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Abstract

Vibration analysis of fluid-filled functionally graded material (FGM) cylindrical shells (CSs)
is investigated with ring supports. The shell problem is formulated by deriving strain and
kinetic energies of a vibrating cylindrical shell (CS). The method of variations of Hamilto-
nian principle is utilized to change the shell integral problem into the differential equation
(DE) expression. Three differential equations (DE) in three unknown for displacement
functions form a system of partial differential equations (PDEs). The shells are restricted
along the thickness direction by ring supports. The polynomial functions describe the
influence of the ring supports and have the degree equal to the number of ring supports.
Fluid loaded terms (FLT) are affixed with the shell motion equations. The acoustic wave
equation states the fluid pressure designated by the Bessel functions of first kind. Axial
modal deformation functions are specified by characteristic beam functions whichmeet end
conditions imposed on two ends of the shell. The Galerkin method is employed to get the
shell frequency equation. Natural frequency of FGM cylindrical shell is investigated by
placing the ring support at different position with fluid for a number of physical parame-
ters. For validity and accuracy, results are obtained and compared with the data in open
literature. A good agreement is achieved between two sets of numerical results.

Keywords: functionally graded material (FGM), ring supports, cylindrical material,
Galerkin technique (GT), Hamiltonian principle

1. Introduction

All over the word, applications of fluid-filled cylindrical shells have grown in engineering and

science. Amendments in shell physical quantities are inducted to enhance strength and stability

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



of cylindrical shells (CSs) [1, 2]. Additional burden due to fluid factor on a physical system may

cause damage to it. In the recent times, this feature has appealed to scientists doing research on

dynamical properties of materials to explore more about specific strength, stiffness and super

corrosion resistance [3–7]. It has been acquired by highly developed complex materials. Study of

vibratory response of cylindrical shells (CSs) containing fluids is very beneficial to study

dynamic behavior for their applications. This presents a direct contact between a solid composi-

tion and a liquid material [8]. In a lot of fields of engineering and technology (mechanical, civil,

aeronautics), its useful implications can be seen. Thin-walled cylindrical shells (CSs) have exten-

sive applications in engineering and industry. They are found in chimney design, pipe flow,

nuclear reactors and submarines.

For theoretical point of view, study of cylindrical shell vibrations is done to investigate analytical

results and their closeness with experimental ones. Here the Galerkin procedure is employed to

solve the shell governing equations. For the present cylindrical shells, functionally graded mate-

rials are utilized for their structure construction. In the radial thickness direction, material

distribution is handled by the exponential volume fraction law. Due to this law, special types of

integrals are evolved and are approximated numerically or analytically to evaluate material

stiffness modulus. These integrals involve the material parameters of thickness variable by

assuming the Poisson ratios of functionally graded constituent materials. For simplifying the

integrals, these are presumed to be nearly equal to each other. This assumption simplifies the

material stiffness integrals. Shell dynamical equations are framed by applying the Hamilton’s

variational principle to the Lagrangian functional that is obtained from the shell strain and

kinetic energy expressions. These equations govern the shell vibration behavior. For this prob-

lem, a suitable and effective method is employed to achieve the shell frequency equation in the

eigenvalue problem expression. Normally energy variational approaches are used to solve cylin-

drical shells problem. They consist of the Raleigh - Ritz method and the Galerkin method. The

axial deformation functions are estimated by characteristic beam functions. They are achieved

from the solutions of beam differential equation.

Pioneering research work on vibrations of cylindrical shells (CSs) has performed by Arnold

andWarburton [8]. The consequence of end conditions on vibration characteristics of a circular

cylindrical shell (CS) was considered by Fosberg in 1964 by using shell equation.

Najafizadeh and Isvandzibaei [5] analyzed vibration characteristics of functionally graded

cylindrical shells with ring supports. They based their analysis higher order shear deformation

theory of shells. It was perceived that the influence of ring supports and fluid terms was very

significant on shell frequencies. Vibration characteristics of cylindrical shells containing fluid

were studied experimentally and theoretically by Chung et al. [9]. Goncalves and Batista [10]

presented a theoretical vibration study of cylindrical shells (CSs) partially filled and sub-

merged in a fluid. Simply supported end conditions were imposed on both edges. Goncalves

et al. [11] investigated the transient stability of empty and fluid-filled cylindrical shells and

used to study the non-linear dynamic behavior of shallow cylindrical shells under axial

loading. Gasser [12] studied the frequency spectra of bi-layered cylindrical shells by taking

different materials in both layers such as isotropic as well as functionally graded material (FGM)

and by taking two different FGM at the inner and outer layers of the CSs respectively. Sharma

and Johns [13] explored the vibrations of CSs with clamped-free and clamped-ring-stiffeners
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conditions by applying the Raleigh-Ritz method and estimated the axial displacement deforma-

tion with the help of beam functions. Xi et al. [14] have studied vibrations of cross-ply plastic-

coated circular fluid-filled CSs by applying a semi-analytical method based on Reissner-

Mindline theory. Zhang et al. [4] studied vibrations of CSs and applied the wave propagation

approach (WPA) to solve shell dynamical equations. This method depended on the eigenvalue

of characteristic beam functions. Axial wave number was designated to a boundary condition

(BC) by a simple formula. They compared the results determined by this method to ones found

by a FEM to check the efficiency, robustness and accuracy of the procedure. It was seen by

making these comparisons that their approach is more victorious and exact for shell vibration

difficulties. It was concluded that the proposed approach could be useful for a problem with

compound end states and also for fluid-filled cylindrical shells.

