
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

Chapter 3

Path Planning in the Local-Level Frame for Small
Unmanned Aircraft Systems

Laith R. Sahawneh and Randal W. Beard

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.71895

Abstract

In this chapter, we propose a 3D path planning algorithm for small unmanned aircraft
systems (UASs). We develop the path planning logic using a body fixed relative coordi-
nate system which is the unrolled, unpitched body frame. In this relative coordinate
system, the ownship is fixed at the center of the coordinate system, and the detected
intruder is located at a relative position and moves with a relative velocity with respect
to the ownship. This technique eliminates the need to translate the sensor’s measure-
ments from local coordinates to global coordinates, which saves computation cost and
removes the error introduced by the transformation. We demonstrate and validate this
approach using predesigned encounter scenarios in the Matlab/Simulink environment.

Keywords: small unmanned aircraft systems, path planning, collision avoidance,
cell decomposition, Dijkstra’s search algorithm

1. Introduction

The rapid growth of the unmanned aircraft systems (UASs) industry motivates the increasing

demand to integrate UAS into the U.S. national airspace system (NAS). Most of the efforts

have focused on integrating medium or larger UAS into the controlled airspace. However,

small UASs weighing less than 55 pounds are particularly attractive, and their use is likely to

grow more quickly in civil and commercial operations because of their versatility and rela-

tively low initial cost and operating expense.

Currently, UASs face limitations on their access to the NAS because they do not have the

ability to sense-and-avoid collisions with other air traffic [1]. Therefore, the Federal Aviation

Administration (FAA) has mandated that UASs were capable of an equivalent level of safety to

the see-and-avoid (SAA) required for manned aircraft [2, 3]. This sense-and-avoid (SAA)

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

mandate is similar to a pilot’s ability to visually scan the surrounding airspace for possible

intruding aircraft and take action to avoid a potential collision.

Typically, a complete functional sense-and-avoid system is comprised of sensors and associ-

ated trackers, collision detection, and collision avoidance algorithms. In this chapter, our main

focus is on collision avoidance and path planning. Collision avoidance is an essential part of

path planning that involves the computation of a collision-free path from a start point to a goal

point while optimizing an objective function or performance metric. A robust collision avoid-

ance logic considers the kinematic constraints of the host vehicle, the dynamics of the

intruder’s motion, and the uncertainty in the states estimate of the intruder. The subject of path

planning is very broad, and in particular collision, avoidance has been the focus of a significant

body of research especially in the field of robotics and autonomous systems. Kuchar and Yang

[4] provided a detailed survey of conflict detection and resolution approaches. Albaker and

Rahim [5] conducted a thorough survey of collision avoidance methods for UAS. The most

common collision avoidance methods are geometric-based guidance methods [6–13], potential

field methods [14, 15], sampling-based methods [16, 17], cell decomposition techniques, and

graph-search algorithms [18–20].

Geometric approaches to collision avoidance are straightforward and intuitive. They lend

themselves to fast analytical solutions based on the kinematics of the aircraft and the geometry

of the encounter scenario. The approach utilizes the geometric relationship between the

encountering aircraft along with intuitive reasoning [8, 21]. Generally, geometric approach

assumes a straight-line projection to determine whether the intruder will penetrate a virtual

zone surrounding an ownship. Then, the collision avoidance can be achieved by changing the

velocity vector, assuming a constant velocity model. Typically, geometric approaches do not

account for uncertainty in intruder flight plans and noisy sensor information.

The potential field method is another widely used approach for collision avoidance in robotics.

A typical potential field works by exerting virtual forces on the aircraft, usually an attractive

force from the goal and repelling forces from obstacles or nearby air traffic. Generally, the

approach is very simple to describe and easy to implement. However, the potential field

method has some fundamental issues [22]. One of these issues is that it is a greedy strategy

that is subject to local minima. However, heuristic developments to escape the local minima

are also proposed in the literature [23]. Another problem is that typical potential field

approaches do not account for obstacle dynamics or uncertainly in observation or control. In

the context of airborne path planning and collision avoidance, Bortoff presents a method for

modeling a UAS path using a series of point masses connected by springs and dampers [24].

