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Abstract

Soybean (Glycine max L.) is the most important legume and oilseed crop. As a leguminous 
crop, it plays an irreplaceable role towards the sustainable agricultural system with bio-
logical nitrogen fixation. However, its production can be dramatically decreased by the 
occurrence of water stress. Water stress including drought and flooding induces the mor-
pho-physiological and biochemical changes at different growth stages, which negatively 
affects the adaptability and yield of soybean. Genetic diversity that ensures productivity 
in challenging environment exists within germplasm, their wild relatives and species that 
are adapted to the water stress. The discovery of gene mapping, QTLs associated with 
root traits, slow canopy wilting, nitrogen fixation and flooding tolerance have accom-
plished significant progress in breeding programs. Identification of drought-responsive 
genes and transcription factors such as WRKY, DREBs, ERFs, ZIP, ZFP, MYB and NAC 
are valuable to ameliorate the water stress in soybean. Understanding the genetic mecha-
nism using transcriptomic and proteomic approaches would be the ultimate choice for 
mitigating the water stress. Integration of well-designed soybean breeding program 
coupled with omic techniques would pave the way for developing drought and flooding 
resilient soybean cultivars.

Keywords: soybean, drought, flooding, stress tolerance, quantitative trait locus, 
genomics, genetic diversity

1. Introduction

Soybean is an important leguminous crop in the world, providing an essential source of pro-

tein to human diet, feed for live-stock and as bio-diesel for industry [1, 2]. Soybean seeds con-

sist of 40% protein, 20% oil, 35% carbohydrate and ~5% ash [3]. As compared to other oilseed 

crops, soybean collectively occupies around 6% of the world’s land under cultivation [4]. 
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Due to the rapid rise in the commercial value of soybean in an international market, the total 
area under soybean cultivation has been increasing from last three decades. Soybean is an 
important cash crop with a total production of over 313.05 million metric tons in 2015–2016 
(USDA data). During this year, the USA has been the world’s leading producer of soybean 
representing 35% of the world production, followed by Brazil with 31%, Argentina with 17%, 

China with 4%, India with 3%, Paraguay with 3% and Canada with 2% (USDA data).

Water stress including drought and flooding is considered as a major threat, limiting growth 
and yield of plants [5, 6]. Drought is caused by insufficient rainfall or irrigation which results 
in soil drying, whereas, in flooding, water exists in soil solution causing water logging and 
submergence. In response to drought and flooding stress, 40–60% yield losses have been 
reported in soybean [7, 8]. High temperature, low humidity in atmosphere and water defi-

ciency are the main causes of drought [9, 10]. Drought stress affects germination rate and 
early seedling growth of the plant [11, 12]. Under water deficit conditions, a significant reduc-

tion in germination, hypocotyl length, root and shoot fresh and dry weight were observed 
whereas the root length is increased [13]. It also affects the carbon assimilation and phenology 
of the plant [10]. Prolonged drought stress at different growth stages has profound effect on 
soybean growth and yield [14].

To counteract the adverse effects of drought, the soybean plant adopts three mechanisms i.e. 
escape, tolerance, and avoidance [15]. In the escape mechanism, the plant completes its life 
cycle before the onset of drought. Normally, the plants complete their life cycle very quickly 
and produce few seeds. For instance, early planting of soybean helps to avoid drought, and 
is largely practiced in the USA—planting in March to April affords escape from water stress 
[16, 17]. Drought avoidance is performed by maintaining high water potential, grow deeper 
in soil, stomatal control of transpiration rate, and by reduction of water loss from tissues. 

The tolerance mechanism includes low tissue water potential, maintenance of turgor through 

osmotic adjustments [18, 19].

Flooding ranks second after drought, causing yield reduction in soybean [20, 21]. Flooding 

stress can be categorized as waterlogging or submergence. In waterlogging stress, root goes 
under water while shoots remains above ground, whereas, during submergence, plant is com-

pletely immersed in water saturated soil. As plants are aerobic, hypoxia (insufficient oxygen) 
or anoxia (complete absence of oxygen) causes losses in crop production. Soybean is more sen-

sitive to flooding stress resulting in yield decline by reducing photosynthesis nitrogen fixation 
and biomass accumulation. Flooding stress can happen during any growing stage, especially 

in the seed germination and vegetative stages leads to substantial decrease of soybean grain 
yield [22] (Table 1). In addition, flooding stress hampers yield production during vegetative 
(17–43%) and reproductive stage (50–56%) [41].

For mitigating the negative impact of flooding stress, plants use a number of strategies for their 
survival, mainly escape and quiescence strategies [42, 43]. In escape strategy, morphological 
(aerenchyma development, shoot elongation and adventitious root formation) and anatomi-
cal alterations allow the plant to exchange gas between cells and atmosphere. The Quiescence 
strategy suppresses morphological changes to save energy and resources and retard plant 
growth. This strategy depends on anaerobic energy production [42, 44].
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Understanding the genetic base for water stress tolerance in diverse soybean is a fundamental 
issue that contributes for the genetic improvement. This chapter will present the research prog-

ress about the situation of soybean tolerance to water stress at germination, seedling and adult 

plant stages. It also includes the current knowledge about QTL mapping, gene discovery and 
‘omic’ technologies relevant to drought and flooding tolerance that will be helpful to understand 
drought and flooding-tolerance mechanisms in soybean.

Growth stage Experimental material Indicator Ref.

Under drought stress

Germination 4 Bulgarian lines & one USA 
variety

Germination, shoot and root length, fresh and dry 
weight

[23]

Germination L17, M9, Clark, M7, Hobbit and 
Williams

Root and shoot length, germination rate and 

percentage of germination

[24]

Second trifoliate 

leaves
Jindou 21 (C12), Mengjin 1 
(W05) and Union (C08)

Gas exchange, water relation parameters, total 
chlorophyll, proline contents of leaves, root xylem 
pH, plant growth and root traits

[25]

Third trifoliate 

leaf (V3)

A5409RG, Jackson and Prima 
2000

Root architecture, shoot parameters [26]

Flowering and 

pod-filling stage
Habit, L17 and M17 Leaf relative water content, chemical osmolytes and 

chlorophyll content

[27]

V4, R1 and R3 

growth stages.