Zhang et al. [15] examined vibrations of CSs containing fluid by applying WPA. After that a

similarity evaluationwas conducted between uncoupled frequencieswith the numerical outcome

obtained in the literature. They also put side by side the coupled frequencies estimated by the

WPA with those attained by FEM. Xiang et al. [16] accessed exact solution for the vibration

characteristics of CS placed at intermediate position and used the domain decomposition tech-

nique for the sake of ordering in the segment of the shells. Zhao et al. [17] investigated the effects

of vibration with ring stiffeners and stringer for the laminated cross-ply rotating CS and two

methods: variational method and averaging approach are used for these effects. They determined

that averagingmethod produced the inexact values andwas sensitive whereas the fast and better

results were deduced with variational method. Xiang et al. [18] accessed the vibration character-

istics of CS placed at intermediate positionwith axially dense ring supports and used Flügge shell

theory and the Timoshenko thin shell theory to analyze the buckling shells as composite mate-

rials. Due to FGM their composition vary constantly and smoothly through thickness.

Vibration characteristic of FGM shell with ring supports has investigated by Isvandzibaei and

Awasare [19] and they used third order deformation shear theory and Hamilton’s principle for

free-free end. Lee and Chang [20] gave a numerical study of coupled problems of fluid

conveying dual walled carbon annotates and examined the effects of characteristic ratio and

Van der Waals forces on basic frequencies. Silva et al. [21] investigated the nonlinear vibrant

behavior and instabilities of partially fluid-filled CS constrained to axial load and resulting in a

distinct low-dimensional model for the analysis of the vibrations to observe the shell vibration.

Shah et al. [22] gave a vibration analysis of a functionally graded CS containing a fluid. The

shells were rested on elastic foundations. They analyzed effects of Winkler and Pasternak

moduli on shell vibration characteristics. Xiong et al. [23] investigated the free vibration

analysis of fluid-filled elliptical cylindrical shells and explained the sensitivity of frequency

parameters to the elliptical parameter with length of CS. The cylinder is filled with a compress-

ible non-viscous fluid and may be subjected to arbitrary time-harmonic on-surface mechanical

drives is investigated by Hasheminejad and Alaei-Varnosfadrani [24]. The free vibration of

fluid-filled CS covered partially in elastic foundation is investigated by Kim [25] and the elastic

foundation of partial axial and angular dimensions is represented by the Pasternak model. The

variation of the frequency parameters with respect to the layer thickness, the length-to-radius

ratio, the length-to-thickness ratio, and circumferential node number are analyzed by Izyan

et al. [26]. Soutis et al. [27] investigated influence of ring supports on free vibration of FGM
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which is placed on the middle layer and Study is carried out for placing ring support in

different position of FGM’s, to find the natural frequencies by Rayleigh–Ritz approach.

In the present paper, vibration frequency characteristics of fluid-filled CSs are investigated. The

shells are constrained in the radial directionby ring supports. Thepresentproblem is formulated in

integral form and is converted into a system of three partial differential equations (PDEs) with the

unknown displacement functions. Modal forms for the three unknown functions are assumed

such that the special and temporal variables are separated. Energy variation approach is used to

solve PDEs so that an eigenvalue problem is cropped up. Axial modal dependence is roughly

estimated by trigonometric functions for a simply supported CSs. For other end conditions,

characteristic beam functions are taken. The radial constraints are presumed by the polynomial

functions having degree equal to number of ring supports. Fluid pressure is stated by the acoustic

wave equation and Bessel’s functions of first kind. Axial modal displacement deformations are

measured by beam characteristic functions which ensure to meet boundary conditions. The

Galerkin technique is implemented to form the shell frequency equation which is solved by using

MATLAB coding. The radial deflection is restrained by ring supports. This factor is expressed by

the polynomial functionswhich carry the degree equal to the number of ring supports.

2. Formation of shell problem

2.1. Functionally graded shells

In practice a CS is constructed from a FGM which consists of two constituent materials. Two

constituent materials having material parameters: E1, E2, ν1, ν2, and r1, r2. Then the effective

material quantities: Efgm, vfgm and rfgm are given as:

Efgm ¼ E1 � E2½ �
z

h
þ
1

2

� �p

þ E2, νfgm ¼ ν1 � ν2½ �
z

h
þ
1

2

� �p

þ ν2, rfgm ¼ r1 � r2½ �
z

h
þ
1

2

� �p

þ r2 (1)

The value of z lies as 0 < z < ∞ in the radial direction. The volume fraction Vr for a functionally

graded constituent material can be defined by the following function:

Vr ¼
z

h
þ
1

2

� �p

(2)

where p is the power law exponent which indicates the material variation profile through the

shell thickness and keeps its real between zero and infinity.

2.2. Theoretical investigation

Consider Figure 1 in which a geometrical sketch of a CS is given. L, R, and h are termed as shell

geometrical parameters. Other shell basic quantities are material parameters and are designate

by E, v and r.

where the forces and moments are designated by N and M have the directions along the

longitudinal, tangential and shear directions correspondingly.
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Nx;NΨ ;NxΨð Þ ¼

ð

h
2

�h
2

σx; σΨ ; σxΨð Þdz, Mx;MΨ ;MxΨð Þ ¼

ð

h
2

�h
2

σx; σΨ ; σxΨð Þzdz (3)

where σx, σΨ are the linear stresses along x and Ψ -directions respectively and σxΨ represents

the shear stress along xΨ -direction. For a cylindrical shell, the stresses defined in Eq. (3) are

defined by the two dimensional Hook’s law.

