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Abstract

It is indicated that the sealing capacity depends on the contact characteristics—the
relative contact area and the gap density in the joint. To determine the contact character-
istics, a discrete roughness model is used in the form of a set of spherical segments, the
distribution of which in height is related to the bearing curve described by the regular-
ized beta function. The contact of a single asperity is considered with taking into account
the influence of the remaining contacting asperities. The equations for determining the
relative contact area and gap density in the joint depending on the dimensionless force
parameters for elastic and elastic-plastic contacts are provided.

Keywords: contact mechanics, hermetic sealing studies, rough surface, spherical
asperity, discrete model, elastic contact, elastic-plastic contact, hardening power law,
relative contact area, gaps density, sealing joint, tightness

1. Introduction

Tightness is the property of the joints to provide an acceptable leakage value, determined from

the conditions of normal operation of various systems and equipment, human safety, and

environmental protection. To quantify the tightness, the leakage rate is used, that is, the mass

or volume of the medium per unit time per unit length along the SJ’s perimeter. By ‘sealing

joint’ (SJ), we mean a set of details that form a structure to ensure tightness.

The SJ’s tightness is provided by loading with a compressive load (the contact sealing pres-

sures), which is largely determined by the stress-strain state in the contact area and depends on

the contact interaction of the rough surfaces. The main contact characteristics ensuring SJ’s

tightness are the approaching of rough surfaces, the relative contact area, the density of gaps

in the joint, and the degree of fusion of contact spots of single asperities. Depending on the
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materials’ properties andmicrogeometry parameters, there are elastic, viscoelastic, elastic-plastic,

and rigid-plastic contacts.

At present, to solve the tribology problems, we need to use the roughness models and the

rough surfaces contacting theory developed by the authors [1, 2] and their followers. However,

the use of such models to solve the problems in hermetic sealing studies leads to significant

errors, which is explained by the following:

1. the contact pressures of the sealing are approximately 1–2 orders of magnitude higher

than for friction and at that, it is necessary to be taken into account the mutual influence of

the contacting asperities;

2. in the sealing joint, all the asperities's contacting is possible, which requires the description

of the whole bearing profile curve but not only its initial part, as in [2];

3. when determining the gaps volume (or density), the displacements of the points of the

asperities surfaces have not been taken into account; and

4. the extrusion of the material into the intercontact space under elastic-plastic contact has

not been taken into account.

Therefore, to describe the SJ, a rough surface model is required that adequately describes the

real surface and corresponds to the whole bearing curve, and not just its initial part. In

addition, in order to improve the accuracy of the calculation of the contact characteristics, the

discrete model of a rough surface must be taken into account, the real distribution of dimen-

sions of microasperities and the mutual influence. The criterion of plasticity must take into

account the general stress-strain state when contacting of a rough surface and not just of a

single asperity. In most cases, the contact of metallic rough surfaces is elastic-plastic, therefore,

to determine the contact characteristics, it is necessary to take into account the parameters of

material hardening.

To estimate the SJ’s sealing property, in [3, 4], the nondimensional permeability functional is used

Cu ¼

Λ3
υk

4 1� η
� �2

, (1)

where Λ is the gaps density in the joint; η is the relative contact area; υk is the probability of a

medium flowing, which depends on the single contact spots fusion.

All the parameters that appear in Eq. (1) depend on the parameters of microgeometry and

dimensionless force parameters f q or qσ, the determination of which is given in the following

sections.

The purpose of the given research is to develop methods for calculating the contact charac-

teristics that ensure the given tightness of the immobile joints with taking into account the

complex of functional parameters of the sealing surfaces and mutual influence of asperities.
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2. Discrete model of the rough surface

We consider that the initial data for the model representation of a rough surface are parameters

of roughness according to ISO 4287–1997, ISO 4287/1–1997: maximum roughness depth Rmax,

arithmetic mean deviation of the profile Ra, root-mean-square deviation of the profile Rq, mean

height of the profile elements Rp, mean width of the profile elements Sm, bearing profile curve

tp, and bearing profile curve on the midline tm. Thus, the standard parameters of the roughness

for the developed model must coincide with the corresponding parameters of the real surface.

To describe the entire rough surface, it is required to know one of two functions:

ηu εð Þ ¼
Au

Ac
or φn uð Þ ¼

nu
nc

, (2)

where Au is the material cross-sectional area at a relative level ε ¼ h=Rmax; Ac is the contour

area; nu is the number of asperities whose peaks are located above the level u; nc ¼ Ac=Aci is

the total number of asperities; and Aci is the area due to a single asperity.