Eight soybean cultivars Highest number of node/plant, number of pod/main 
stem, pod/sub stem and pod/plant

[28]

Reproductive 
stage (R6–R7)

41 soybean accessions increases in metaxylem number [29, 

30]

Adult PI578477A,PI088444,PI458020 Yield, root architecture [31]

Adult BARI Soybean 5, BARI Soybean 
6, Shohag and BD2331

relative performance (RP), tolerance (TOL), drought 
susceptibility index (DSI)

[32]

Under flooding stress

Seedlings stage Soybean Secondary aerenchyma formation [33]

Seedling stage 11 soybean genotypes Primary/adventitious roots and root nodules, stem 
and leaf biomass

[34] 

[35]

Vegetative and 
flowering stage

Taekwang and Asoaogari Root morphological traits, adventitious roots and 
Photosynthesis

[36]

Cotyledon-stage 

seedlings

92 Soybean Lines Root architecture [37]

Flowering stage Cultivars Fundacep 53 RR and 
BRS Macota

Fermentative metabolism and carbohydrate contents 
in roots and nodules

[38]

Flowering stage Five soybean cultivars Nodule number, nodule dry weight, chlorophyll 

content, carbon exchange rate, dry matter 
accumulation and nitrogen content

[39]

Seedling stage 162 soybean accessions Root development [40]

Table 1. A list of drought- and flooding-related parameters at different growth stages of soybean.
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2. Genetic diversity of water stress tolerance in soybean

2.1. Different response of soybean to water stress

2.1.1. Morphological performance

Drought induces morphological changes in plants, enabling them to sense and rapidly adapt 

to the stress. Root-related traits are crucial in maintaining crop yield in soybean [45]. Drought 

alters the root system architecture (root depth, root angle and root branching density) [27]. 

For instance, root architecture was characterized in field under normal and water deficit 
conditions using three soybean cultivars (Jackson, Prima 2000 and A5409RG). As a result, 
Prima 2000 (drought-tolerant cultivar) has an intermediate root phenotype with a root angle 
of 40–60°, while a shallow root phenotype along with root angle of <40° has been observed in 
drought-sensitive cultivar A5409RG [27].

Depth of rooting system influenced by the elongation of taproot also plays an important role 
for plant survival under water deficit [27, 46]. An increase in number of root tips, root length, 

root surface area and root volume was observed under water limited conditions. Several 
studies have proposed that roots having large xylem number, diameters, lateral root systems 
with more root hairs are indicators of drought tolerance [31, 47, 48]. Jackson is considered 
as drought escaping cultivar with long and deep roots into the soil permitting better water 
uptake compared with drought-sensitive cultivars [27, 49]. Under water-limited conditions, 
Plant Introduction (PI) 578477A and 088444 exhibited higher yield due to higher lateral root 
number in clay soil [50]. It was reported that deeper region of soil has high root density under 
seasonal drought as compared to dry surface of soil [51]. In addition, total root length/ plant 
weight, dry root weight/plant weight and root volume/plant weight were positively corre-

lated with drought tolerance [52]. Therefore, studying the relationship between root traits and 

drought is helpful to develop drought-resistant cultivar.

Root-to-shoot ratio is also a good indicator to allocate the resources between different plant 
components. The water-limited environment increases the root-to-shoot ratio. For example, in 
soybean, root-to-shoot ratio increased by 13% indicates the flow of biomass towards roots [53]. 

The drought-tolerant soybean genotype (C12) showed a higher root-to-shoot ratio than the 

susceptible genotype (C08) under restricted soil water with application of exogenous ABA. To 
cope with drought stress, leaf morphology also plays an important role. Under water-limited 
conditions, plants reduce their leaf area by closing stomata. Due to water scarcity, reduction in 

soybean plant leaf area has been reported [54]. In contrast, drought-tolerant soybean cultivar 
exhibited a greater leaf area rather than less-tolerant cultivar under hydric stress condition [55].

Aerenchyma formation is a major indicator that facilitates gas exchange between aerial and 
submerged plant parts (shoots and/or roots) to avoid flooding stress [56, 57]. Flooding stress 

induces two kinds of aerenchyma i.e. primary (cortical) [58] and secondary (white and spongy 

tissues) [33]. A number of aquatic plants develop cortical aerenchymatous tissue by cell dis-

integration (lysigenous aerenchyma) and cell separation (schizogenous aerenchyma) [59]. In 
rice, barley, maize and wheat, lysigenous aerenchyma is induced by flooding [60, 61]. In some 
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species, especially in soybean, secondary aerenchyma having a spongy parenchyma cell layer 
develops through cell division of phellogen [44, 62]. Secondary aerenchyma is morphologi-

cally and anatomically different from cortical aerenchyma (lysigenous and schizogenous aer-

enchyma) [33]. Waterlogging stimulated the formation of aerenchyma and adventitious roots 
in soybean plants facilitating transport of oxygen from shoot to root [62–64]. Under waterlog-

ging condition, adventitious roots are formed in several flooded plants including soybean 
[61, 62, 65]. However, adventitious roots are absent in soybean seedlings under complete 
submergence [66]. Under flooding conditions, secondary aerenchyma consisting of white and 
spongy tissues develops within a few weeks in stems, roots and root nodules of soybean 
[33]. Aerenchyma formations initiated by ethylene, Ca2+, and ROS signalling through a pro-

grammed cell death process are involved in aerenchyma development [60, 67].

Rapid shoot elongation is another escape mechanism for adaptation in waterlogging stress [68]. 

It has been reported that lower stem of soybean having hypertrophic lenticels helps oxygen 
entry into the aerenchyma [64]. Flooding also causes a significant reduction in leaf number, leaf 
area, canopy height and dry weight at maturity in soybean crops.

2.1.2. Physiological and biochemical response under drought stress

Stress-responsive mechanisms have been studied at the physiological and biochemical level in 
soybean under drought and flooding stress. To optimize the use of water under water deficit 
conditions, stomatal control is considered as major physiological indicator. For instance, in soy-

bean, stomatal conductance decreased by 42% in drought-stressed leaves rather than normal 
leaves [69]. Owing to dehydration, MG/BR46 (drought tolerant soybean variety) showed faster 
decline in stomatal conductance as compared to BR16 (drought-susceptible variety) (65 versus 
50% reduction) [55]. In same study, prolonged drought stress (45 days) exhibited no profound 
impact on stomatal conductance of BR16 while it had reached 79% in the MG/BR46. Several 
studies have provided strong evidence that drought-tolerant soybean genotypes (C12 and W05) 
exhibited a higher reduction in stomatal conductance rather than the susceptible one (C08) [25]. 

In soybean, ABA is involved in the reduction of stomatal conductance and photosynthesis. For 
instance, after imposition of exogenous application of ABA under soil drying, leaf stomatal con-

ductance of soybean tolerant genotype C12 declined than the susceptible one (C08).

Maintenance of cell turgidity and water-use efficiency are important indicators to cope with 
drought stress [26]. Soybean introduction line PI 416937 is an excellent example of drought tol-
erance by limiting transpiration rate and maintaining a lower osmotic potential. An increase in 

WUE was observed in drought-tolerant genotype (C12) by regulating stomatal closure during 
the entire period of water deficiency [25, 52].The maintenance of cell turgidity under water-

limited conditions may be achieved by adjusting the osmotic potential in response to the accu-

mulation of proline, sucrose, soluble carbohydrates, glycine betaine and other solutes [70].