σx

σΨ

σxΨ

2

6

4

3

7

5
¼

Q11 Q12 0

Q12 Q22 0

0 0 Q66

2

6

4

3

7

5

ex

eΨ

exΨ

2

6

4

3

7

5
(4)

where the strains along x and Ψ directions are labeled by ex and eΨ respectively and the shear

strain is denoted by exΨ in the xΨ - direction. The first thin shell theory was developed by Love

[7] which is based on Kirchhoff’s perception for plates. Various thin shell theories have been

deduced from this theory by modifying the geometrical and physical parameters. The mem-

bers of the strain vector e½ � in Eq. (4) have been defined as linear functions of thickness

coordinate z which taken from Love’s [32] theory are stated as:

ex ¼ e1 þ zκ1, eΨ ¼ e2 þ zκ2, exΨ ¼ γþ 2zτ (5)

here e1, e2 and γ denote strains with regard to the shell middle reference surface. κ1, κ2 and τ

stand for the surface curvatures. The expressions for strain and curvature displacement rela-

tionship are written as:

e1; e2;γf g ¼
∂u

∂x
;

1

R

∂v

∂Ψ
þ w

� �

;

∂v

∂x
þ

1

R

∂u

∂Ψ

� �� �

κ1; κ2; τf g ¼ �
∂
2w

∂x2
;�

1

R2

∂
2w

∂Ψ 2
�

∂v

∂Ψ

� �

;�
1

R

∂
2w

∂x∂Ψ
�

∂v

∂x

� �� �

(6)

Figure 1. Geometrical sketch of a FG cylindrical shell with ring support.
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By substituting Eqs. (5) and (6) into Eq. (4) and then substituting the resulting equation into

Eq. (3). The force and moment results can be written as:

Nx

NΨ

NxΨ

Mx

MΨ

MxΨ

2

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

5

¼

A11 A12 0 B11 B12 0

A12 A22 0 B12 B22 0

0 0 A66 0 0 B66

B11 B12 0 D11 D12 0

B12 B22 0 D12 D22 0

0 0 B66 0 0 D66

2

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

5

e1

e2

γ

κ1

κ2

2τ

2

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

5

(7)

where Aij, Bij and Dij (i, j = 1, 2 and 6) are the extentional, coupling and bending stiffness

defined respectively, as:

Aij;Bij;Dij

� 	

¼

ð

h
2

�h
2

Qij 1; z; z2
� 	

dz, (8)

where coupling stiffness, Bij’s vanish for a CS structured from isotropic materials where they

exist for heterogeneous and an isotropic materials such as laminated FGM. For an isotropic

material, Qij (i, j = 1, 2 and 6) are expressed as

Q11 ¼ Q22 ¼
E

1� v2
, Q12 ¼

vE

1� v2
, Q66 ¼

E

2 1þ vð Þ
(9)

where E and ν are the Young’s modulus and Poisson’s ratio for the shell’s material. In this

study, the cylindrical shell is considered thin and valid with thickness-to- radius ratio is less

than 0.05. For vibrating thin cylindrical shell, the strain energy expressed as

S ¼
R

2

ð

L

0

ð

2π

0

A11e1
2 þ A22e2

2 þ 2A12e1e2 þ A66γ
2 þ 2B11e1k1 þ 2B12e1k2 þ 2B12e2k1




þ2B22e2k2 þ 4B66γτþD11k1
2 þD22k2

2 þ 2D12k1k2 þ 4D66τ
2�dΨdx (10)

Substituting the expression for the surface strains and the curvatures from the relationships (6)

S ¼
R

2

ð

L

0

ð

2π

0

A11
∂u

∂x

� �

þ
A22

R2

∂v

∂Ψ
þ w

� �2

þ
2A12

R

∂u

∂x

� �

∂v

∂Ψ
þ w

� �

þ A66
∂v

∂x
þ

1

R

∂u

∂Ψ

� �2
"

�2B11
∂u

∂x

� �

∂
2w

∂x2

� �

�
2B12

R

∂u

∂x

� �

∂
2w

∂x∂Ψ
�

∂v

∂x

� �

�
2B12

R

∂v

∂Ψ
þ w

� �

∂
2w

∂x2

� �
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�
2B22

R
3

∂v

∂Ψ
þ w

� �

∂
2
w

∂Ψ
2
�

∂v

∂Ψ

� �

�
8B66

R

∂v

∂x
þ

1

R

∂u

∂Ψ

� �

∂
2
w

∂x∂Ψ
�

∂v

∂x

� �

þD11
∂
2
w

∂x2

� �2

þ
D22

R
4

∂
2
w

∂Ψ
2
�

∂v

∂Ψ

� �2

þ
2D12

R
2

∂
2
w

∂x2

� �

∂
2
w

∂Ψ
2
�

∂v

∂Ψ

� �

þ
4D66

R
2

∂
2
w

∂x∂Ψ
�

∂v

∂x

� �2

dΨdx (11)

Also for a cylindrical shell, its kinetic energy expression represented by T, is given as:

T ¼
R

2

ð

L

0

ð

2π

0

rT

∂u

∂t

� �2

þ
∂v

∂t

� �2

þ
∂w

∂t

� �2
" #

dΨdx (12)

where rT is expressed as:

rT ¼

ð

h

2

�h

2

rdz (13)

Now the shell problem is framed by the Lagrangian energy functional which is the difference

between the shell kinetic and strain energies and is given as:

Y

¼ T � S (14)

where
Q

denotes the Lagrangian functional. Substituting the expressions for strains and

kinetic energies of the shell from Eqs. (11) and (12) respectively into Eq. (14). Calculus of

variations process is applied to the integral terms to derive the Euler-Lagrange equations.