According to ISO 4287–1997, parameters of roughness are determined from profilograms and

the functions describing the distribution for the profile tp and the surface ηu(ε), but it is not

fulfilled for the peaks and valleys asperities distribution functions of the profile φnl(ul) and the

surface φn(u), then the model is based on the bearing profile curve.

Let us assume that the function ηu εð Þ is monotonic and twice differentiable. A rough surface

(Figure 1) is a set of asperities in the form of spherical segments of radius r and height ωRmax,

and base radius ac ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

Aci=π
p

. It is necessary to find such a function φn uð Þ for which the

distribution of the material in the rough layer corresponds to the bearing surface curve.

The cross-section of the i-th asperity at the level ε is

Ari ¼ 2πrRmax ε� uð Þ, (3)

where u is the relative distance from the peaks level to the peak of the i-th asperity.

The number of peaks in the layer du and at a distance u is equal to

dnr ¼ ncφ
0
n uð Þdu: (4)

Figure 1. The scheme and the bearing curve of a rough surface.
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Then, Au ¼ Ar ¼ 2πrRmaxnc
Ð

ε

0

φ0
n uð Þ ε� uð Þdu;

ηu εð Þ ¼
Ar εð Þ

Ac
¼ C

ð

ε

0

ε� uð Þφ0
n uð Þdu, C ¼

2πrRmaxnc
Ac

: (5)

Further, we have

η εð Þ ¼ C ε

ð

ε

0

φ0
n uð Þdu�

ð

ε

0

uφ0
n uð Þdu

0

@

1

A ¼ C εφn εð Þ � uφn uð Þ
ε

0

�

�

�

�

þ

ð

ε

0

φn uð Þdu

0

@

1

A,

η εð Þ ¼ C

ð

ε

0

φn uð Þdu: (6)

Twice differentiating the left and right sides of ε, we have

η0 εð Þ ¼ Cφn εð Þ, η00 εð Þ ¼ Cφ0
n εð Þ; (7)

φn εð Þ ¼
η0 εð Þ

C
, φ0

n εð Þ ¼
η00 εð Þ

C
: (8)

To describe the bearing surface curve, we use the regularized beta function:

tp εð Þ ¼ η εð Þ ¼ Iε p; qð Þ ¼
Βε p; qð Þ

Β p; qð Þ
, (9)

where

p ¼
Rp

Rq

� �2 Rmax � Rp

Rmax

� �

�
Rp

Rmax
, q ¼ p

Rmax

Rp
� 1

� �

: (10)

Вε(α,β) и В(α,β) are the incomplete and complete beta-functions.

Double differentiating Eq. (9), from Eq. (8), for the function and the distribution density of the

asperities, we have

φn uð Þ ¼
η0
u uð Þ

C
¼

up�1 1� uð Þq�1

εsp�1 1� εsð Þq�1
; (11)

φ0
n uð Þ ¼

η00
u uð Þ

C
¼

up�2 1� uð Þq�2 p� 1ð Þ 1� uð Þ � q� 1ð Þu½ �

ε
p�1
s 1� εsð Þq�1

: (12)

The relative height of the spherical asperity is ω ¼ 1� εs and the radius of spherical asperity is

r ¼ a2c= 2ωRmaxð Þ:

Contact and Fracture Mechanics6



This section describes a model of a rough surface in the form of a set of spherical asperities

with constant radii and heights. More complex models with asperities with variable radii and

heights are given in work [3, 4].

The contact of two rough surfaces zi x; yð Þ can be represented as a contact of an equivalent

rough surface z x; yð Þ ¼
P2

i¼1 zi x; yð Þ and a flat surface. The parameters of the microgeometry of

an equivalent surface are given in [3, 4].

3. Description of contact of a single asperity

3.1. Contact of a spherical asperity and the low-modulus half-space

Elastic contact occurs when low-modulus materials are used, which are used widely in sealing

technology in the form of coatings or individual details [3, 5]. According to the strength criteria,

the construction materials belong to the low-modulus materials if the values of the elastic

moduli E < 103 MPa [6]. When contacting metallic rough surfaces, elastic contact is possible

for high surface cleanliness classes and large values of the yield strength of the material.

As shown by experiments [7, p. 179] with polymeric interlayers (a coating on one of the

conjugate details), loaded by [1] compressive stresses, the real touching area tends to be a

constant value, depending on the physico-mechanical properties of the interlayer material.

During elastic contact, the mutual influence of discretely loaded sections leads to the growth

retardation of the contact area [3]. It is reflected in the Bartenev-Lavrentyev’s formula [7]

η ¼ 1� exp � b
q

E

� �

, (13)

where b is the coefficient depending on the surface quality, qc is the contour contact pressure,

and E is the elastic modulus. As it follows from Eq. (13), η ! 1 for q ! ∞.