The accumulation of solutes under water deficit condition is known as osmotic adjustment. 
Some authors have reported higher proline content in drought-tolerant crop species such as 
bean [71]. In soybean, water stress exhibited significant increase in proline contents in drought 
tolerance as well as susceptible genotype, but tolerant genotypes recovered to pre-stress levels 
more quickly after rehydration [25].
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The production of ROS, such as superoxide radical (O
2

−), hydroxyl radical (OH˙) and hydro-

gen peroxide (H
2
O

2
), is one of the biochemical responses causing damage to DNA, proteins 

and lipids [72] under drought stress. The toxicity of ROS may be limited by antioxidant 
enzymatic (superoxide dismutase, catalase, and glutathione peroxidase) and non-enzymatic 
scavengers [73, 74]. For instance, drought stress increased activities of some antioxidant 
enzymes (catalase, glutathione reductase and superoxide dismutase) in soybean varieties 
which were positively correlated to seed yield [75].

Under flooding stress, plant undergoes different physiological and biochemical adaptations. For 
instance, in soybean, a significant reduction in photosynthetic activity and stomatal conductance 
was observed in Essex and Forrest within 48 h of flooding at vegetative and reproductive growth 
stages. Waterlogging also decreases biological nitrogen fixation, as nodules need adequate oxy-

gen to maintain nitrogenase activity for aerobic respiration and contributing adenosine triphos-

phate [41]. As a consequence of flooding stress, a reduction in root hydraulic conductivity has 
also been reported [76]. Several studies have provided the correlation between stomatal conduc-

tance and carbon fixation. In flooded plants, photosynthetic activities were reduced by restrict-
ing CO

2
 due to stomatal closure [77, 78]. Furthermore, due to the higher concentration of CO

2
 

assimilation in flooded soil, biomass and soybean root elongation eventually repressed [79].

Tamang et al. [66] reported that submergence stimulates starch degradation, soluble carbo-

hydrates and ATP in cotyledons and hypocotyls of soybean seedlings. Extensive submergence 
degrades the chlorophyll contents in aerial parts of several terrestrial plants [80, 81]. However, 
under submergence, abundance of chlorophyll a and b remained nearly constant in soybean [66]. 

The decrease in photosynthetic activity with long-term flooding may be triggered by the reduc-

tion in chlorophyll, transpiration and ribulose-1,5-biphosphate (RuBP) carboxylase activity. These 
combined effects against flooding declined the crop growth, net assimilation and leaf expansion 
of plants. Blocking of hypertrophic lenticels  at the base of stem restricted O

2
 transport into the 

roots resulting in reduction of plant growth under hypoxic conditions [82]. Flooding stress causes 

higher production of ROS resulting in oxidative damage to proteins related to photosynthetic 
apparatus [83]. As a result, the scavenging activity is overpassed under flooding stress.

2.2. Parameters for measuring the tolerance degree of water stress

2.2.1. Parameters related to seed tolerance

Seeds need a suitable condition to have a good germination. The germination rate and per-

centage of different cultivars were affected by levels of drought stress. In soybean, drought 
stress simulated by polyethylene glycol PEG-6000 significantly reduced seed germination per-

centage (Table 1). An increase in the PEG concentration reduced root growth by two to three 
times for different genotypes. Seed weight and seed size, and seed weight distribution are key 
indicators to evaluate the genotypic response to drought stress [84, 85]. A positive correla-

tion between 100-seed weight per plant and seed yield were reported in soybean under water 

limited conditions. For instance, Habit (soybean drought-tolerant cultivar) exhibited higher 
100-seed weight and seed yield under drought stress [29, 86].Water deficit conditions lead to 
a significant reduction in seed weight and seed size. It also had little effect on seed shape as 
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shrunken and wrinkled, and hard seeds were produced in soybean [84, 85, 87]. Same study 

pointed out 30–40% reduction in proportion of seed having diameter > 4.8 mm. In contrast, the 
ratio of seeds of diameter < 3.2 mm was increased by 3–15% [85].

Germination is a complex process that consists of several metabolic events. Numerous studies 
reported that negative correlation exists between germination percentage and flooding stress 
[88, 89]. Seeds are usually germinated under optimum conditions within 1 or 2 days. But, 

seed germination is delayed due to the quick absorption of water, collapse of seed structure, 
and outflow of internal seed contents under flooding stress. When seeds were flooded for 
3 days after imbibition, germination percentage was drastically dropped out and seed injury 
was observed [90]. Flooding causes mechanical damage on the soybean seeds and prohibits 

germination. Seed coat and seed weight are fundamental factors to evaluate a positive effect 
on seed flooding tolerance. For example, germination rate (GR) and normal seedling rate (NS) 
was higher in pigmented varieties as compared to yellow varieties of soybean (Table 1). These 

parameters (GR and NS) were negatively correlated with seed weight (SW) in the combined 
population [91]. Therefore, pigmented seed coat and small seed weight could be key param-

eters in response to seed-flooding tolerance.

2.2.2. Parameters related to vegetative tissues

Root length, shoot length and leaf area are considered as major determinants to evaluate drought 
response during vegetative stage. A positive relationship exists between root traits and resis-

tance to drought [52, 92]. At seedling stage, drought stress affects leaf expansion rate, leaf water 
potential, relative water content of leaves (%RWC) and relative growth. The degradation of chlo-

rophyll contents of soybean leaves was correlated with the different levels of drought stress [75]. 

Water deficit stress also decreased the number of nodes and intermodal length while the reduc-

tion in inter-nodal length depends upon the duration of drought stress. For example, drought 
stress showed no profound impact on number of internodes in drought tolerant soybean cultivar 
(C12), whereas drought-susceptible cultivar (C08) showed higher number of internode [93].

Essential traits, root length and shoot length are also important indicators in response to 

flooding stress. The insufficient allocation of water, minerals, nutrients, and hormones led 
to root and shoot damage [94]. The first symptom usually appears in soybean is wilting of 
leaves in response to flooding. Soybean shoot growth under flooded conditions is signifi-

cantly decreased due to inability of the root system regarding water transport, hormones, 

nutrients and assimilates [95, 96]. Flooding tolerance in soybean is strongly correlated to root 

surface area, root length and dry weight [97]. It has been reported that root tips are extremely 
sensitive to flooding in soybean and pea seedlings [98–100]. Under complete submergence, 
soybean root growth is absolutely repressed due to the death of root tips.

2.2.3. Parameters related to adult plants

In soybean, pod number per plant, seed number per pod and 100-seed weight are major deter-

minants of yield under water stress [101], and these yield components are the important sink 
for assimilates at reproductive stages [102]. Drought stress especially during flowering (R1) 
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and pod-filling stages reduces soybean yield [30] (Table 1). Under water deficit conditions, 
an increase in rate of abortion has been reported during early pod-filling stage in soybean 
[54, 103]. Soybean yield is also affected by the occurrence of drought stress during seed filling 
(R6) period [93]. Water stress at flowering stage decreased the pod number and seed num-

ber resulting in yield loss [104]. Kobraei et al. [29] conducted experiment on eight soybean 
cultivars to asses yield under normal and drought conditions. This study pointed out that 
drought reduced the yield components resulting in yield loss. In addition, more yield loss was 
observed during R1 stage as compared to R6 stage [104].

