test methodology include ease of set up, reproducibility 

and a straightforward interpretation of data. However, drawbacks including the considerable 
influence adhesive coating thickness has on the test, the influence of the substrate on which 
the adhesive is coated, and the surface on which the test is conducted must also be rational-

ized. To minimize these influences, there must be accurate control of adhesive thickness and 
standardization of substrates and test surfaces.
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7. Silicone pressure sensitive adhesive: rheology

Although tape property testing may qualitatively predict how quickly a system may bond 
to a substrate, the extent to which the adhesive resists cold flow, and how much force may 
be needed to remove it, and perhaps most importantly, the wear performance of the system 

may not be adequately addressed using classical characterization techniques. In order to better 
understand and predict the wear performance of transdermal systems, rheology is often used 

to understand the adhesive bulk viscoelastic behavior. [26] Rheological characterization allows 
the analyst to overcome the inherent uncertainty linked to peel, tack and shear tests by minimiz-

ing the influence of sample preparation and substrate variability on adhesive characterization 
results. Rheology is a technique to characterize viscoelastic properties of polymers and also 
predict wear performance of pressure sensitive adhesives. As shown below in Figure 9, a typi-

cal rheological curve can be correlated to tape properties [27–30].

Data have shown that for viscoelastic materials, such as silicone pressure sensitive adhesives, 
frequency sweep curves are sensitive to structural differences (e.g., crosslink density) and for-

mulation changes (e.g., resin-to-polymer ratio). This sensitivity provides a means to identify, 
characterize and predict adhesive wear performance [26].

Storage modulus (G′) is an indicator of how elastic the adhesive is and how much energy is 
stored during deformation, while the loss modulus (G″) indicates the viscous component of 
the PSA and how much energy is lost as heat, while complex viscosity (η*) is an indicator of 
the adhesive bulk viscosity and can be related to the cold flow [25]. Bonding of a transdermal 
system occurs at a low deformation rate, and is dependent on the wetting behavior of the 
adhesive when it comes into contact with skin [26]. Rheologically, the storage modulus, G′, 
values at low frequency may be used for predicting wetting and creep (cold flow) resistance. 
Optimum wetting occurs when the adhesive modulus is low. Subsequently, debonding of a 
transdermal system occurs at high deformation rates [26].

Figure 9. A schematic representation of the link between the rheological profile and the final pressure sensitive (PSA) 
wear performance [25].

Applied Adhesive Bonding in Science and Technology106



Rheologically, the storage modulus, G′, and loss modulus, G″, at high frequency may be 
related to the peel adhesion and quick stick (i.e., tack) properties of an adhesive and the sub-

sequent TDDS [31, 32]. For bonding, the viscous contribution should be higher than the elastic 
contribution to the PSA viscoelastic profile. In rheological terms, this means that at low fre-

quencies, G′ < G″ and the opposite for the debonding step, represented at high frequencies 
where G′ should be equal to or higher than G″. Based on this interpretation, the rheological 
traces in Figure 10 suggest that the increase of resin content should lead to reduced cold flow 
(i.e., an increase of the complex viscosity with resin content) and an increase of the adhe-

sion strength (i.e., increase of both G′ and G″ with resin content). Dynamic frequency sweeps 
(0.01–100 rad/s) were conducted on dried adhesive solids using a TA ARES-G2 rheometer. 
The adhesives with high and medium resin content were tested using 8 mm parallel plates, 

at 0.35% and 0.5% strain respectively. The adhesive with low resin content was tested using 
25 mm plates, at 0.5% strain. All samples were tested at 30°C with a 1.5 mm gap.

In the early 1990s, E.P. Chang developed a theory to interpret rheological data of pressure 
sensitive adhesives and establish criteria for PSA classification when used in conjunction 
with the Dahlquist’s criteria [33]. This theory is now well known as “Chang viscoelastic win-

dow.” As depicted in Figure 11, a G′ vs. G″ graph, is divided into four quadrants with a 
central axis. The location of the analyzed PSA within this graph allows a straightforward 
extrapolation from rheological properties to real-world adhesion performance. For example, 
the top right hand quadrant corresponds to high modulus and high dissipation. Therefore, 
materials in this quadrant with characteristically high G′ modulus compensated by the high 
G″ are anticipated to be adhesive materials with high adhesion but low tack and high shear 

Figure 10. Typical frequency sweeps of silicone PSA at three common resin contents.
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resistance. Conversely, the bottom left quadrant corresponds to low modulus and low dis-

sipation; these materials, are anticipated to exhibit low peel values because of the compara-

tively low debonding cohesive strength and low dissipation.