Figure 2. The distribution densities of asperities for different values of p and q.
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The question of the influence of neighboring asperities in the case of elastic contact was

considered in [8, 9], where the mutual influence is replaced by the action of equal concentrated

forces located at the nodes of the hexagonal lattice.

According to the Saint-Venant’s principle, at a point sufficiently distant from the region of

application of the load, the stresses and deformations do not depend on the nature of the load

distribution in its application area, in [10, 11]. Using the principle, the influence of the other

contacting asperities is replaced by the action of a uniformly distributed load in some circular

area. It allows considering the problem posed as an axisymmetric problem.

Let us consider the contact of a single absolutely rigid spherical asperity of radius r, whose

peak is located at a distance uRmax from the peaks line of a rough surface with an elastic half-

space in the system of cylindrical coordinates z, r, and φ with origin at the point О (Figure 3).

From an analysis of the numerous solutions of contact problems in the theory of elasticity and

plasticity, it follows that a change of the distribution of external loads near the contact area

Figure 3. Scheme of contact of a single asperity.

Contact and Fracture Mechanics8



under constancy of its average intensity leads to insignificant changes only near the boundary

of the contact area.

Then, taking into account, the nature of the mutual location of the individual contact spots, the

influence on the contact characteristics of an individual asperity within the circular contact

area W1 r ¼ 0, ari
� �

and the circular unloaded area W r ¼ ari, anð Þ on the remaining contact

spots will be equivalent to the effect of the uniformly distributed load qcn acting in the circular

area W2 r ¼ an, alð Þ, and the assigned problem may be regarded as an axisymmetric (Figure 3).

The size of the unloaded area an depends on the number of contacting asperities and with

increasing applied load, it decreases from al to ac.

The solution of this problem is given in Ref. [11]. Studies on the effect of the parameter

ka ¼ an=ac on the relative contact area show only 4% increase of last one; therefore, with a

margin to tightness ensure, we will give a solution for ka = 1 or an = ac below.

Let A1 and A2 be two points on the surface of the circular contact area W1. The A1 and A2

coming into contact after application of the compressive load. Since the total normal displace-

ment U0 of the point А1 is constant for any point in area W1, we have

U0 ¼ UE þ z1 ¼ UEri þUEci þ z1, (14)

where UEri is the normal contact displacement under the pressure pri acting in the region W1;

UEci is the normal displacement under the pressure qcn; and z1 is the equation of the surface of a

spherical asperity in an unloaded state.

As for the real surfaces, r > > Rmax, then

z1 ¼ �uRmax �
r
2

2r
: (15)

Elementary displacements dUEri and dUEci under pressures qri and qc acting on elementary

areas dw1 and dw2, respectively, are determined by [12]:

dUEri ¼
θqri r1ð Þ

πR1
dw1, dUEci ¼

θqcn
πR2

dw2; (16)

where R2
j ¼ r

2 þ r
2
j � 2rrj cosφj, j = 1, 2; r � ri; θ ¼ 1� ν2

� �

=E, ν is Poisson’s ratio;

dw1 ¼ r1drdφ; and dw2 ¼ r2drdφ.

After integrating Eq. (16), we have

UEri ¼
θ

π

ð

W1

pri rð Þdw1

R1
, (17)

UEci ¼
4

π
θqc alΕ

ri

al

� �

� aсΕ
ri

ac

� �� 	

, (18)
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where Ε xð Þ is the complete elliptic integral of the second kind.

From Eq. (15), taking into account Eqs. (16)–(18), we have

ð

W1

pri rð Þdw1

R1
¼ f ri

� �

, (19)

f ri

� �

¼ π

θ
U0 � uRmax �

ωRmaxr
2
i

a2c

� �

� 2πqc al �
2

π
Ε

ri

ac

� �� 	

: (20)

The Eq. (19) is the basic equation of an axisymmetric contact problem. The common decision of

Eq. (19) is [13].

pri ri
� �

¼ � 1

2π

ð

ari

ri

F sð Þds
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 � r
2
i

q , Pi ¼ � 2

π

ð

ari

0

f 0 σð Þσ2dσ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2r � σ2
p , F sð Þ ¼ 2

π
f 0ð Þ þ s

ð

s

0

f 0 σð Þdσ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 � σ2
p

2

4

3

5: (21)

As a result from (21), we have

pri ri
� �

¼ 4ωRmax

πθa2c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2ri � r
2
i

q

þ qc
π
arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2ri � r
2
i

a2c � r
2
i

s

, (22)