One of the major traits conferring tolerance to waterlogging is yield and production of good 
quality seeds [105]. A significant decline in pod number, pods per node, branch number, and 
seed size was observed following 7 days of flooding at different vegetative and regenerative 
development stages [106]. Sullivan et al. [107] confirmed reduction in pod number and plant 
height at early vegetative growth stages. Soybean crops flooded with excessive water at early 
flowering stage showed severe chlorosis and stunting growth [108]. Schöffel et al. [109] showed 

a decreased number of pods per plant at the reproductive stage (R4) in pot trails. A field experi-
ment was conducted in flooded soil and obtained yield reduction from 20–39% in the different 
soybean cultivars when subjected during the R5 stage. During flooding, a significant reduction 
in soybean yield was observed at R5 stage as compared to the R2 stage [110].

2.3. Genetic variation of tolerance to water stress

2.3.1. Cultivated soybean

Considerable genetic variation in seed yield was observed in soybean genotypes under drought 
stress. A total of 50 soybean genotypes were screened under rain-fed condition in Bangladesh. 

Among them, genotypes BARI Soybean 5, BARI Soybean 6, Shohag and BD2331 were identi-
fied as drought-tolerant genotypes [32]. In another study, response of eight cultivars of soy-

bean (Clark, Hobbit, Pershing, Williams, Hood, DPX, M7 and M9) was investigated in Iran. 
Williams cultivar was predicted as drought-tolerant, having highest number of nodes and 
pods/plant in normal and water deficit conditions [29]. Genetically and geographically, diverse 
soybean germplasm lines i.e. from Korea (PI085355, PI339984, PI407778A, PI407973A, PI423841, 
PI424460, PI424608A, PI603170, PI458020), China (PI088444, PI567398, PI567561, PI594410, 
PI578477A), Japan (PI243548, PI417092, PI507066) were screened to examine root response 
under water deficit condition in clay and sandy soil. Plant Introduction PI578477A, PI088444 
(high lateral root number in clay soil) and PI458020 (thick lateral roots in sandy soil) were found 
to have higher yield under water-limited conditions [50]. Brazilian cultivars BR-4 and Ocepar 
4 were considered as drought-tolerant [111]. Several cultivated germplasm lines (Glycine max) 

including Williams, Jackson, Prima 2000, Jindou 21(C12), PI416937, PI 427136, PI 408105A, PI 
471938, PI 424088, PI 081041, N04-9646, DT51 and R02-1325 have promising performance under 
water deficit conditions and can be used in breeding program [25, 27, 112, 113].

Genetic variation in soybean germplasm was observed in response to flooding tolerance to 
overcome yield loss. Elite lines conserve genomic regions that can inhibit extensive yield 
losses during flooding stress. An experiment was conducted to determine genetic variations 
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using 21 soybean varieties for flooding tolerance in both screen-house and field tests. Three 
soybean germplasm, Nam Vang from Cambodia, VND2 from China and ATF15-1 from 

Australia were identified as most flood-tolerant varieties which survived better, grew taller, 
produced more pods/plants and heavier seed weight as compared to sensitive varieties 
[114]. A total of 192 soybean germplasm lines were screened for flooding tolerance at seed-

ling stage. Among them, Jangbaegkong, Danbaegkong, Sowonkongkong, Socheong2 and 
Suwon269 were identified as donor line for flooding tolerance, whereas Shillog, T201, T181, 
NTS1116 and HP-963 exposed flooding sensitivity [115]. Several cultivated germplasm lines 
(Glycine max) including PI 408105A, PI 561271, PI 567343, PI 407184, PI603910C, PI 567394B, 
PI 567651, Archer and Misuzudaiz have been identified as a source of potential source for 
flooding tolerance [112].

2.3.2. Wild soybean

Wild soybean (Glycine soja), is a valuable genetic resource for the tolerance to water stress by rein-

troducing alleles. Wild soybean PI 483463 (G. soja) had favourable donor alleles for root angle, 
while PI 468917 predicted to contribute to slow wilting. Hence, it can be used for development 
of drought-resistant soybean cultivars [112, 116]. In another study, the wild parent, PI 407162 
had favourable alleles for fibrous roots, thus enhancing the soybean ability to survive under 
drought stress. These studies suggested that it is possible to enhance genetic variation in culti-
vated soybean by introducing alleles from wild soybeans [117]. For flooding, different wild soy-

bean accessions, PI 467162, PI 479751, PI 407229, PI 597459C, PI 424082, PI 378699A, PI 424107A, 
PI 366124, PI 378699A were identified, which showed tremendous waterlogging tolerance than 
G. max [112]. Therefore, wild populations can offer useful in breeding program for improving 
drought and flooding resistance of soybean.

3. Genetic regulation mechanisms for tolerance to water stress

3.1. Drought tolerance

3.1.1. Genetic and QTL structure of morpho-physiological performance

The application of QTL helps in identification of chromosomal regions, detecting phenotypic 
variation associated with drought-resistance traits and to determine the desirable alleles 
at these QLs for marker-assisted breeding. Progress towards the identification of drought-
related QTLs is needed [118], only a few QTLs have been reported for drought (Table 2). Du 

et al. [128] identified 19 QTLs associated with seed yield under normal and water-limited 
conditions and 10 QTLs associated with drought susceptibility index (DSI) in soybean. To 
develop drought-tolerant varieties, the role of secondary traits associated with yield stability 
has been accelerated. In crops, under water deficit condition, several secondary traits i.e. early 
seedling vigor [129], canopy wilting [119, 130], root system architecture (RSA) [117, 131, 132], 

canopy temperature depression [133], carbon isotope discrimination [134, 135], alterations in 

photosynthesis [136, 137], and nitrogen fixation [138–141] have been reported.
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In soybean, RSAs, slow canopy wilting and biological nitrogen fixation are promising second-

ary traits under drought [112]. Under water deficit conditions, a simulation analysis model 
depicted that slow wilting can improve soybean yield >75% while nitrogen fixation up to 
85% [142]. In soybean, less information is available on QTL mapping of drought-associated 
traits and yield [128, 143], fibrous roots [144] and water-use efficiency (WUE) [123, 125, 126] 

under water-limited conditions. Several studies have been conducted on QTL mapping for 
RSA traits in major cereals crops with little information in leguminous crops, especially soy-

bean [145–147]. Five QTLs were identified on chromosomes 1, 3, 4, 8, and 20 related with 
fibrous rooting systems in RIL population of soybean derived from a cross between Benning 
(low fibrous root) and PI 416937 (extensive fibrous root) [144]. These QTLs were detected by 
using 240 F6 derived recombinant inbred lines (RILs) under rain-fed conditions for 2 years 
(2001 and 2009). The parent PI 416937 (extensive fibrous root system) contributed favourable 
alleles for four QTLs, while one QTL had donor alleles from Benning. Moreover, a total of 
four QTLs related with root surface area and distribution (based on root length and thickness) 
were identified in an inter-specific mapping population (Glycine max × Glycine soja). Two QTLs 
on Chr 6 had favourable donor alleles from the wild parent, PI 407162 (G. soja) with R2 value 
of >10%. As a result, plants enhanced their ability to form fibrous roots. Manavalan et al. [148] 

identified one QTL cluster associated with root length and lateral root number in 251 BC2F5 
backcross inbred lines through linkage mapping with favourable alleles from Dunbar (Table 2).