Changes in the Chang viscoelastic window, of a typical low resin content silicone PSA can 
be observed as differing amounts of a commonly used permeation enhancer, isopropyl 
myristate (IPM), are added (Figure 11) [34]. The Chang viscoelastic window of the neat 
adhesive moves from the upper right quadrant to the lower left quadrant as more IPM is 
added. The lowermost edge of the window which is linked to bonding of the adhesive is 
far below Dahlquist’s criteria, so the adhesive would be expected to have reasonable tack. 
There is a significant shift in the position of the upper right corner as IPM content increases 
which is linked to debonding (peel) efficiency suggesting that an increase of IPM content 
decreases peel efficiency [34]. Finally, the window size increase indicates a decrease of the 
PSA shear strength likely due to better solvent compatibility in the PSA. These data coincide 
with observed changes in adhesive properties as plasticizing agents like IPM are added 
and support the further use of rheological measurements to characterize changes in wear 

properties.

8. Silicone soft skin adhesive: description and applications

Silicones have more than 30 year history of safety and efficacy in advanced wound care appli-
cations. Much of the success of silicones in wound care is due to an adhesive technology 
referred to in the literature by many names including soft skin adhesives (SSA), tacky gels, 
silicone gels and silicone tacky gels among others [35]. The technology was introduced to 

Figure 11. Chang viscoelastic window concept adapted for low resin content silicone pressure sensitive adhesive (PSA) 
with differing amounts of isopropyl myristate (IPM) [34].
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the wound care market by Dow Corning Corporation in the 1990s and similar materials are 
offered today by many silicone suppliers under a variety of brand names [36–38]. In a seg-

ment that was historically controlled primarily by acrylic adhesives, the tacky gel technology 

concept was disruptive by securing wound dressings while providing gentle adhesion upon 

removal. SSAs have become the material of choice in many advanced wound care applica-

tions, due to their reliable adhesiveness, while being easier to remove and causing less pain 

than many other adhesive technologies of the day.

SSAs are based on a polydimethylsiloxane network which supports the critical adhesive attri-
butes required for securing the device in place and removing it without leaving residue or 
damaging the skin. Unlike silicone PSAs that build their adhesiveness on a viscous phase 
bodied with a silicate resin, SSAs are based on the silicone elastomer technology modified to 
deliver the relevant visco-elastic profile. They also differ from analogous silicone elastomers 
(e.g., liquid silicone rubber (LSR) technology) by the absence of reinforcing silica filler. As a 
result, they have a similar consistency to gels, but SSAs are not a typical polymeric gel because 
they are not based on an insoluble polymer network swollen with fluids. The visco-elastic 
behavior of SSA also differs from silicone PSA, despite their low consistency and a high degree 
of compressibility, SSAs show resilience and quick recovery under cyclic deformation [35].

The pressure sensitive adhesive property of SSAs are based on the capacity of the elastomer 
surface to quickly wet the skin and conform to skin irregularities without an additional com-

pression step as required for a silicone PSA [35]. Thanks to the low intensity of the viscous 
component of the SSA rheological profile, the adhesive does not flow significantly, and very 
little dissipation of the energy occurs when deformation pressure is applied to the SSA. As 
a result, SSA debonding happens at low peel force, without skin stripping and painful skin 
pulling when the adhesive device is removed. Being elastomeric by nature, SSAs have a low 
viscous component that limits their flow and consequently the ability to pick up materials on 
or from the surface of the skin [35]. Therefore, unlike silicone PSA, the adhesive surface of 
SSAs remain relatively clean upon removal from the skin, allowing for removal and easy reap-

plication of the dressing or device to the skin, making wound dressing repositioning possible.

The elastomeric structure of SSAs is obtained by cross-linking a network of polydimethylsi-
loxane (PDMS). The reaction is based on an addition reaction (hydrosilylation) between vinyl 
functional PDMS (polymer) and hydrogen functional siloxanes (cross-linker) as shown in 
Figure 12. The cure reaction is catalyzed by a platinum complex, which can occur at room 
temperature or be accelerated at elevated temperature (80–145°C), without the formation of 
reaction by-products [35]. As thermoset materials, SSAs have a low susceptibility to cold flow 
and plasticizing effects.