This algorithm generates a stealthy path through a set of enemy radar sites of known locations.

McLain and Beard present a trajectory planning strategy suitable for coordinated timing for

multiple UAS [25]. The paths to the target are modeled using a physical analogy of a chain.

Similarly, Argyle et al. present a path planner based on a simulated chain of unit masses placed

in a force field [26]. This planner tries to find paths that go through maxima of an underlying

bounded differentiable reward function.

Sampling-based methods like probability road maps (PRM) [16] and rapidly exploring ran-

dom trees (RRTs) [17] have shown considerable success for path planning and obstacle

Kinematics56

avoidance, especially for ground robots. They often require significant computation time for

replanning paths, making them unsuitable for reactive avoidance. However, recent extensions

to the basic RRT algorithm, such as chance-constrained RRT* [27] and close-loop RRT [28],

show promising results for uncertain environments and nontrivial dynamics [28–30]. Cell

decomposition is another widely used path planning approach that partitions the free area of

the configuration space into cells, which are then connected to generate a graph [20]. Generally,

cell decomposition techniques are considered to be global path planners that require a priori

knowledge of the environment. A feasible path is found from the start node to the goal node by

searching the connectivity graph using search algorithms like A* or Dijkstra’s algorithm [18].

The proposed approach in this work will consider encounter scenarios such as the one

depicted in Figure 1, where the ownship encounters one or more intruders. The primary focus

of this work is to develop a collision avoidance framework for unmanned aircraft. The design,

however, will be specifically tailored for small UAS. We assume that there exists a sensor(s)

and tacking system that provide states estimate of the intruder’s track.

2. Local-level path planning

A collision event occurs when two aircraft or more come within the minimum allowed dis-

tance between each other. The current manned aviation regulations do not provide an explicit

value for the minimum allowed distance. However, it is generally understood that the mini-

mum allowed or safe distance is required to be at least 500 ft. to 0.5 nautical miles (nmi) [21, 31].

For example, the near midair collision (NMAC) is defined as the proximity of less than 500 ft.

between two or more aircraft [32]. Similarly and since the potential UAS and intruder aircraft

ownship

Intruder Aircraft

virtual collision volume

potential collision site

possible avoidance

maneuver

Aircraffttfff

Figure 1. The geometry of an encounter scenario.

Path Planning in the Local-Level Frame for Small Unmanned Aircraft Systems
http://dx.doi.org/10.5772/intechopen.71895

57

cover a wide range of vehicle sizes, designs, airframes, weights, etc., the choice of a virtual

fixed volume boundary around the aircraft is a substitute for the actual dimensions of the

intruder.

As shown in Figure 2, the choice for this volume is a hockey-puck of radius ds and height hs that

commonly includes a horizontal distance of 500 ft. and a vertical range of 200 ft. [1, 33, 34].

Accordingly, a collision event is defined as an incident that occurs when two aircraft pass less

than 500 ft. horizontally and 100 ft. vertically.

In this work, we develop the path planning logic using a body-centered relative coordinate

system. In this body-centered coordinate system, the ownship is fixed at the center of the

coordinate system, and the intruder is located at a relative position pr and moves with a

relative velocity vr with respect to the ownship [35].

We call this body-centered coordinate frame the local-level frame because the environment is

mapped to the unrolled, unpitched local coordinates, where the ownship is stationary at the

center. As depicted in Figure 3, the origin of the local-level reference is the current position of

the ownship. In this configuration, the x-axis points out the nose of the unpitched airframe, the

y-axis points points out the right wing of the unrolled airframe, and the z-axis points down

forming a right-handed coordinate system. In the following discussion, we assume that the

collision volume is centered at the current location of the intruder. A collision occurs when the

origin of the local-level frame penetrates the collision volume around the intruder.

collision volume

500

200 UASft

ft

collision volume

UAS

Figure 2. A typical collision volume or protection zone is a virtual fixed volume boundary around the aircraft.