Hamilton’s variational principle is a process in which the variations in the variables are

assumed to be zero. Implementation this principle to the Lagrangian functional which is an

integral expression. The subsequent dynamical equations are obtained in the following

system of PDEs:

A11
∂
2
u

∂x2
þ
A66

R
2

∂
2
u

∂Ψ
2
þ

A12 þ A66

R
þ
B12 þ 2B66

R
2

� �

∂
2
v

∂x∂Ψ
þ
A12

R

∂w

∂x
� B11

∂
3
w

∂x3
�
B12 þ 2B66

R
2

∂
3
w

∂x∂Ψ
2
¼ rT

∂
2
u

∂t2

A12 þ A66

R
þ
B12 þ B66

R
2

� �

∂
2
u

∂x∂Ψ
þ A66 þ

3B66

R
þ
3D66

R
2

� �

∂
2
v

∂x2
þ

A22

R
2
þ
2B22

R
3

þ
D22

R
4

� �

∂
2
v

∂Ψ
2

�
B12 þ 2B66

R
þ
D12 þ 2D66

R
2

� �

∂
3
w

∂x2∂Ψ
þ

A22

R
2
þ
B22

R
3

� �

∂w

∂Ψ
�

B22

R
3
þ
D22

R
4

� �

∂
3
w

∂
3
Ψ

¼ rT

∂
2
v

∂t2
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B11
∂
3u

∂x3
�
A12

R

∂u

∂x
þ
B12 þ 2B66

R2

∂
3u

∂x∂Ψ 2
þ

B12 þ 2B66

R
þ
D12 þ 4D66

R2

� �

∂
3v

∂x2∂Ψ
þ

B22

R3
þ
D22

R4

� �

∂
3v

∂Ψ 3

�
A22

R2
þ
B22

R3

� �

∂v

∂Ψ
�D11

∂
4w

∂x4
�
2 D12 þ 2D66ð Þ

R2

∂
4w

∂x2∂Ψ 2
�
D22

R4

∂
4w

∂Ψ 4
þ
2B12

R

∂
2w

∂x2

þ
2B22

R3

∂
2w

∂Ψ 2
�
A22

R2
w ¼ rT

∂
2w

∂t2

(15)

3. Application of Galerkin technique

Two energy variational techniques namely viz., the Rayleigh-Ritz method and the Galerkin

technique (GT) are exploited to solve shell motion equations because these methods yield

results fast with enough accuracy. The present CS is analyzed by applying the Galerkin

technique (GT) for their vibrations. This approach is very expedient, simple and convenient to

use to find vibration frequencies and has been widely engaged by numerous mathematicians

[25, 28, 29]. Modal displacement forms are designated by x, Ψ and t. The following modal

deformation displacement functions for u, v and w are adopted as:

u x;Ψ ; tð Þ ¼ pm
dϕ

dx
sinnΨcosωt

v x;Ψ ; tð Þ ¼ qmϕ xð ÞcosnΨcosωt

w x;Ψ ; tð Þ ¼ rmϕ xð Þ
X

k

i¼1

x� aið ÞzisinnΨcosωt (16)

Here the parameters pm, qm and rm present vibration amplitudes in the x, Ψ and z directions

respectively. The position of ith ring support with the circular direction of the shell is denoted

by ai and zi has value, 1 when a ring support exists and is 0, when no rings hold up. For this

purpose the modal displacement forms for u, v and w given in the relation (12) respectively and

their corresponding partial derivatives are substituted into Eq. (15) by taking, zi ¼ 1 for a

single ring support, the resulting equations are integrated with respect to x from 0 to L, the

following equations are got:

A11I1 � n2
A66

R2
I2

� �

pm � n
A12 þ A66

R
þ
B12 þ 2B66

R2

� �

I2qm þ

A12

R
I6 þ I7ð Þ � B11 I8 þ 3I9ð Þ

þn2
B12 þ 2B66

R2
I6 þ I7ð Þ

2

6

6

4

3

7

7

5

rm ¼ �ω2
rTI2pm

n
A12 þ A66

R
þ
B12 þ 2B66

R2

� �

I3pm þ A66 þ
3B66

R
þ
4D66

R2

� �

I3 � n2
A22

R2
þ
2B22

R3
þ
D22

R4

� �

I4

� �

qm

þ n
A22

R2
þ
B22

R3

� �

I10 þ n3
B22

R3
þ
D22

R4

� �

I10 � n
B12 þ 2B66

R
þ
D12 þ 4D66

R2

� �

I11 þ 2I12ð Þ

� �

rm ¼ �ω2
rTI4pm
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�
A12

R
I18 þ B11I19 � n2

B12 þ 2B66

R2
I18

� �

pm þ n
A22

R2
þ
B22

R3

� �

I10 þ n3
B22

R3
þ
D22

R4

� �

I10

�

�n
B12 þ 2B66

R
þ
D12 þ 4D66

R2

� �

I18

�

qm þ �
A22

R2
I3 þ

2B12

R
I14 þ 2I15ð Þ � 2n2

B22

R3
I13

�

�D11 I16 þ 4I17ð Þ þ 2n2
D12 þ 2D66

R2
I14 þ 2I15ð Þ �

D22

R4
I13

�

rm ¼ �ω
2
rTI13rm (17)

where the integral terms are listed in Appendix-I. Terms in Eq. (17) are arranged to form the

homogeneous algebraic linear equations (HALEs) in pm, qm and rm. This leads to the formation

of the shell frequency equation the eigenvalue shape as:

d11pm þ d12qm þ d13rm ¼ �ω
2
rTpmI2

d21pm þ d22qm þ d23rm ¼ �ω
2
rTqmI4

d31pm þ d32qm þ d33rm ¼ �ω
2
rTrmI13

(18)

So the above equations are written in the eigenvalue problem notation as:

d11 d12 d13

d21 d22 d23

d31 d32 d33

0

B

@

1

C

A

pm
qm
rm

0

B

@

1

C

A
¼ �ω

2
rT

I2 0 0

0 I4 0
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3.1. Annexation of fluid terms

The acoustic pressure generated by a fluid is described by the wave equation in cylindrical

coordinate system x;Ψ ; rð Þ and is presented as:

1

r

∂

∂r
r
∂q

∂r

� �

þ
1

r2
∂
2q

∂Ψ
2
þ

∂
2q

∂x2
¼

1

c2
∂
2q

∂t2
(20)

where t, q, c represents respectively the time, acoustic pressure and speed of sound in the fluid.