Slow canopy wilting is a key factor to screen soybean germplasm under water-limited condi-
tions [121]. A total of 13 QTLs associated with slow wilting were detected using five bi-paren-

tal populations under water-limited conditions, with phenotypic variation (R2 0.04–0.29). 
Eleven out of 13 QTLs had favourable alleles from PI 416937 and Jackson [119–121]. The major 
QTL associated with slow wilting was mapped on LG K with 17% phenotypic variation [122]. 

To validate QTL data from different mapping population on same linkage map, ‘Meta-QTL 
analysis’ has been proposed [149, 150]. In soybean, Meta-QTL analysis was used to refine 
the confidence interval of eight QTLs using mapping results from five bi-parental popula-

tion However, these QTLs are complex, unstable and quantitative nature, so breeders find 
difficulties to utilize them [151]. Considering this problem, confirmation of QTL should be 
performed by using more advanced progeny or near isogenic lines (BC

n
F

2
).

Studies on QTL mapping associated with biological-nitrogen fixation are very few in plants 
including soybean. Three QTLs for nodule number (LGs B1, E) were identified using the 
composite interval mapping and explained 13% phenotypic variation [152]. Two QTLs for 
shoot ureide were detected on Chrs. 9 and 19, and two QTLs associated with shoot nitrogen 
concentration were mapped on Chrs. 13 and 17 under water stress. These QTLs explained 
phenotypic variation ranging from 0.11 to 0.31 (Table 2) [127]. Jackson contributed favour-

able alleles for shoot ureide concentration on Gm 19 and Gm 13 while other two on Gm 09 
and Gm17 have favourable alleles from KS4895. Under well-watered conditions, a number 
of QTLs associated with shoot ureide and nitrogen concentrations were reported. However, 
not a single QTL was detected under both conditions (stress and control) illustrating that 
soybean shows diverse mechanisms for regulation of N

2
-fixation under well-watered and 

drought conditions [127].
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Trait QTL Chro. Marker R2 Population Ref.

Canopy wilting Gm02-1 2 ss107913715 0.06–0.12 KJ, BP [119]

Gm02-2 2 ss107912946/satt296 0.06–0.18 AP [119, 120]

Gm02-3 2 Satt296 0.06–0.19 BP, AP [119]

qSW-Gm04 4 Satt646 0.09 BP [120]

Gm05 5 ss107913925/satt276 0.04–0.16 KJ [119, 120]

Gm08 8 Satt177 0.05–0.15 KJ, KN [119, 121]

Leaf wilting Gm09 9 Sat044 0.17 Jackson ×KS4895 [122]

Canopy wilting Gm11 11 ss107913507 0.14–0.39 KJ, KP, AP [119]

qSW-Gm12 12 Satt302 0.27 BP [120]

Gm13 13 Satt362 0.16 KJ [121]

Gm14 14 ss107913401 0.08–0.12 KJ,AP [119, 121]

qSW-Gm17/

Gm17–1

17 ss107929993 0.06–0.22 KJ,AP, BP [119–121]

Gm17-2 17 ss107913610 0.09–0.10 KJ, KP [119]

qSW-Gm19 19 ss107924069 0.11–0.29 KJ, KP, BP [119]

Yield Gm06 6 Satt205-satt489 0.7 Minsoy ×Noir 1 [123]

Yield and wilting Gm13 13 Sat_375 – Hutcheson × 
PI471938,

[124]

Gm13-1 13 Sat_074 –

Gm17 17 Satt226 –

Water use 

efficiency
Gm19 19 A489H 0.14 S-100 × Tokyo [125]

– – A063-1 0.8

Gm18 18 B031-1 8.5 Young ×PI416937 [126]

Gm12 12 A089-1 8.7

Gm16 16 cr497-1 13.2

Gm16 16 K375-1 7.5

Gm4 4 A063-1 5

Nitrogen fixation 
(shoot ureide)

Gm09 9 BARC-060299-16,598 0.16 KS4895 × Jackson [127]

Gm19 19 Satt561 0.18

Gm13 13 BARC-014657-01608 0.24

Gm17 17 BARC-057467-14,765 0.12

KJ = KS4895 × Jackson; BP = Benning × PI 416937; AP = A5959 × PI 416937; KP = KS4895 × PI 424140; 
KN = Kefeng1 × Nannong1138-2.

Table 2. A list of reported QTLs in soybean associated with drought tolerance.
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3.1.2. Identification of important genes for drought tolerance

Drought stress-responsive genes are categorized as effectors and regulatory genes [153]. Effectors 
include gene encoding protein such as LEA proteins, osmolyte biosynthesis (osmotin), aquapo-

rins, chaperons, antioxidants and enzymes involved in different metabolic pathway. Regulatory 
genes encoding product such as receptors, calmodulin-binding proteins, kinases, phosphatases 
and transcription factors are involved in signal transduction and gene expression [153]. A number 

of plant TFs such as ethylene-responsive factor, WRKY, MYB, basic leucine zipper domain (bZIP) 
and NAC are involved in ABA signalling under drought stress, while dehydration responsible 
element binding (DREB) protein, are involved in ABA-independent pathway [154–156]. Major 
families of TF genes expressed in response to drought stress in plants are summarized in Table 3.

In the soybean genome, 5035 TFs models were identified based on in-silico annotation [170]. 

Among all TFs, the WRKY transcription factor is the largest family in plants. A total of 233 

WRKY members have been identified in soybean (http://planttfdb.cbi.pku.edu.cn/family.php? 
fam=WRKY) [171]. Identification of two WRKY genes (GmWRKY21 and GmWRKY54) and 
their role in enhancing tolerance to drought, salt and cold has been studied in Arabidopsis [156]. 

Moreover, the involvement of GmWRKY27 has been characterized under drought and salt stress. 
Overexpression of GmWRKY27 RNAi and GmWRKY27 in soybeans results in increased toler-

ance and hypersensitivity to drought and salt stress, respectively. In the same study, the associa-

tion of GmWRKY27 with GmMYB174 was observed, which binds to neighbouring cis-elements 

Gene family Gene Studied plant Ref.