0 200 400 600 800 1000 1200
-150

-100

-50

0

50

100

150

Heading direction (m)

H
ei

g
h
t

(m
)

-1000
-500

0
500

1000

-1000

-500

0

500

1000

-1000

-500

0

500

1000

Right wing direction (m)
Heading direction (m)

H
e
ig

h
t

(m
)

-1000 -500 0 500 1000
-1000

-800

-600

-400

-200

0

200

400

600

800

1000

)
m(

n
oitceri

d
g

ni
dae

H

Right wing direction (m)

Collision volume

centered at intruder

Top view 3D view

Goal point

Ownship

Intruder

Avoidance

path

Side view

Figure 3. Local-level reference frame.

Kinematics58

The detection region is divided into concentric circles that represent maneuvers points at

increasing range from the ownship as shown in Figure 4, where the radius of the outmost

circle can be thought of as the sensor detection range. Let the region in the space covered by the

sensor be called the workspace. Then, this workspace is discretized using a cylindrical grid in

which the ownship is commanded to move along the edges of the grid. The result is a directed

weighted graph, where the edges represent potential maneuvers, and the associated weights

represent the maneuver cost and collision risk. The graph can be described by the tuple

G N ;E;Cð Þ, where N is a finite nonempty set of nodes, and E is a collection of ordered pairs

of distinct nodes fromN such that each pair of nodes in E is called a directed edge or link, and

C is the cost associated with traversing each edge.

The path is then constructed from a sequence of nonrepeated nodes n1;n2;⋯;nNð Þ such that

each consecutive pair ni;niþ1ð Þ is an edges in G. Let the detection range dr be the radius of the

outermost circle, and r be the radius of the innermost circle so that dr ¼ mr. As shown in

Figure 6, let Ll, l ¼ 1, 2,⋯, m be the lth level curve of the concentric circles. Assume that the

level curves are equally partitioned by a number of points or nodes such that any node on the

lth level curve, Ll connects to a predefined number of nodes k in the next level, that is, in the

forward direction along the heading axis as depicted in Figure 4. The nodes on the graph can

be thought of as predicted locations of the ownship over a look-ahead time window. Addi-

tionally, we assume that only nodes along the forward direction of the heading axis, that is,

x ¼ 0 connect to nodes in the vertical plane. This assumption allows to command the aircraft to

climb or descend by connecting to nodes in the vertical plane as shown in Figure 4. Let the first

level curve of the innermost circle be discretized into L1j j ¼ kþ 2 nodes including nodes in the

vertical plane. Then, using the notation Aj j to denote the cardinality of the discrete set A, the

number of nodes in the lth level curve is given by

-1000 -500 0 500 1000
-1000

-800

-600

-400

-200

0

20

400

600

800

1000

H
ea

d
in

g
 d

ir
ec

ti
o
n
 (

m
)

Right wing direction (m)

Goal point

Intruder

*

Top view Side view

Climb maneuver

Descend maneuver

Figure 4. Discretized local-level reference workspace. The three concentric circles represent three maneuvers points.

Path Planning in the Local-Level Frame for Small Unmanned Aircraft Systems
http://dx.doi.org/10.5772/intechopen.71895

59

Llj j ¼
kþ 2 if l ¼ 1,

2 Ll�1j j þ 2lþ 1 if l ¼ 2, 3,⋯, m,

�

(1)

where the total number of nodes is Nj j ¼
Pm

l¼1 Llj j. For example, assuming that the start node

is located at the origin of the reference map and given that k ¼ 3, that is, allowing the ownship

to fly straight or maneuver right or left. The total number of nodes in the graph including the

start and destination node is given by

Nj j ¼
X

mþ1

l¼1

2l þ 2l� 3

 !

þ 1: (2)

Figure 5 shows an example of a discretized local-level map. In this example, k ¼ 3 and m ¼ 3,

and the total number of nodes in the graph Nj j is 39.