The acoustic pressure produced in the fluid meets the equation of motion Eq. (20) and is

articulated by the following modal function expression:

q ¼ qmsinnθJn krrð ÞΨ xð Þcos ωtð Þ (21)

Here Jn krrð Þ represents the Bessel’s function of first kindwith order n. It is the same number as the

circumferential wave number. ω denotes the natural frequency for the CS, kr stands for the radial

wave number and axial wave number km is designated by for a number of boundary conditions

that has been indicates in Ref. [10]. There exists a relation between km and kr is written as:

krRð Þ2 ¼ Ω
2 cL

cf

� �2

� kmRð Þ2 (22)

where cL and cf denote the speeds of the sound in the empty and fluid-filled cylindrical shells

respectively. Ω is the non-dimensional frequency parameter. An assumption is made that the
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fluid and the shell radial displacement must be the same at the borderline of the interior wall of

the shell and it is made sure that the fluid is kept with the interaction between the fluid and the

shell wall. A coupling condition relation of a fluid with the shell wall exists and is defined by

the following expression:

1

iωrf

( )

∂q

∂r

� �

¼
∂w

∂t
(23)

By applying this condition at r ¼ R, the fluid loading term (FLT) owing to the existence of the

fluid pressure is given by

FLT ¼
ω

2
rf Jn krRð Þ

krJ
0
n krRð Þ

 !

rm (24)

J0n Krrð Þ denotes the differentiation of the Bessel’s function with respect to the argument (krR).

The fluid loaded term (FLT), which represents the fluid pressure, is annexed with the fre-

quency Eq. (18) for an empty CS. Ultimately the shell frequency equation for fluid-filled

functionally graded CS is articulated in the following forms:
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(25)

The expressions for the terms dij
0

s, I2, I4 and I13 are given in Appendix-I. This is an eigenvalue

problem involving the shell frequency. Presently, the MATLAB is generally used to calculate

the physical problems in engineering and science. In our case, MATLAB computer software

has been used to compute the shell frequencies through eigenvalues and eigenvectors. A single

command ‘eig’ furnishes shell frequencies and mode shapes by calculating eigenvalues and

eigenvectors respectively. It is significant that MATLAB can compute integrals that fairly easy

to apply the Galerkin method with polynomial basis functions. The exact solution of integral

equation is known and presents a sample of MATLAB code to illustrate the success of the

method. In this way the Galerkin method is implemented to form the shell frequency equation

that is solved by employing MATLAB software.

3.2. Effective material

Materials of cylindrical shells have a paramount role in analyzing shell vibrations. They

impress their stability. In practice isotropic, laminated and functionally graded materials

are used to manufacture them. Here functionally graded materials are benefitted to form

the shells. These materials are advanced and useful in a highly environs. Their material

properties are temperature - dependents. One of their material properties C is stated by the

following relation:
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C ¼ C0 C�1T
�1 þ C1T þ C2T

2 þ C3T
3

� 	

(26)

where C�1, C0, C1, C2 and C3 designate the temperature dependent constants. T is calculated in

the Kelvin scale. These constants differ from material to material. Formula (26) is due to

Toulokian [38]. A functionally graded cylindrical shell comprising of two constituent materials

can be classified into two categories. This depends upon the arrangement of the two materials

forming the shell. It is known that the stainless steel and nickel are used for structuring such

types of shells. Stainless steel and nickel are used in its external and internal surfaces respec-

tively for Category- I (C-I) CS structure, while for Category-II (C-II) cylindrical shell, stainless

steel and nickel are taken for constituting its internal and external surfaces respectively. At

temperature 300 K, the material properties for stainless steel and nickel of functionally graded

cylindrical shell are: E, v, r for nickel are 2:05098� 1011N=m2, 0.31, 8900 kg=m3 and stainless

steel are 2:07788� 1011N=m2, 0.317756 and 81, 666N=m3. These values have been taken from

Ref. [3].

4. Numerical results

In this section, to check the validity and accuracy, for the determination of the natural frequencies

with present methodology, empty and fluid-filled cylindrical shells with ring supports are ana-

lyzed and the results are compared with experimental and other numerical values found in

literature. The stainless steel and nickel are used for structuring such types of shells. Stainless steel

and nickel are used in its external and internal surfaces respectively for Category- I (C-I) CS

structure, while for Category-II (C-II) cylindrical shell, stainless steel and nickel are taken for

constituting its internal and external surfaces respectively. At temperature 300 K, the material

properties for stainless steel and nickel of functionally graded cylindrical shell are: E, v , r for

nickel are 2:05098� 1011N=m2, 0.31, 8900 kg=m3 and stainless steel are 2:07788� 1011N=m2,

0.317756 and 81, 666N=m3.

A few comparisons of analytical frequencies for isotropic cylindrical shells are exhibited to

validate the present Galerkin technique. As a first example, the lowest dimensionless fre-

quency Ω ¼ ωR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ν
2ð Þr=E

p

of a simply supported empty cylinder are compared with the

solution derived using generalized differential quadrature method (DQM) by Loy et al. [2] as

shown in Table 1. They are varied with circumferential wave mode, n for axial wave number

m = 1. There is an excellent agreement is seen between two sets of frequency parameters results

as the percentage difference is negligible.

As another example, the natural frequency of a simply supported empty cylinder is compared

with Loy et al. [3], Ansari et al. [30] and Warburton [35] as shown in Figure 2(a). They are varied

with axial wave number, m for circumferential wave mode, n = 2, 3. For the same shell, the

present results for a fluid-filled shell are compared with those numerical results obtained by

Gonçalves and Batista [10], Gonçalves et al. [11] and obtained experimentally by Gasser [12] in

Figure 2(b). They are varied with circumferential wave mode, n for axial wave number, m = 1.