The SSA technology has been extensively used in scar treatment and advanced wound man-

agement, demonstrating safety and efficacy recognized by wound care professionals [35]. The 
use of SSA may be recommended when designing medical adhesive devices, tapes, bandages, 
drapes, and wound dressings and have been noted for the many benefits including high tack 
for quick bonding to skin, reliable adhesiveness and cohesiveness, gentle adhesion to fragile 
and compromised skin, no skin stripping and pain-free removal of the device, as well as per-

meability to moisture and gases (e.g., CO
2
, O

2
) [35].
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SSAs are supplied as two-part systems with the catalyst in one part and the cross-linker in 
the other. The materials are characteristically transparent before and after curing into a solid 
matrix. They are typically processed by mixing the two parts and coating the mixture directly 
onto the final substrate (i.e., backing film), understanding that this film must be impermeable 
enough to prevent the uncured liquid SSA from wicking through. The typical coat weight 
for SSA can vary widely depending on the desired final properties, but often range between 
150 and 250 g/m2. The curing phase is typically completed at elevated temperature adjusted 
according to the temperature sensitivity of the substrate. After cooling, the adhesive surface is 
protected by a release liner which is peeled off when the end user applies the adhesive to skin.

Substrate selection is important when designing an adhesive device based on SSA, as the 
nature of the substrate can significantly impact the coating and cure conditions during 

the manufacturing phase. The anchorage of the adhesive to the substrate and the cohe-

sion of the adhesive after cure, as well as the ultimate wear behavior of the device when 

applied to the body can all be impacted by the substrate selection.

The choice of release liner is also a critical factor as it can affect the device stability, making 
it unusable if this protective film cannot be easily removed from the adhesive prior to use. 
Traditional silicone release liners that are used ubiquitously with acrylic adhesives cannot be 

Figure 12. Typical hydrosilylation reaction schematic.
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used with SSA as the silicone release liner chemistry is similar enough to SSA that they are 
highly likely to interact and experience an irreversible lock-up effect upon storage. However, 
uncoated polyethylene films, especially LDPE (low density polyethylene) grade, can provide 
an acceptably low and reasonably consistent release force from the SSA [39].

New SSA technology are being developed that can achieve higher adhesion and longer wear 
times as well as improved drug compatibility to address emerging medical system market 

trends including wearable devices and topical drug delivery patches [35]. The use of SSA 
technology to formulate drug delivery matrices enables drug delivery system designs which 

address the needs for secure and gentle fixation to fragile, sensitive or compromised skin 
conditions common in dermatology, wound care, pediatrics and gerontology. Several stud-

ies were conducted to evaluate the compatibility of various drugs and their release from SSA 
matrices. A variety of API have been studied including those indicated for pain relief and 
local anesthesia, antibiotics, and dermatological actives [39]. Wound care products that utilize 
silicone tacky gels as the skin contact adhesive and are loaded with chlorhexidine gluconate 
and other antimicrobial agents have also been investigated [40]. This may signal further inter-

est in the utilization of SSA in even more advanced active-loaded therapies in addition to the 
traditional wound therapies where it has been used historically.

9. Soft skin adhesive: characterization

Many of the analytical techniques used to characterize silicone PSA have been modified 
to characterize the SSA materials, although shear tests are less emphasized for SSA due to 
the characteristically low cohesion of the SSA. In addition to adhesive peel measurements, 
the measurement of the softness of the SSA by penetration test is often performed. Over a 
broad range, the penetration measurement shows correlation to adhesion performance values 

within a formulation type and is linked to the adhesive network chemistry; therefore, it is 
often used as a quality control measurement.

Peel tests are commonly used in the adhesive industry, because for many applications these 
relatively easy to perform tests fit well with the final application of the adhesive. The sub-

strates upon which most adhesives are tested to evaluate adhesive strength (e.g., stainless 
steel) often are not predictive of the relative strength SSA will exhibit in practice on skin. 
Therefore, some users have resorted to using substrates that have a surface energy more simi-

lar to that of skin as the test substrate for SSA. The number and diverse composition of sub-

strates including plastic films, paper and even artificial skin materials, make standardization 
across the industry difficult, and comparison between users problematic. Testing is conducted 
similarly to that described for PSA, with the SSA typically being cast and cured at a consistent 
thickness directly onto a film. This substrate may influence the peel adhesion result due to 
its intrinsic elasticity and also potentially through interactions with the SSA. The gel on the 
backing substrate is then applied on a test substrate, taking care to apply the adhesive with 

a constant force. After a designated equilibration time, the adhesive is peeled from the sub-

strate, typically at a 180° angle, and the force required to remove it is measured.
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While this method provides relative adhesion strength, allowing comparison of adhesive val-
ues, the results may be significantly influenced by the backing substrate, as well as the test sub-

strate used, so the results do not necessarily simulate the application of the adhesive to skin.