R2R3-MYB transcription factor GmMYB84 Soybean [157]

GmMYBJ1 Arabidopsis [158]

bZIP transcription factor GmFDL19 Soybean [159]

GmbZIP1 Arabidopsis [160]

DREB transcription factor GmDREB2 Tobacco [161]

AP2/ERF transcription factor GmDREB2A;2 Soybean [162]

AP2/ERF transcription factor GmERF3 Tobacco [163]

AP2/ERF transcription factor GmERF4 Tobacco [164]

WRKY family GmWRKY54 Arabidopsis [156]

WRKY family GsWRKY20 Arabidopsis [165]

NAC family GmNAC20 Soybean [166]

Homeodomainleucine zipper (HD-Zip) proteins Multiple HD-Zip genes Soybean [167]

C
2
H

2
-type Zinc finger protein GmZFP3 Arabidopsis [168]

Trihelix transcription factors GmGT-2B b Arabidopsis [169]

GmGT-2A Arabidopsis

Table 3. Major families of TF genes expressed in response to drought stress in plants.
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in GmNAC29 promoter and suppressed gene expression of GmNAC29 led to increased toler-

ance to abiotic stress [172]. In soybean, novel candidates of WRKY genes were detected, which 
provided the unique function of WRKY transcription factors under water deficit conditions [173].

Another gene family, Homeodomain-leucine zipper (HD-Zip) comprised of 140 HD-Zip genes 
(http://planttfdb.cbi.pku.edu.cn/family.php?fam=HD-ZIP) were detected under drought and salt 
stress. Out of 140, 59 are coding genes while 20 paralogous genes exhibited differential expres-

sion under drought and saline environment [174]. In soybean, overexpression of GmDREB3 also 
enhances tolerance drought tolerance in response to accumulation of proline [175].

3.2. Flooding tolerance

3.2.1. QTL mapping

In recent years, the advent of molecular marker technologies has opened up new opportu-

nities for QTL analyses, fine mapping and cloning of genes for water stress tolerance. The 
genetic basis of drought and flooding tolerance has been studied by evaluating different com-

ponent traits in drought and flood-tolerant soybean. Both drought and flooding tolerance are 
quantitatively inherited and controlled by several genetic loci. Consequently, a large number 
of QTLs related to flooding tolerance are summarized in Table 4.

The analysis of quantitative trait loci (QTLs) for water-logging tolerance in soybean is usually 
challenging. However, several studies have been done on QTLs associated to flooding toler-

ance, focused on injury score and tolerance index in soybean [91, 176–179, 182]. For instance, a 

single QTL located on Chr. 18 (Sat_064) was identified using 208 lines of two recombinant inbred 
(RI) populations, for soybean growth and grain yields under water-logging conditions [176]. 

Trait QTL Chro. Marker Population Ref.

Grain yield Gm18 18 Sat_064 Archer × Minsoy, Archer × Noir I [176]

Injury score, tolerance index Gm5, Gm13 5, 13 Satt385, Satt269 A5403 × Archer, P9641 × Archer [177]

Flooding tolerance ft1 6 Satt100 Misuzudaizu × Gong 503 [178]

Seed germination Sft1, Sft2 12, 8 Sat_175, Satt 187 Peking × Tamahomare [91]

Sft3, Sft4 4, 2 Satt 338, Sat_279

Flooding toleranceand/or 
resistance to P. sojae

FTS-13 13 Sct_033, BARC-

024569-4982
PI 408105A × S99-2281 [179]

FTS-11 11 BARC-016279-
02316

Joint waterlogging tolerance 

index
Wt1,wt2 19 Satt229-Satt527 

Satt527-Sat_286
Su88-M21 × Xinyixiaoheidou [180]

Root length development/
Root surface area

Qhti-12-1 12 Satt052-Satt302 Iyodaizu × Tachinagaha [181]

Table 4. A summary of QTL mapping studies for flood tolerance traits in soybean.
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The results indicated that the Sat_064 QTL is unique in response to flooding. The Sat_064 QTL 
was further confirmed in a southern cultivar Archer using near-isogenic lines (NILs) [183]. In 
addition, two flooding-tolerance QTLs on Chr. 5 (Satt385) and Chr.13 (Satt269) were identified 
associated with water-logging tolerance through partial linkage mapping and bulk-segregation 
analysis using two populations [177]. Seven loci were detected associated with yield in response 
to flooding in a mapping population between Misuzudaizu and Moshidou Gong 503. Among 
them, only a large and stable QTL, ft1 tightly linked with flowering was reproducible with high 
LOD score in 2 years, 2012 and 2013 (15.41 and 7.57) [178].

In another experiment, four QTLs, Sft1, Sft2, Sft3 and Sft4 associated with seed-flooding tolerance, 
during geminating stage, were detected using population derived from cross between a toler-

ant ‘Peking’ (black seed coat) × susceptible cultivar ‘Tamahomare’ (yellow seed coat). Among 
these QTLs, Sft1 located on Chr.12 had great effect on germination rate, whereas sft2 mapped 

on Chr. 8 had contribution in seed coat pigmentation [91]. Two QTLs, FTS-11 and FTS-13 were 

mapped on Chr. 11 and Chr.13, respectively, using F
7
 recombinant inbred lines (RILs) at an early 

reproductive stage. These QTLs were also related with flooding yield index and flooding injury 
score. The major QTL FTS-13, with phenotypic variation 18.3% was detected in multiple loca-

tions and years [179]. Recently, QTLs for root surface area development (RSAD) and root length 
development (RLD) on Chr. 12 (between markers Satt052 and Satt302) were identified in relation 
to hypoxia tolerance using F8:9 RILs derived from a cross between Iyodaizu and Tachinagaha 
in soybean. For the validation of these major and stable QTLs, NILs with the QTL region were 
developed derived from Iyodaizu [181].

3.2.2. Transcriptome analysis of soybean under water stress

Transcript abundance analysis is vital functional genomics tools to examine flooding respon-

sive mechanisms and identify genes responsible for flooding tolerance. Recently, genome-wide 
changes associated with gene-expression are investigated through microarray chip analysis, 
RNA-seq approach and high-coverage gene expression profiling analysis for better understand-

ing the transcriptional response in relation to flooding stress in soybean (Table 5). Transcripts 

were examined in the root tip, including the hypocotyl of soybean, using high-coverage gene 
expression profiling analysis; 5831 out of 29,388 were significantly altered under water stress. 
Genes relevant to ethylene biosynthesis, alcoholic fermentation and cell wall relaxation are 
promptly up-regulated in response to flooding. Defence-related genes, haemoglobin, and 
Kunitz trypsin protease inhibitor and acid phosphatase are responsible for flooding [184].