Pi ¼
8ωRmaxa

3
ri

3θa2c
þ 2qca

2
c arcsin

ari
ac

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2ri
a2c

1� a2ri
a2c

� �

s

" #

: (23)

Taking into account that ηi ¼ a2ri=a
2
ci, qci ¼ Pi= πa2ci

� �

, from Eqs. (22) and (23), we have

pri ri
� �

¼ 4η0:5
i ωRmax

πθa2c

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r
2
i

a2ri

s

þ qc
π
arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2ri � r
2
i

a2c � r
2
i

s

, (24)

qci ¼
8ωRmaxη

1:5
i

3πθac
þ 2

π
qc arcsin η0:5

i �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ηi 1� ηi

� �

q

� 	

: (25)

The mean pmi and the maximum pri(0) stresses at the contact spot are described by equations

pmi ¼
Ni

Ari
¼ qci

ηi

¼ 8η0,5
i ωRmax

3πθac
þ 2qc
πηi

arcsin η0:5
i �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ηi 1� ηi

� �

q

� 	

, (26)

pri 0ð Þ ¼ 4η0,5
i ωRmax

πθac
þ qc

π
arcsin η0::5

i : (27)

With sufficient accuracy (with an error of less than 1%), Eq. (24) can be written as.

pr ηi; ri
� �

¼ pr0 ηi; 0
� �

1� r
2
i =a

2
r

� �β
, β ¼ pr0 ηi; 0

� �

=pm ηi; 0
� �

� 1: (28)
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3.2. The contact of a spherical asperity and the hardenable elastic-plastic half-space

Problems of a spherical asperity elastic-plastic indentation are not studied sufficiently and some

suggested solutions are needed for clarification and improvement. One of the important prob-

lems is material hardening. The authors’ approach to solve this problem is given in Ref. [14].

In several works [15, 16], the empirical Meyer law linking the spherical indentation load and

an indenter diameter was used to allow for material hardening in solving the tribomechanic

problems. Let us consider this approach at length.

In describing elastic-plastic characteristics of the hardenable material, the Hollomon’s power

law is widely used. According to it, the relation between the true stress S and the true strain ε

under uniaxial tension or compression is described by equations

S ¼
εE, ε ≤ εy;

Kεn, ε ≥ εy;




(29)

where E is the elastic modulus and n is the strain-hardening exponent.

The constant K is determined from the equality condition for σ at εy. Then the second equation

in Eq. (29) can be written as.

S

σy
¼

Eε

σy

� �n

¼
ε

εy

� �n

, ε ≥ εy: (30)

where σy ≈Sy, σy is the yield strength, and εy ¼ σy=E.

Taking into accord that the limiting uniform strain εu ¼ n, the exponential deformation hard-

ening can be determined according to Ref. [17] from the following equation:

nlnn� n 1þ ln εy
� �

� ln
σu

σy
¼ 0, (31)

where σu is the tensile strength.

Meyer was the first who described a material behavior in the elastic-plastic domain. He related

the load P to the indentation diameter d as

P ¼ Adm: (32)

The empirical Meyer law is often written as:

4P

πd2
¼ HM ¼ A∗

d

D

� �m�2

: (33)

where m, A, and A* are constants. A* has a dimension of strength.

The equation on the left side is a mean contact area pressure referred to as the Meyer hardness

4P

πd2
¼

P

πa2
¼ pm ¼ HM, (34)

Contact Mechanics of Rough Surfaces in Hermetic Sealing Studies
http://dx.doi.org/10.5772/intechopen.72196

11



where a is the radius of the contact area.

Using [16], we have

P

E∗R2
¼

2

kσ � kn

n

e

� �n

ε1�n
y

a

R

� �2þ1:041n

: (35)

where E∗ is reduced elastic modulus, kσ ¼ 0:333 for carbon and pearlitic steel, for other

materials, the values of kσ are given in Ref. [18].

kn ¼
2þ 1:041nð Þ1þ0:5205n

1þ 1:041nð Þ1þ1:041n
1:041nð Þ0:5205n

: (36)

The limits of using of Eq. (35) are given in Ref. [16].

As it was indicated in Ref. [16], the obtained results are in good agreement with the experi-

mental data given in Ref. [19], and with the data of FE analysis [20].

Thus, the proposed approach suggests an alternative to a more complex method for describing

elastic-plastic penetration of a sphere on the basis of the kinetic indentation diagram [14],

which was used in solving problems of elastic-plastic contacting of rough surfaces.