Assuming that the ownship travels between the nodes with constant velocity and climb rate,

the location of the ith node at the lth level curve, and ni, l in the horizontal plane of the graph is

given by

ni, l ¼ lr sinψLl

j ; lr cosψLl

j ; 0
h iΤ

, (3)

where ψl
j ¼

jψd

2 l�1ð Þ and j ¼ � Llj j�1
2 ;� Llj j�1

2 þ 1;⋯; Llj j�1
2 � 1; Llj j�1

2

n o

and ψd is the allowed head-

ing. In the vertical plane, the location of nodes is nj, l ¼ 0; 0;�jlhd
� �Τ

, where j ¼ 1; 2;⋯; lf g and

hd are the altitude change at each step as shown in Figure 6.

For example, if ψd ¼ π=4, hd ¼ 50 m, r ¼ 500 m, k ¼ 3, and L1j j ¼ 5, then we have

j ¼ �1; 0; 1f g, j ¼ �1; 1f g, ψ1
j ¼ �π=4; 0;�π=4f g, and the locations of nodes at L1 in the

Figure 5. Example of discretized local-level map. (a) Top view: location and index of nodes and (b) side view: location

and index of nodes.

Kinematics60

horizontal plane are �500 sinπ=4; 500 cosπ=4; 0ð ÞΤ ,
n

0; 500; 0ð ÞΤ , 500 sinπ=4; 500 cosπ=4; 0ð ÞΤg,

and in the vertical plane are 0; 0; 50ð ÞΤ ; 0; 0;�50ð ÞΤ
n o

.

The main priority of the ownship where it is under distress is to maneuver to avoid predicted

collisions. This is an important note to consider when assigning a cost of each edge in the

resulting graph. The cost associated with traveling along an edge is a function of the edge

length and the collision risk. The cost associated with the length of the edge ei, iþ1 that connects

between the consecutive pair nodes ni;niþ1ð Þ is simply the Euclidean distance between the

nodes ni and niþ1 expressed as

CL ei, iþ1ð Þ ¼ niþ1 � nik k: (4)

The collision cost for traveling along an edge is determined if at any future time instant, the

future position of the ownship along that edge is inside the collision volume of the predicted

location of an intruder. An exact collision cost computation would involve the integration of

collision risk along each edge over the look-ahead time window τ∈ t; tþmT½ �.

A simpler approach involves calculating the collision risk cost at several locations along each

edge, taking into account the projected locations of the intruder over the time horizon τ.

Assuming a constant velocity model, a linear extrapolation of the current position and velocity

of the detected intruders are computed at evenly spaced time instants over the look-ahead time

window. The look-ahead time interval is then divided into several discrete time instants. At

each discrete time instant, all candidate locations of the ownship along each edge are checked

to determine whether it is or will be colliding with the propagated locations of the intruders.

For the simulation results presented in this chapter, the collision risk cost is calculated at three

Side view

, = sin , cos , 0
⊤

ℒ1 ℒ2 ℒ3

123

Top view

̅, = 0,0, ̅ ℎ ⊤

̅, = 0,0, − ̅ ℎ ⊤

ℎ

Figure 6. Nodes location in the local-level reference frame.

Path Planning in the Local-Level Frame for Small Unmanned Aircraft Systems
http://dx.doi.org/10.5772/intechopen.71895

61

points along each edge in G. If vo is the speed of the ownship, then the distance along an edge

is given by voT, where T ¼ r=vo. The three points are computed as

p1 ¼ ni þ voTs
niþ1 � ni

niþ1 � nik k
, (5)

p2 ¼ p1 þ voTs
niþ1 � ni

niþ1 � nik k
, (6)

p3 ¼ p2 þ voTs
niþ1 � ni

niþ1 � nik k
, (7)

where Ts ¼ T=3. Let the relative horizontal and vertical position of the intruder with respect to

the ownship at the current time t be pr tð Þ and prz tð Þ, respectively. Define the collision volume as

C pr tð Þ
� �

¼ d∈R2
: pr tð Þ
�

�

�

�� d ≤ ds and h∈R : prz � h
�

�

�

�

�

� ≤ hs=2
n o

: (8)