There is an excellent agreement is seen between two sets of frequency parameters results.
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When n = 2, 3, m = 1, the present values are 2046.4, 2199.0 and the values of Loy et al. [3] are

2050.7, 2204.0 which is good agreement between each other. Figure 2(b) exhibits a good

coincidence between respective counters of the frequencies. The values at n = 8, 9 are less

significant and on enhancing the value of n, the present numerical values are smaller than

those of Gonçalves and Batista [10] and Gonçalves et al. [11] and Gasser [12]. This difference is

the result of two separate analytical techniques.

4.1. Frequency analysis of fluid-filled cylindrical shell

Figure 3(a) reveals variations of natural frequencies (Hz) for a CS including fluid against

L/R for circumferential wave modes n = 1, 2, 3, 4, 5 and the longitudinal wave mode, m = 1.

n Loy et al. [2] Present Difference %

1 0.016101 0.016102 0.006

2 0.009382 0.009383 0.010

3 0.022105 0.022106 0.004

4 0.042095 0.042097 0.004

5 0.068008 0.068009 0.001

6 0.099730 0.099732 0.002

7 0.137239 0.137241 0.001

8 0.180527 0.180528 0.000

9 0.229594 0.229596 0.000

10 0.284435 0.284436 0.000

Table 1. Comparison of frequency parameterΩ ¼ ωR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2ð Þr=E
p

for a simply supported CS (m ¼ 1, L=R ¼ 20, h=R ¼ 0:01,

ν ¼ 0:3).
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Figure 2. (a) Comparison of natural frequencies (Hz) for a simply supported CS (L = 8 in, h = 0.1 in, R = 2 in, E = 30 � 106

lbf in�2, ν = 0.3, r = 7.35 � 10�4 lbf s2 in�4). (b) Comparison of natural frequencies (Hz) for a fluid-filled CS (m = 1,

L = 0.41 m, h = 0.001 m, R = 0.3015 m, E = 2.1 � 1011 N/m2, v = 0.3, r = 7850 kg/m3).
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The value of length-to-radius ratio is composed as 1 ≤L=R ≤ 20, the values of L=R ¼ 1, at CWN:

n = 1, 2, 3, 4, 5 are 325.625, 252.019, 151.816, 132.818, 99.128 and L=R ¼ 20 are 6.2054, 2.3505,

2.8798, 6.3196, 10.0948. For the wave mode, n = 1, 2, 3, 4, 5 as L=R is made to grow i.e., the shell

becomes longer and longer, the frequency reduces for each tangential wave mode.

Now the values of length-to-radius ratio 1 ≤L=R ≤ 20, at CWN: n = 1, the frequencies are

325.675, 220.745, 99.005, 33.693, 16.348, 10.770, 6.2054 and at CWN: n = 5 are 99.128, 33.017,

13.756, 10.3603, 10.1506, 10.1148, 10.0948 respectively. These results show that, on increasing

the values of L=R the frequencies reduce to each CWN mode [36]. Figure 3(b) demonstrates

variations of natural frequencies (Hz) for a CS enclosing fluid versus the h=R for the tangential

wave modes, n = 1, 2, 3, 4, 5 and the longitudinal wave mode, m = 1. The value of height-to-

radius ratio is composed as 0:002 ≤ h=R ≤ 0:05, the values of h=R = 0.002, at CWN: n = 1, 2, 3, 4, 5

are 3.36929, 4.1911, 5.0052, 4.5812, 5.4979 and h=R ¼ 0:05, are 5.6977, 19.6873, 35.4274, 79.3621,

126.739 respectively. As h=R is made to increase i.e., the shell gets thicker and thicker, the

frequency increases. Now the values of height-to-radius ratio 0:002 ≤ h=R ≤ 0:05, at CWN: n = 1,

the frequencies are 3.36929, 3.7929, 4.6937, 4.9046, 5.6977 and at CWN: n = 5 are 5.4979,

10.3603, 50.7402, 76.0671, 126.7139. As h=R is made to increase i.e., these results shows that

the frequency increases very slowly for n = 1 but for higher values of n, there is seen an

appreciable increments in frequency values with each tangential wave mode. Previous study

reveals that when the value of h=R increases then frequencies also increases [37].

4.2. Frequency analysis of fluid-filled cylindrical shells with ring support

In this section, frequency analysis for an isotropic CS enclosing fluid is performed by attaching

some ring supports. These rings are located at some distance from one end of a cylindrical shell

as shown in Figure 4.
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Figure 3. Variations of natural frequency (a) for fluid-filled CS against L=R. (m = 1, h = 0.004 m, R = 1 m, E = 2.1 � 1011 N/

m2, v = 0.3, r = 7850 kg/m3, rf = 1000 kg/m3) (b) for fluid-filled CS with h=R (m = 1, L = 8 m, R = 1 m, E = 2.1 � 1011 N/m2,

v = 0.3, r = 7850 kg/m3, rf = 1000 kg/m3).
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In Figure 5(a) variations of natural frequencies (Hz) for a CS containing fluid with ring supports

versus L=R are demonstrated for three positions of the ring supports at a = 0.3L, 0.5L, L. The

value of L=R is taken as 1 ≤L=R ≤ 20, when L=R at ring support a = 0.3L, 0.5L, Lwithout fluid, the

frequencies are 790.31, 863.378, 745.085 and L=R = 20 the values are 420.639, 516.775, 208.819

and now with fluid at L=R = 1 the values are 352.975, 362.764, 314.385 and L=R = 20, the values

are 187.549, 217.132, 86.109 respectively. There is a substantial decrease in frequency values as

the shell length gets higher [36]. Influence of fluid on vibration frequency is seen significantly

visible that reduced them approximately to (40~50%). In Figure 5(b) natural frequencies (Hz)

for a CS containing fluid without and with ring supports are exhibited with h=R. The value of

h=R is taken as: 0:002 ≤ h=R ≤ 0:05, when h=R = 0.002 at ring support a = 0.3L, 0.5L, L without

fluid are 413.2180, 548.4688, 215.4291 and h/R = 0.05 the values are 413.3080, 548.4888, 215.5019

respectively. Now with fluid at h=R = 0.002 the values are 273.6543, 365.6459, 144.5833 and h=R

= 0.05, the values are 273.7139, 365.6592, 144.6321 respectively. The ring supports are located at

a = 0.3L, 0.5L, L. It is observed that frequencies enhance minutely for the thicker CSs [37]. Again

the frequency has been considerably reduced when the fluid is added. From Figure 5(a) and (b),

it is observed that in both the cases, without fluid and with fluid for L=R and h=R, the value of

ring support a = 0.3Lwhich is sandwich between a = 0.5L, L. It is seen that the influences of ring

supports and fluid terms are converse to each other. The ring supports increase the frequencies

whereas the fluid loaded terms lower them [32–34].