4. Contacting rough surfaces

4.1. Elastic contact of rough surfaces

4.1.1. Relative contact area

Consider the contact of a rough surface with an elastic-plastic half-space using a roughness

model for which the function and the density of the distribution of the asperities are described

by Eqs. (15) and (16). The displacement of a rough surface in the general case is determined

from Eq. (21) under the condition F arið Þ ¼ 0:

U0 ¼ uRmax þ 2Θqc al � acð Þ þ 2ωRmax
a2ri
a2c

þþ2θqcac 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1�
a2ri
a2c

s

 !

: (37)

For an asperity contacting at a point, that is, for ari = 0, we have

U0 ¼ εRmax þ 2θqc al � acð Þ: (38)

Since the value of U0 is constant for all points of the contact regions, it follows from Eqs. (56)

and (38) that

ηi þ
θqcac
ωRmax

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ηi

q� �

�
ε� u

2ω
¼ 0: (39)

This equation has a solution

Contact and Fracture Mechanics12



ηi ¼
ε� u

2ω
� f q 1þ

f q

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
f q

2

 !2

�
ε� u

2ω

v

u

u

t

0

B

@

1

C

A
, (40)

where f q ¼
θqcac
ωRmax

:

Contour pressure in the joint of a rough surface with a half-space and the relative area are

described by equations.

qc ¼
N

Ac
¼

1

Ac

X

nr

i¼1

qciAci; η ¼
Ar

Ac
¼

1

Ac

X

nr

i¼1

Aciηi: (41)

Considering that for this roughness model Aci ¼ const, Ac ¼ Acinc, and dnr ¼ ncφ
0
n uð Þdu, we

represent Eq. (41) in the form.

qc εð Þ ¼

ð

min ε;εsð Þ

0

qciφ
0
n uð Þdu, η εð Þ ¼

ð

min ε;εsð Þ

0

ηiφ
0
n uð Þdu: (42)

Taking into account Eq. (25), we have.

f q εð Þ ¼
θqc εð Þac
ωRmax

¼

8
3π

Ð

min ε;εsð Þ

0

η1,5
i φ0

n uð Þdu

1�
Ð

min ε;εsð Þ

0

Ψη ηi

� �

φ0
n uð Þdu

, Ψη ηi

� �

¼
2

π

arcsinη0:5
i �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ηi 1� ηi

� �

q

� 	

: (43)

Figure 4 shows the dependences of the relative contact area on the force elastic-geometric

parameter fq.

Figure 4. The relative contact area with/without taking into account the mutual influence of asperities (a) and for

different values of p and q (b).
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4.1.2. Gaps density of the joint

To determine the volume of the intercontact space, it is necessary to determine the volumes of

gaps attributable to single contacting and noncontacting asperities [10],

V i ¼

Vri ¼ 2π

ð

ac

ari

z20 rð Þ � z10 rð Þ½ �rdr;

V0i ¼ 2π

ð

aci

0

z2r rð Þ � z1r rð Þ½ �rdr,

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

(44)

where z10, z20 and z1r, z2r are the equations describing the surfaces of noncontacting and

contacting asperities and half-spaces, respectively.

Then, the total volume of the intercontact space at the joint is described by the equation

Vc ¼
X

nr

i¼1

Vri þ
X

nc�nr

i¼1

V0i, (45)

And the corresponding gap density is equal to

Λ εð Þ ¼
Vc

AcRmax
¼

1

AciRmax

ð

min ε;εSð Þ

0

Vriφ
0
n uð Þduþ

ð

εS

min ε;εSð Þ

V0iφ
0
n uð Þdu

2

6

4

3

7

5
: (46)

Taking into account that Λri ¼ Vri= AciRmaxð Þ и Λ0i ¼ V0i= AciRmaxð Þ, it can be represented in the

form

Λ εð Þ ¼

ð

min ε;εSð Þ

0

Λriφ
0
n uð Þduþ

ð

εS

min ε;εSð Þ

Λ0iφ
0
n uð Þdu: (47)

We provide the equations of surfaces of the asperities and the half-space that enter into

Eq. (44):

z10 ¼ ωRmax
ε� u

ω

� x2 þ 2f q k� 1ð Þ
h i

, (48)

where x ¼ r

ac
; k ¼ al

ac
,

z20 ¼ 2ωRmaxf q k�2F1 �
1

2
;
1

2
; 1;

x2

k2

� �

�2F1 �
1

2
;
1

2
; 1; x2

� �� 	

, (49)

where 2F1 is the Gaussian hypergeometric function,
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for contacting asperity z1r ¼ z10;

z2r ¼

z1r, 0 ≤ x < η0,5
i

UEri þUEci, η0,5
i ≤ x ≤ 1;

8

>

<

>

:

(50)

UEci ¼ z20, UEri ¼ ωRmax

f qi

x
2F1

1

2
;
1

2
;βþ 2;

ηi

x2

� �

, f qi ¼
8η1,5

i

3π
þΨ ηi

� �

� f q, (51)

where β ¼ pri 0ð Þ=pm � 1:

Figure 5 shows the different positions of the single asperity in the process of contacting with

the rough surface: case a corresponds to original position; case b corresponds to the touching at

a point; and cases c and d correspond to the contact under the different loads.