10. Soft skin adhesive: rheology

Rheological measurements have been developed and used for decades to characterize sili-
cone PSA and provide more realistic predictions of real-world adhesive performance than 
classical peel tests are capable of providing. Recently, similar rheological measurements have 
been applied to characterize the intrinsic properties of the SSA and offer a characterization 
method more capable of harmonization across the industry. The SSA rheological character-

ization is performed on free standing gels and is able to characterize the adhesive proper-

ties without the influence of backing or test substrates unlike the aforementioned adhesion 
tests. SSAs may be characterized in dynamic oscillation modes, using strain and frequency 
sweeps to measure the viscoelastic characteristics (e.g., storage modulus, G′ and loss modu-

lus, G″). Different SSA, which exhibit significant differences with respect to adhesion can also 
be discriminated using rheological analysis. Identifying the true viscoelastic properties of the 
adhesives is critical to understand the adhesion performance of such products. Using the data 
generated from the rheometer, it is possible to correlate viscoelastic properties to adhesion, 

and to better understand structure-property relationships.

To understand the rheological characteristics of this material one must identify the linear vis-

coelastic (LVE) zone by submitting the sample to an oscillatory strain sweep analysis. In the 
LVE zone, the elastic modulus (G′) and the loss modulus (G″) are independent of the shear 
strain, indicating that within this strain zone, the response of the material does not depend on 

the strain applied, and there are no modifications of the material structure. In the LVE zone 
identification test, the strain is the only parameter which varies, all other parameters, (e.g., 
temperature and oscillation frequency) are fixed. The LVE graph for the SSA exhibits a large 
linear viscoelastic zone from 0.5 to 30% logarithmic strain, providing some flexibility to set the 
strain when performing the frequency sweep at a fixed strain is the next step of the measure-

ment process. Knowing the LVE zone of the material allows one to carry out the second phase 
of the rheological evaluation, the oscillatory frequency sweep test. Previously unreported data 
is shown to elucidate this concept in Figure 13. Samples were prepared by weighing equal 
amounts (±2%) of the two parts of the SSA and mixed to ensure homogeneity and then were 
degassed in a vacuum chamber. The mixed, uncured SSA was coated onto a polytetrafluoroeth-

ylene (PTFE) film at a thickness of 0.9 mm, and placed in a forced air oven at a temperature of 
130°C for 4 min to cure the SSA. The cured laminate was removed from the oven and allowed 
to cool to ambient temperature. A second PTFE film was applied using a 6.8 kg (15 lb.) rubber 
coated roller to ensure complete and consistent contact between SSA and PTFE. The film was 
allowed to rest for 24 h after which a disc was cut from the SSA laminate using a 24 mm stain-

less steel punch. Dynamic frequency sweeps (1–100 rad/s) were conducted on SSA with a TA 
ARES-G2 rheometer at 32°C using 25 mm stainless steel parallel plates and a gap of 0.5 mm 
with a 10% strain (in the linear viscoelastic region). Data collection was set for 5 pts./decade.
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The frequency sweep test is the most suitable rheological test to assess SSA adhesive properties 
in the final application. The viscoelastic behavior at low frequencies is related to the bonding 

step which occurs at low deformation rates and is linked to the SSA ability to wet the sur-

face. Alternatively, the viscoelastic behavior at high frequencies is related to debonding (peel) 
which occurs at high deformation rates and is linked to the elasticity and energy dissipation 

during the removal. SSAs with varying adhesive levels can be effectively discriminated based 
on their rheological profiles. The rheological characterization agrees with the results experi-
enced by skin adhesion, where adhesives with higher G′ and G″ provide higher skin adhesion.

This rheology methodology should be an effective tool and a suitable starting point to 
understand the structure-property relationships of the SSA technology. It should also pro-

vide a means to separate the innate adhesive performance from the influences of substrates. 
Understanding the relationships between the SSA chemistry, adhesion and rheological pro-

files will provide key and essential information on structure-property relationships to push 
the boundaries of SSA even further.

11. Conclusion

Silicone adhesives have been safely and effectively used in a variety of medical applications 
and are notably present in drug delivery and wound care applications because of the unique 
benefits and properties provided. Continued investigation has resulted in recent, innovative 
product developments using established silicone adhesive technologies including innovative 

Figure 13. Frequency sweep of three typical SSA.
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TDDS designs, wound care devices that prevent scar formation and those that are loaded 
with antimicrobial actives. Adhesive chemistry research has resulted in novel chemistries 
that combine seemingly incompatible acrylate and silicone adhesive technologies, whereas 

advances in measurement techniques have brought about clearer understanding of adhesive 
structure property relationships, avoiding many pitfalls experienced by previous researchers. 
Despite being used for several decades, the number and variety of recent developments sug-

gest that identifying new medical applications of silicone adhesives remains relevant and the 

extent to which it may be used has not yet been tapped.
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