In another study, soybean microarray chip-based transcriptomics technique was used to com-

prehend the molecular response under flooding. In soybean roots including hypocotyl, more 
than 6000 flooding-responsive genes were identified. The results revealed that genes associated 
with glycolysis, photosynthesis, amino acid synthesis (Ser-Gly-Cys group), transcriptional 
regulation of transcription, degradation of ubiquitin-mediated protein, and cell death were 

expressively up-regulated, whereas genes relevant to cell organization, secondary metabolism, 
cell wall synthesis, transport of metabolite and chromatin structure were considerably down-

regulated. Furthermore, up-regulation of flooding-responsive genes encoding small proteins 
plays key roles in acclimation to flooding [185]. It has been reported that a total of 2724 and 
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3498 genes were differentially expressed in response to drought and flooding stress, respec-

tively, which contain 289 TFs demonstrating ethylene response factors (ERFs), basic helix-loop 
helix (bHLH), WRKY amino acid motif (WRKY), myeloblastosis (MYB) and no apical meri-
stem (NAC) are involved in stress tolerance mechanism [186].

RNA-seq based transcriptomic analysis resulted in detection of 729 and 255 genes in the flood-

ing-tolerant line and ABA-treated soybean, respectively, which were significantly changed 
under stress condition. Transcript profiles also revealed that a total of 31 genes included 12 
genes involved in the regulation of RNA and protein metabolism were commonly altered 
between the flooding-tolerant line and ABA-treated soybean under flooding stress [187]. On 
the basis of the above findings, it can be concluded that transcript profiles can be helpful as an 
adaptive mechanism for soybean survival under water stress.

3.2.3. Proteomics techniques for identification of water stress-responsive mechanisms

Different proteomics techniques i.e. mass spectroscopy (MS)-based (for identification of a num-

ber of environmental stress-responsive proteins), two-dimensional (2D) gel-based (for visual 
illustration of the proteins) and SDS gel or gel free-based (for detection of the largest number of 

proteins) are extensively used under water stress (Table 5). The available genomic information 
in soybean genome database helps to identify water stress-responsive mechanism. Distinct 

Stress Tissues Platform DEG*/proteins characterized Ref

Flooding Root and hypocotyl High coverage expression 
profiling

97 genes and 34 proteins [184]

Flooding Roots including 

hypocotyl

Soybean microarray chip More than 6000 genes [185]

Drought & 

flooding
Leaf tissue Illumina Genome Analyzer 

(San Die go, CA) platform

2724 genes for drought and 3498 

genes for flooding, 289 Transcription 
Factors

[186]

Flooding 

stress

Root tips, root with 

hypocotyl and 

cotyledons

RNA sequencing-based 

transcriptomic analysis

31 genes [187]

Drought & 

flooding
Leaf, hypocotyl, and 

root

Gel-free/label-free 
proteomic technique

17 proteins [188]

Drought & 

flooding
Roots Gel-free proteomic 

technique

97 proteins in response to flooding 
and 48 proteins for drought

[189]

Drought & 

flooding
Root tip Gel-free/label-free 

proteomic analysis

Three S-adenosylmethionine 

synthetases (SAMs) proteins
[190]

Flooding Root and cotyledon Nano spray LTQ 
XL Orbitrap mass 
spectrometry (MS)

146 proteins [191]

Flooding & 

drought

Roots Gel-free proteomic 
technique

97 proteins to flooding, 48 for drought [189]

*Differentially Expressed Gene.

Table 5. Soybean transcriptome and proteome studies under flooding and drought stress.
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changes in the soybean proteome during water stress lead to different defence mechanisms. 
Several studies evidently revealed that some proteins regulating sucrose accumulation, glu-

cose degradation, cell wall relaxing, signal transduction and alcohol fermentation were altered 
under flooding stress [192, 193]. Flooding stress reduced the differential regulation of proteins 
involved in maintaining the structure of cell and protein folding [99]. Moreover, the applica-

tion of exogenous calcium on flooded soybeans up-regulated the lipid metabolism, signalling-
related proteins, glycolysis-related proteins and fermentation in roots [189]. A reduction in 

calcium oxalate crystals was found in cotyledon under flooding [188].

Wang et al. identified three S-adenosylmethionine synthetases (SAMs) proteins using gel-free 
proteomic analysis under water stress in soybean. The SAMs action declined at early-stage 
flooding but increased in hypocotyls and roots under water deficit. The results recommended 
that SAMs were involved in response to water stress and it might affect ethylene biosynthesis 
in soybean. The action of SAMs was different in hypocotyls, root tips and roots under water 
stress. The down-regulation of SAMs 1 and SAMs 2 were observed in roots under drought and 
flooding. Moreover, up-regulation of ACC synthase was examined under drought, whereas 
the expression was down-regulated in root tips under flooding. However, ACC oxidase was 
increased under both stresses. These findings indicate that SAMs have key role in ethylene bio-

synthesis in soybean [194]. A quantitative proteomics study has been conducted for the better 
understanding of flooding responsive mechanisms using flooding-tolerant mutant and abscisic 
acid (ABA)-treated soybean. A total of 146 proteins were usually altered at the early stage of 
flooding. Proteins related to protein synthesis such as nascent polypeptide-related complex and 
chaperonin 20, and RNA regulation-associated proteins were up-regulated both at protein and 

mRNA expression. However, these identified proteins at early stage of flooding were not mean-

ingfully altered. This study suggested that proteins associated with protein synthesis and RNA 

regulation can influence in triggering tolerance to flooding stress [195]. Therefore, proteomic 

approaches can be used to understand the response mechanism to drought and flooding stress 
at the initial stage of soybean growth.

4. Improvement of soybean tolerance to drought and flooding stress

4.1. Breeding objectives and progress of conventional breeding

The objective of soybean breeding programs is to develop cultivars with enhanced yield (more 
pods/plant, more seeds/pod, 100-seed weight), seed composition (high protein and oil contents), 
shattering resistance and tolerance to abiotic and biotic stress. Many important agronomic traits 
(qualitative or simply inherited) are incorporated into commercial cultivar through conven-

tional breeding. As drought and flooding are complex quantitative traits, breeders face difficul-
ties to improve these traits through conventional breeding. Moreover, conventional breeding is 
tedious, labour extensive, requires a considerable time (8–9 years) and a large amount of space 
for evaluation. For example, in China, Jindou 21 is an excellent example of drought-tolerant 
cultivar developed through selective breeding. Initially, Lin Xian White (higher drought toler-

ance, low yield soybean cultivar) was crossed with Jindou 2 (drought tolerant and high yield). 
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After six generations, the resulting drought line was selected and further crossed with jindou14. 
Finally, Jindou 21 was developed after 7 years of selection in arid region of western Shanxi and 
depicted increased yield under water stress [196]. Xu et al. also identified 463 Chinese strains 
having high level of drought tolerance through breeding. These strains could be used as a poten-

tial source for enhancing drought resistance in soybean [197]. Development of RILs population 
for flooding tolerance is a long and tedious process. For example, in soybean, to develop F7 pop-

ulation by crossing S992281 X PI4081051 (high yield, flooding tolerant) via single-seed descent 
method requires 7 years. Hence, conventional breeding approach is less useful [179].