Taking into account that x2 ¼ t, we have

V0i ¼ πa2c

ð

1

0

Δz0 tð Þdt, Vri ¼ πa2c

ð

1

ηi

Δzr tð Þdt: (52)

Figure 5. The scheme for contacting a single asperity located at level u = 0.5.
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where Δz0 ¼ z20 � z10 and Δzr ¼ z2r � z1r:

Since Λi ¼
V i

πacRmax
, after integrating (52), we have

Λoi ¼ ω

1

2
�
ε� u

ω

� 2f q k� 1ð Þ � k�2F1 �
1

2
;

1

2
; 2;

1

k2

� �

þ 2F1 �
1

2
;

1

2
; 2; 1

� �� 	
 


: (53)

Λri ¼ω 1� ηi

� � 1þ ηi

2

�


�
ε� u

ω

� 2f q k� 1ð Þ
i

þ 2f qk 2F1 �
1

2
;

1

2
; 2;

1

k2

� ��

�

� ηi 2F1 �
1

2
;

1

2
; 2;

ηi

k2

� �	

� 2f q 2F1 �
1

2
;

1

2
; 2; 1

� �

� ηi 2F1 �
1

2
;

1

2
; 2;ηi

� �	

þ

�

þ 2f qi 2F1 �
1

2
;

1

2
;βþ 2;ηi

� �

� η0,5
i 2F1 �

1

2
;

1

2
;βþ 2; 1

� �	
�

:

(54)

Substituting the equations obtained in Eq. (47), we determine the joint density Λ εð Þ. To deter-

mine the dependence Λ f q

� �

, it is necessary to exclude the parameter ε from the dependences

f q εð Þ and Λ εð Þ.

Figure 6 shows the dependence of the gap density on the complex parameter f q when two

rough surfaces come into contact. Figure 2 shows that the contact density does not depend on

the parameters p and q, since the dependences for the different values of p and q.

4.1.3. The criteria for the appearance of plastic deformations

To determine the limits of using the above equations for metal surfaces, it is necessary to have a

reliable criterion of plasticity. The closest coincidence with the experimental data on the

indentation into elastic-plastic media was shown by the energy Mises’ theory of shear strain

and the theory of the maximum tangential stresses of Tresca. The difference between the two

Figure 6. The gap density with/without taking into account the mutual influence of asperities (a) and for different values

of p and q (b).
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criteria is small; therefore, it is advisable to use the Tresca criterion because of its algebraic

simplicity. The problem of determining the plasticity criterion for the considered loading

scheme for a single asperity (Figure 3) was considered in [21]. In this case, the data of the effect

of an axisymmetric load of the form Eq. (28) on the stress-strain state were taken into account.

An important conclusion of [21] is the statement of stability of the values of the relative contact

area ηip for distributed at different heights asperities, at which plastic deformation begins.

Thus, the value of ηip for any asperity loaded according to Figure 3 can be determined for the

highest asperity at u ¼ 0, qc ¼ 0, and β ¼ 0, 5.

By the Tresca criterion of the maximum tangential stresses, the plastic deformation on the z

axis corresponds to the equivalent stress [22].

σeq ¼ 2τ1max ¼ 0, 62p0 ¼ σy: (55)

The maximum contact pressure is defined as p0 ¼ Kyσy, where Ky ¼ 1, 613. The mean contact

pressure is pm ¼ Kyσy= 1þ β
� �

:

Using Hertz’s expressions for the radius of the contact area.

ari ¼
3Pir

4E∗

� �1
3

, (56)

and taking into account that.

Pi ¼ πa2ripm, r ¼
a2c

2ωRmax
,
a2ri
a2c

¼ ηi,
σy

E∗
¼ εy, (57)

We obtain the value of the criterion for the appearance of plastic strains in the near-surface

layer

η∗

p ¼
3πKy

8 βþ 1
� � f y

 !2

, (58)

where f y ¼
σyac

E∗

ωRmax
:

For the highest asperity η∗

p ¼ 1, 605f 2y. Thus, the proposed criterion of plasticity does not

depend on loading conditions and this is its advantage.