4.3. Frequency analysis of empty and fluid-filled cylindrical shells with ring supports

It is noted that the natural frequencies of the shells have varied by the location of ring support

in the shell and this change also varies WOF and WF as shown in Figure 6(a)–(d). It is evident

Figure 4. FGM shell with two ring supports (Ansari et al. [30]).

Computational Fluid Dynamics - Basic Instruments and Applications in Science346



from these figures that when the values of a 0 < a < 0:5ð Þ increases then the natural frequen-

cies also increases and a ¼ 0:5L, it reaches its peak value but for 0:5L < a < 0:1L, on increasing

the value of a, it begins to decrease and rust itself as bell shape symmetric curve. It is clear seen

that when the ring support is positioned at the center of the fluid-filled cylindrical shell, the

natural frequency attains its extreme value; it is observed that the natural frequency decreases

as the ring supports shifts from center toward right/left side of the fluid-filled cylindrical shell.

Thus, when different exponent is adopted, the frequency curve is also symmetrical about the

center of fluid-filled cylindrical shell for simply supported symmetric end condition imposed

on the both shell ends.

In Figure 6(a), variations of natural frequencies (Hz) with locations of the ring supports are

listed with ring supports for WOF and WF. The ring support is composed as 0 ≤ a ≤L and for

the values at a ¼ 0 for WOF and WF are 215.429, 140.665 and at a ¼ L the values are 215.429,

146.095 respectively. At 0:4L < a < 0:6L means a ¼ 0:5L for WOF and WF have a peak value

548.468, 548.358 but for a ¼ 0:4L the values are 518.609, 496.419 and a ¼ 0:6L are 518.609,

504.140 very closed to each other. In each case the shell frequencies goes up with the position

of the ring supports to the highest values at the mid of the shell and then start to lower down to

gain their initial values. It is noticed that the fluid addition has made frequency to decrease.

From the previous data, the shell frequencies are affected highly as the fluid quantities [11, 31–

35] and ring supports are appended [2, 5, 27, 36]. A beam type vibration of CSs crops up when

the addition of ring supports are made.

Figure 6(b) and (c) display the comparisons of variations of natural frequencies (Hz) with ring

supports for WOF and WF for C-I and C-II respectively. The ring support is composed as

0 ≤ a ≤ L and for volume fraction law, the exponent p = 0.5, 1, 15 is adopted, the values at a ¼ 0

for WOF andWF are 207.058, 135.199 (p = 0.5), 205.346, 134.082 (p = 1), 201.012, 131.252 (p = 15)

and at a ¼ L the values are 207.058, 140.46 (p = 0.5), 205.346, 139.255 (p = 1), 201.012, 136.316

(p = 15) for C-I and for C-II: 204.048, 133.234 (p = 0.5), 205.729, 134.332 (p = 1), 210.311, 137.324

(p = 15) and at a ¼ L the values are 204.048, 138.375 (p = 0.5), 205.729, 139.515 (p = 1), 210.311,
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Figure 5. Variations of natural frequencies (Hz) for a WOF and WF cylindrical shell with ring support against (a) L=R (b)

h=R (n = 1, m = 1, L = 8 m, h = 0.004 m, R = 1 m, E = 2.1 � 1011 N/m2, v = 0.3, r = 7850 kg/m3, rf = 1000 kg/m3).
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142.622 (p = 15) respectively. For C-I, at 0:4L < a < 0:6Lmeans a ¼ 0:5L have a extreme value of

frequency 523.924, 523.819 (p = 0.5), 519.591, 519.487 (p = 1), 508.626, 508.524) (p = 15), for both

WOF and WF but for a ¼ 0:4L the values of frequencies are 496.188, 474.957 (p = 0.5), 492.085,

471.030 (p = 1), 481.699, 461.088 (p = 15) and a ¼ 0:6L are 496.188, 482.345 (p = 0.5), 492.085,

478.356 (p = 1), 481.699, 468.260 (p = 15) very closed to each other for both WOF and WF. For C-

II: at 0:4L < a < 0:6L means a ¼ 0:5L have a maximum frequency value 513.823, 513.720

(p = 0.5), 518.059, 517.955 (p = 1), 529.595, 488.154 (p = 15) for both WOF and WF but for

a ¼ 0:4L the values are 487.212, 466.366, 491.226, 470.208 (p = 1), 502.164, 480.678 (p = 15) and
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Figure 6. Variation of natural frequencies (Hz) (a) against the positions of the ring supports for WOF and WF cylindrical

shell. (n = 1, m = 1, L = 8 m, h = 0.004 m, R = 1 m, E = 2.1 � 1011 N/m2, v = 0.3, r = 7850 kg/m3, rf = 1000 kg/m
3) (b) versus the

positions of ring supports for WOF and WF cylindrical shell with ring support: Category-I (n = 1, m = 1, L = 8 m,

h = 0.004 m, R = 1 m) (c) Category-II (d) Category-I and II.
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a ¼ 0:6L are 487.212, 473.619, 491.226, 477.521 (p = 1) 502.164, 488.154 (p = 15) very closed to

each other for both WOF andWF. In both cases, the frequencies first rise, attain their maximum

at the mid position and then fall down to original values at the other shell end. There is

observed a reduction in frequency values owing to fluid term induction [11, 32–34]. It is

concluded that the maximum point and other relative value of C-II are bit smaller than that of

corresponding value of C-I. This conclusion is also shown in Figure 6(d) where C-I and C-II are

illustrated in one graph. In Figure 6(d) variations of frequencies for two categories with ring

supports for fluid-filled for C-I and C-II are cataloged with the locations of the ring supports.