The predicted locations of each detected intruder over time horizon T at three discrete time

samples Ts are

pr3D
tþ 1þ 3 l� 1ð Þð ÞTsð Þ ¼ pr3D

tð Þ þ vr3D tð Þ 1þ 3 l� 1ð Þð ÞTs, (9)

pr3D
tþ 2þ 3 l� 1ð Þð ÞTsð Þ ¼ pr3D

tð Þ þ vr3D tð Þ 2þ 3 l� 1ð Þð ÞTs, (10)

pr3D
tþ 3þ 3 l� 1ð Þð ÞTsð Þ ¼ pr3D

tð Þ þ vr3D tð Þ 3þ 3 l� 1ð Þð ÞTs, (11)

where pr3D
tð Þ ¼ pr tð Þ; prz tð Þ

h iΤ

∈R
3 and vr3D tð Þ ¼ vr tð Þ; vrz tð Þ½ �Τ ∈R3 be the 3D relative position

and velocity of the intruder with respect to the ownship in the relative coordinate system,

where vr tð Þ and vrz tð Þ are the relative horizontal velocity and vertical speed at the current time t.

In Eqs. (9)–(11), if ei, iþ1 is the current edge being evaluated, then the node niþ1 determines the

value of l. In other words, if niþ1 ∈L1, then l ¼ 1. For example, if we are to compute the three

points along the edge e1,2 in Eqs (5)–(7), then n2 ∈L1 and l ¼ 1. Using the definition of the

binary cost function, the collision risk cost associated with the ei, iþ1 edge with respect to each

detected intruder is given by the expression

Ccol int; ei, iþ1ð Þ ¼
∞ if any of p1,p2, or p3 ∈C pr3D

tþ ℓ þ 3 l� 1ð Þð ÞTsð Þ
	

,

0 otherwise,

(

(12)

where ℓ ¼ 1; 2; 3f g. In Eq. (12), the ∞ or the maximum allowable cost is assigned to any edge

that leads to a collision, basically eliminating that edge and the path passing through it. The

total collision risk associated with the ith edge is given by

Ccol ei, iþ1ð Þ ¼
X

M

int¼1

Ccol int; ei, iþ1ð Þ, (13)

where M is the number of detected intruders.

Kinematics62

A visual illustration of the collision risk computation is shown in Figure 7. The propagated

collision volume of a detected intruder and the candidate locations of the ownship over the

first-time interval tþ Ts; tþ 3Ts½ � both in the horizontal and vertical plane is depicted in

Figure 7a and b. Clearly, there is no intersection between these candidate points the ownship

may occupy and the propagated locations of the collision volume over the same interval. Then,

according to Eq. (13), the cost assigned to these edges is zero. Next, all candidate locations of

the ownship along each edge over the second time interval tþ 4Ts; tþ 6Ts½ � are investigated.

As shown in Figure 7c, edges e2,7, e2,8, and e2,9 intersect with the predicted intruder location at

time tþ 4TS and tþ 5TS, respectively. Similarly, edges e3,15 and e3,16 in the horizontal plane

intersect with the predicted intruder location at time tþ 4TS as shown in Figure 7d. Accord-

ingly, the maximum allowable costs will be assigned to these edges, which eliminate these

edges and the path passing through them. All the candidate locations of the ownship over the

time interval tþ 7Ts; tþ 9Ts½ � do not intersect with the predicted locations of the intruder as

shown in Figure 7e and f. Therefore, by the time, the ownship will reach these edges the

detected intruder will be leaving the map, and consequently, a cost of zero is assigned to edges

belonging to the third level curve L3.