Similarly, we define the criterion of occurrence of plastic deformation at the contact area.

According to [23], the equivalent stresses at the center of the area are

σeq 0ð Þ

pm
¼ 0, 2 1þ β

� �

: (59)

The highest value of the equivalent stress σeq 1ð Þ is on the contour of the contact area, where it

slightly exceeds σeq 0ð Þ in the center of the loading area. It is convenient to represent
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σeq 1ð Þ ¼ Kσ � σeq 0ð Þ, where for β ¼ 0, 5 according to the energy theory of shear strains

Kσ ¼ 1, 16, according to the theory of maximal tangential stresses Kσ ¼ 1, 33.

At the moment of appearance of plastic deformation along the contour of the contact area

σeq 1ð Þ ¼ σy, and the average contact pressure.

pm ¼
5σy

Kσ 1þ β
� � : (60)

Then, similarly to the above reasoning, the criterion of the appearance of plastic deformations

in the contact area is

η∗∗

p ¼
15π

8Kσ βþ 1
� � f y

 !2

: (61)

For the highest asperity η∗∗

p ¼ 15, 42K�2
σ
f 2y. According to the theory of maximum tangential

stresses η∗∗

p ¼ 5, 405η∗

p, according to the energy theory of shear deformations η∗∗

p ¼ 7, 105η∗

p:

4.2. Elastic-plastic contact of rough surfaces

Contact characteristics for elastic-plastic contact will be considered taking into account the

mutual influence of the contacting asperities. By analogy with the elastic contact, we assume

that the mutual influence of the asperities is equivalent to the action of the additional load qc
(Figure 3). We use a discrete roughness model, described by Eqs. (15) and (16).

4.2.1. Relative contact area

According to Eq. (33), the load applied to a single asperity

Pi

E∗R2
¼

2

kσ � kn

n

e

� �n

ε1�n
y

ari
R

� �2þ1:041n

: (62)

Considering that for the roughness model used R ¼ a2c= 2ωRmaxð Þ and ηi ¼ a2ri=a
2
c , from Eq. (62)

we have

qci
E∗

¼
Pi

E∗ � πa2c
¼

2

kσ � kn
�

2ωRmax

ac

� �1:041n n

e

� �n

ε1�n
y η1þ0:52n

i : (63)

For elastic-plastic contact, it is convenient to use the parameter q
σ
¼ qc=σy, then from Eq. (63)

we have

q
σi ¼

qci
σy

¼ Ca � η
1þ0:52n
i , (64)

where
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Ca ¼ Ca εy; n
� �

¼
2

kσ � kn
�

2ωRmax

ac

� �1:041n n

e � εy

� �n

: (65)

By analogy with Eq. (25), taking into account Eq. (64), for an elastic-plastic contact, we have

q
σi ¼ Ca � η

1þ0:52n
i þ q

σ
�Ψη ηi

� �

: (66)

In order to preserve the acceptability of the equations for elastic and elastic-plastic contacts, we

use the relations.

f q ¼
qcac

E∗

ωRmax
¼

qc
σy

�
σy

E∗
�

ac
ωRmax

¼ q
σ
� f y; f y ¼

εyac

ωRmax
; f qi ¼ q

σi � f y: (67)

Then Eq. (66) can be represented in the form

f qi ¼ Ca � η
1þ0:52n
i þ f q �Ψη ηi

� �

, (68)

where Cf ¼ Ca � f y, ηi is determined by Eq. (40).

Summing up f qi over all asperities, we have

f q εð Þ ¼

Cf

Ð

min ε;εsð Þ

0

η1þ0:52n
i φ0

n uð Þdu

1�
Ð

min ε;εsð Þ

0

Ψη ηi

� �

φ0
n uð Þdu

: (69)

For a given value ε, we solve the system of transcendental Eqs. (40), (69) and obtain the

dependence f q εð Þ.

Similarly, using Eq. (40) and f q εð Þ, we have

η εð Þ ¼

ð

min ε;εsð Þ

0

ηi ε; f q

� �

φ0
n uð Þdu: (70)

Excluding the parameter ε from Eqs. (69) and (70), we obtain the dependence η f q

� �

or η q
σ

� �

.

Figures 7 and 8 present the dependencies of the relative contact area on the relative force

parameter q
σ
.