The ring support is composed for fluid-filled as 0 ≤ a ≤L, for volume fraction law, the exponent

p = 0.5, 1, 15 is adopted, the values at a ¼ 0 are 135.99, 133.234 (p = 0.5), 134.082, 132.332 (p = 1)

131.252, 130.324 (p = 15) and at a ¼ L for category-I and for category-II, the values are 140.416,

138.375 (p = 0.5), 139.255, 139.515 (p = 1), 136.316, 133.622 (p = 15). For C-I, C-II at 0:4L < a < 0:6L

means a ¼ 0:5 have a maximum value 513.819, 513.720 (p = 0.5), 519.487, 517.955 (p = 1), 508.524,

505.489 (p = 15) but for a ¼ 0:4L the values are 474.957, 466.366 (p = 0.5), 471.030, 470.208 (p = 1),

461.088, 450.678 (p = 15) and a ¼ 0:6 are 482.342, 473.342 (p = 0.5), 478.356, 477.521 (p = 1),

468.260, 466.154 (p = 15) respectively. Here for C-I cylindrical shells, frequencies are some bit

higher for those of C-II ones [32–34]. The effects of fluid-filled cylindrical shell with ring

supports are perceived to be very conspicuous in the variation of natural frequencies.

5. Summary

Theoretical vibration analysis of cylindrical shells (CSs) has a significant importance in applied

mathematics and mechanics in view of their practical uses. Here the shell problem has been

associated with investigation vibrations of cylindrical shells with ring supports. They shells

have been supposed to be constructed from functionally graded materials. They materials are

advanced and smart for their physical properties. Moreover these shells have been assumed to

contain fluid. Here the Galerkin technique is employed to obtain the shell frequency equation.

Effect of ring supports on shell vibration is inducted by a polynomial function which has

degree equal to the number of ring supports. From the study of results, it is observed that

vibration frequencies of cylindrical shells decrease significantly when the fluid loaded terms

are appended. However their variations are alike to that behavior which is noticed for the

cylindrical shells not containing fluid and attachment of ring supports boost much the vibra-

tion frequencies. For functionally graded material cylindrical shells, variations of frequencies

with the circumferential wave modes for length-to-radius ratio, height-to-radius ratio for fluid-

filled cylindrical shell and also for fluid-filled cylindrical shell with ring supports has been

analyzed. It is seen that the influences of ring supports and fluid terms are converse to each

other. The ring supports increase the frequencies whereas the fluid loaded terms lower them.

However, the increments and decrements in the shell frequency depend upon the order of

functionally graded material constituents forming a cylindrical shell. The induction of fluid-

filled with ring support on the cylindrical shell has a prominent effect on the natural frequency

as compared to the shell frequency without fluid attached with ring support. Different position

of ring supports with and without fluid with various exponent law for category-I, II or both are

analyzed. It is concluded that in both cases, the frequencies first rise, attain their maximum

values at the mid position and then fall down to original values at the other shell end.
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Moreover, there is observed a reduction in frequency values owing to fluid term induction. It is

also concluded that the maximum point and other relative value of category-II are bit smaller

than that of corresponding value of category-I An extension of this analysis procedure can be

performed to investigate vibrations of rotating fluid isotropic and functionally graded cylin-

drical shells with ring supports.

List of symbols

Aij Extensional stiffness

Bij Coupling stiffness

Dij Bending stiffness

E Young’s modulus

h Shell thickness

L Shell length

v Poisson’s ratio

ω Natural angular frequency

dij i; j ¼ 1; 2; 3ð Þ Shell parameters

q Acoustic pressure

c Speed of sound in the fluid

Jn krrð Þ Bessel’s function of first kind

cf Speeds of the sound in fluid – filled cylindrical shell

Ω Non-dimensional frequency parameter

E1, E2 Young’s moduli

ν1, ν2 Poisson’s ratios.

r1, r2 Mass densities

Efgm, vfgm, rfgm Effective material quantities

T Kelvin scale

Cr Material properties

Vr Volume fractions

k Number of ring supports

R0, R1 Outer and inner radii of the shell

h/R Thickness to radius ratio
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L/R Length to radius ratio

n Circumferential wave number

m Half- axial wave number

C Material property

C0, C�1, C1, C2, C3 Coefficients of temperature

p Volume fraction law or Power law exponent

Qij Reduced stiffness

R Shell radius

T(K) Temperature function of Kelvin

x Axial coordinate

Ψ Circumferential coordinate

z Radial coordinate or thickness variable

u(x, Ψ , t) Deformation displacement functions in x direction

v(x, Ψ , t) Deformation displacement functions in Ψ direction

w(x, Ψ , t) Deformation displacement functions in z direction

V fi Volume fraction

r Mass density of shell material

rt Mass density per unit length

S11, S22, S12 Surface curvatures

kr Radial wave number

km Axial wave number

cL Speeds of the sound in the empty cylindrical shell

rf Indicates the density of the fluid density

pm, qm and rm Vibration amplitudes in the x, Ψ and z directions

Abbreviations

CSs Cylindrical shells

FGM Functionally graded material

WF With fluid
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FLT Fluid loading term

C-I Category-I

WPA Wave propagation approach

ODEs Ordinary differential equations

PDEs Partial differential equations

FFCS Fluid-filled cylindrical shell

WOF Without fluid

CWN Circumferential wave number

C-II Category-II

FEM Finite element method
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