4.2. QTL mapping and marker-assisted selection

To deal with complex nature of drought and flooding, marker-assisted selection to identify 
QTL can be used as a promising approach. Time consuming phenotypic characterization of 
large population to get an effective QTL is a major challenge to improve agronomic traits asso-

ciated with drought and flooding tolerance. If molecular markers are closely linked to the 
target QTL, it would be possible to transfer character into commercial cultivar through marker-
assisted breeding. Marker-assisted selection can be effectively used in soybean having high 
linkage disequilibrium (low recombinant frequency) [198]. For example, four QTLs associated 
with root morphology were detected by using 629 SSR markers, indicating that fibrous roots 
QTL may be related with drought tolerance and seed yield in soybean [144]. In another study, 
three QTLs for flooding tolerance were detected using 360 SSR markers in soybean. Among 
three QTLs, one major QTL exhibited large impact on flooding tolerance environments [178].

4.3. Genetic engineering

Genetic engineering in the twenty-first century is a perquisite tool in cell and molecular biol-
ogy that will provide additional approaches for genetic modification by overexpression or gene 
silencing, protein sub-cellular localization, transposon mutagenesis and promoter characteriza-

tion for permitting the development of novel and genetically diverse genotypes. These techniques 
have become profound strategies in soybean breeding which provide unique chances to modify 
the genetic makeup of soybean. Recent advancement in genetic mapping and the identification 
of new drought and flooding stress-responsive genes from various organisms allow researchers 
to modify plants using several genetic strategies. Genetic transformation in soybean was first 
reported in 1988 [199, 200], but the stable transformation of soybeans is still a challenging task. 
Several studies reported on soybean transformation by Agrobacterium-mediated transformation 
and particle bombardment methods [201, 202]. Both approaches have been used successfully for 
genetic transformation of soybean. The success is mainly dependent on the efficient delivery of 
transforming DNA and the recovery of transgenic lines from a transformed cell. Transgenic soy-

bean expressing GMFDL19 gene enhanced tolerance towards drought stress [159] .

4.4. Other new breeding techniques

Over the past 20 years, several new breeding techniques have been developed and are being 
implemented to facilitate breeding for the crop improvement. New breeding techniques 
(NBTs) give the ability to accurately modify DNA by editing DNA and genes on or off. Gene 
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or genome editing including CRISPR/Cas9 is a broad category that offers an inexpensive, 
quick and easy technique to manipulate DNA and lessen the time and effort as compared to 
traditional breeding. Now-a-days, researchers are working on CRISPR/Cas9-edited versions 
to improve the different crops such as soybeans, rice, corn, canola and wheat with new traits 
like drought and flooding resistance and higher yields. Recently, various new plant breed-

ing techniques such as zinc finger nuclease (ZFN) technology, acetate-mediated approach, 
oligonucleotide-directed mutagenesis (ODM), RNA-dependent DNA methylation (RdDM), 
cisgenesis, intragenesis, grafting (on GM rootstock) and reverse breeding allow the faster and 
more efficient improvement of crop varieties.

4.5. Agronomic practices to mitigate the effects of water stress

Agronomic practices can be mitigated the adverse effects of drought and flooding stresses 
by adopting various strategies. Seed priming is an effective and pragmatic technique to miti-
gate drought in which seeds are moderately hydrated. In this technique, germination rate, 
germination percentage and germination uniformity of primed seed increased [11, 203]. This 

approach has been useful to counteract the effects of drought stress in a range of crop spe-

cies. Foliar application of plant growth regulators is another technique for improving growth 
against drought stress. Exogenously applied abscisic acid, uniconazole and brassinolide 
increased yields both under well-watered and drought conditions in soybean. Plant growth 
regulator treatments meaningfully increased water potential and chlorophyll contents under 

water stress conditions [204]. Traditional irrigation system causes >50% loss of irrigated water 
because of uncovered and unlined ditches. Therefore, a well-managed pipe system is required 
to avoid losses from traditional irrigation system as it can enhance the conveyance efficiency 
>90% [205]. Mulching involving covering of soil by using straw or plastic sheets, is another 
best strategy to retain moisture in soil. For instance, in China, soybean yield increased up to 

23.4 and 50.6% by using mulching along with hole sowing and row sowing, respectively [206].

Several management practices have been tried to overcome completely or partially flood-

ing injuries. Flooding induces nitrogen deficiencies resulting in a significant decrease in the 
uptake of nitrogen. As a result, yellowing of leaves occurred following 2–3 days of flooding. It 
has been reported that the application of nitrogen fertilizer i.e. polymer-coated urea (PCU) is 
effective to reduce nitrogen loss and recover flood damage in corn. It also helps to overcome 
oxygen deficiency in response to flooding stress preferentially [207]. Hypoxia also reduces 
the capacity of plant to absorb potassium (K). K plays a vital role in alleviating both biotic 
and abiotic stresses [208]. Indeed, K+ ions are involved in detoxification of ammonium and 
ammonia [209], promoting photosynthesis which helps plant recovery and nutrient uptake. 
Foliar and soil applications oxygen-containing fertilizers lessen the drastic effects of flooding 
stress [210]. For example, under flooding, oxygen-containing fertilizers considerably retained 
chlorophyll content and biomass in Italian basil [211].

Under flooding stress, 1-aminocyclopropane-1-carboxylate (ACC) synthase enzyme along 
with several stress proteins were synthesized [212].The stressed plant consequently produces 

more ACC in their roots. In roots, ACC cannot be converted into ethylene due to insufficient 
oxygen. This ACC transferred from roots to shoots converting ACC to ethylene (sufficient 
oxygen environment) in shoots [213]. In soybean, phytohormone indole acetic acid (IAA) 
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prompts the production of ethylene which prevents the inhibitory effects of high IAA on root 
growth [214]. Elevation in ethylene production by waterlogged plants results in wilting, necro-

sis, chlorosis and reduced biomass yield. The application of ACC deaminase-producing plant 

growth-promoting rhizobacteria (PGPR) can protect plants from these damages [215, 216]. 

PGPR produce ACC deaminase, which converts ACC into α-ketobutyrate and ammonia, thus 
reducing the levels of ethylene under water stress conditions. A combination of PGPRs, along 
with arbuscular mycorrhizal (AM) fungi, including ACC deaminase-producing bacteria, 
Pseudomonas, Azospirillum, Rhizobium and Bradyrhizobium, could be a novel step in the allevia-

tion of flooding-impacted plants.

5. Conclusions

Water stress has become major abiotic limitation factor on soybean production under warming 
climate. To combat drought and flooding stress, there is need to explore the resilient genetic 
resources and their utilization in breeding program. With the advancement in transcriptomics, 
proteomics, metabolomics, structural genomics and epigenetics, the production of soybean 

can be enhanced under water stress by integrating all disciplines. Recent advances in breed-

ing system and agronomic practices will offer an opportunity for significant and predictable 
incremental improvements in soybean under water stress.
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