4.2.2. Gaps density of the joint

The scheme of the action of the loads pr and qc is similar to the scheme for elastic contact

(Figure 3).
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For an elastic-plastic contact

Pi ¼
Pi

E∗R2
∝

hi
R

� �0,5205nþ1

, (71)

therefore, the pressure distribution in the contact area described by [4]

p rð Þ ¼ p0 1�
r2

a2

� �β

, (72)

where p0 ¼ pm 1þ β
� �

is pressure at r ¼ 0, pm is the mean pressure on contact area and

β ¼ 0, 5205n:

Figure 7. The relative contact area with/without taking into account the mutual influence of asperities (a) and for

different values of p and q (b).

Figure 8. The relative contact area for different values of εy and n.
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Total density of gaps with elastic-plastic contact

Λ ¼ Λe �Λp ¼ Λe0 þΛer � Λp, (73)

where Λe is the density of gaps due to the elastic punching of the half-space, which accounted

for single contacting and noncontacting asperities; Λp is reduction of the gap density due to the

plastic displacement of the material into the interfacial space.

The value of Λe is determined, similarly to the elastic contact, by Eq. (47). In this case, f qi is

determined by Eq. (68) and the parameter β is used in Eq. (72).

Let us determine the volume of the displaced material for a single contacting asperity (Figure 9).

Let us assume that the unloaded crater has a constant radius Rfi and the unloaded depth from

the level of the initial surface hfi. The volume of plastically displaced material falling on a single

crater is equal to the volume of a spherical segment of height hf and radius Rfi:

Vpi ¼ πh2fi Rfi �
hfi

3

� �

: (74)

The total volume of the displaced material

Vp ¼ nc

ð

min ε;εsð Þ

0

Vpiφ
=
n uð Þdu: (75)

Since Λp ¼ Vp= AcRmaxð Þ, we have

Λp ¼ ω

ð

min ε;εsð Þ

0

ηi

c2
� η�0,5

i f qiKβ0

� �2

0; 5 1� η�1,5
i f qi Kβ0 � Kβc

� �

h i�1
�

ωRmaxð Þ2

3a2c

(

�

�
ηi

c2
� η�0,5

i f qiKβ0

� �




φ=
n uð Þdu:

(76)

Figure 9. Scheme of the unloaded crater.
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Substituting Eq. (76) into Eq. (73), we find the total gap density for elastic-plastic contact.

Figure 10 presents the dependencies of the gap density on the relative force parameter q
σ
.

5. Ensuring specified tightness

Ensuring specified tightness or leakage rate is related to the determination of the force param-

eters f q or q
σ
. The sealing capacity of the SJ is evaluated by the permeability functional by

Eq. (1). The contact characteristics—the relative contact area η and the gap density Λ, included

in Eq. (1), are defined in the previous section. Included in Eq. (1), the probability vk of the

medium flowing through the SJ is determined by the fusion of contact spots and is given in

Ref. [3]. Two adjacent asperities will merge if ηi > 0:5for each asperity.

Figure 11 shows the dependences for the elastic and elastic-plastic contacts.

The required permeability functional is determined by [3]

C∗

u ¼

2lμG�

l

R3
maxrΔp

, (77)

where G�

l is the specified tightness; r is the density of the sealed medium; p1 and p2 are the inlet

and outlet pressures; μ is the dynamic viscosity; Δp ¼ p1 � p2; and l is the compacting band

width.

The force parameters f q or qσ, that providing a given level C∗

u are determined from the Cu f q

� �

or Cu q
σ

� �

(Figure 11).

Figure 10. The gap density with/without taking into account the mutual influence of asperities (a) and for different values

of p and q (b).
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6. Conclusion

Using the proposed model of roughness as a result of the studies, methods for determining the

contact characteristics and the conditions for ensuring a specified tightness of the joints were

developed and established:

1. Contact characteristics and the permeability functional are determined depending on the

introduced dimensionless power parameters fq for the elastic and q
σ
for elastic-plastic contacts.

2. The relative contact area and the gap density for elastic contact do not depend on the

values of the parameters of the bearing curve p and q. To a large extent, the mutual

influence of asperities affects, and at fq > 0.47, the determining factor affecting the perme-

ability functional is the probability vk of the medium flowing (Figure 11).

3. To describe the elastic-plastic contact, Mayer’s law and the relation between the hardening

exponent n and the Mayer index m were used.

4. In the case of elastic-plastic contact, the exponent of hardening n has a greater effect on the

contact characteristics and to a lesser extent, the parameter εy and the mutual influence of

the asperities. For the considered range of the parameter q
σ
, the fusion of the contact spots

is insignificant.
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Figure 11. The dependences of the permeability functional for the elastic (a) and elastic-plastic (b) contacts.
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