To provide an increased level of robustness, an additional threat cost is added to penalize

edges close to the propagated locations of the intruder even if they are not within the collision

volume. At each discrete time instant, we compute the distances from the candidate locations

of the ownship to all the propagated locations of the intruders at that time instant. The cost of

collision threat along each edge is then given by the sum of the reciprocal of the associated

distances to each intruder

Cth int; ei, iþ1ð Þ ¼
1

d1
þ

1

d2
þ

1

d3
: (14)

where d1, d2, and d3 are given by

d1 ¼ p1 � pr3D
tþ 1þ 3 l� 1ð Þð ÞTsð Þ

�

�

�

�

�

�
,

d2 ¼ p2 � pr3D
tþ 2þ 3 l� 1ð Þð ÞTsð Þ

�

�

�

�

�

�
,

d3 ¼ p3 � pr3D
tþ 3þ 3 l� 1ð Þð ÞTsð Þ

�

�

�

�

�

�
,

and the total collision risk cost associated with the ith edge with regard to all intruders is given by

Cth ei, iþ1ð Þ ¼
X

M

int¼1

Cth int; ei, iþ1ð Þ: (15)

For example, the edges e1,2, e1,3, e1,4, e1,5, and e1,6 shown in Figure 7a are not intersecting with

the propagated collision volume locations over the first-time interval, yet they will be penalized

based on their distances to the predicated locations of the intruder according to Eq. (15). Note

that edge e1,2 will have greater cost as it is the closest to the intruder among other candidate

edges.

Path Planning in the Local-Level Frame for Small Unmanned Aircraft Systems
http://dx.doi.org/10.5772/intechopen.71895

63

Intruder detected

at time
+

+

+

Candi ns of th

ownshi

+
+

Intruder predicted locations at

time

,

,

,

1

3 10

14

15

16

17

25

5

6

33

34

35

3

3

3

39H
ei

g
h

t
(m

)

Heading Direction (m)

1

+

+

+

Candidate locations

of the ownship

Intruder

predicted

locations

,

,

Intruder detected at time

ntruder predicted

locations at time

+ 4

+

+
+ 4

+

+

Candidate

locations of

the ownship

1 3 10

14

15

16

17

25

5

6

33

34

35

3

3

3

39H
ei

g
h
t

(m
)

Heading Direction (m)

Candidate locations of the ownship

+ 6

+ 5

+

Intruder predicted

locations

H
ei

g
h

t
(m

)

Intrudrr er pre

locations

ee

Intruder detected at time

+
+

+ Candidate locations

of the ownship

Intruder predicted

locations
+

+

+

1 3 10

14

15

16

17

25

5

6

33

34

35

3

3

3

39H
ei

g
h
t

(m
)

Heading Direction (m)

Intruder predicted

locations at time

+

+

+

Candidate locations of the ownship

+
+

+

H
ei

g
h

t
(m

)

der predicted

ons at time

+

+

d

o

d

o

(c) (d)

(e) (f)

(a) (b

Figure 7. Example illustrating the steps to compute the collision risk. In this example, we have k ¼ 3 and m ¼ 3. (a) Top

view: predicted locations of intruder (less transparent circles), and candidate locations of ownship; (b) side view:

predicted locations of intruder (less transparent rectangles), and candidate locations of ownship; (c) predicted locations

of intruder and candidate locations of ownship over time window (t + 4Ts, t + 6Ts); (d) time window (t + 4Ts, t + 6Ts); (e)

time window (t + 7Ts, t + 9Ts); (f) time window (t + 7Ts, t + 9Ts).

Kinematics64

Another objective of a path planning algorithm is to minimize the deviation from the original

path, that is, the path the ownship was following before it detected a collision. Generally, the

path is defined as an ordered sequence of waypoints W ¼ w1,w2,⋯:wf , where

wi ¼ wn, i;we, i;wd, ið ÞΤ ∈R3 is the north-east-down location of the ith waypoint in a globally

known NED reference frame. The transformation from the global frame to the local-level frame

is given by

w
b
i ¼ R

b
g ψo

� �

wi, (16)

where

R
b
g ψo

� �

¼

cosψo sinψo 0

� sinψo cosψo 0

0 0 1

0

B

B

@

1

C

C

A

where ψo is the heading angle of the ownship. Let ws be the location waypoint of the ownship

at the current time instant t and wf ∈W be the next waypoint the ownship is required to

follow. Assuming a straight-line segment between the waypointsws andwf , then any point on

this segment can be described as L ϱð Þ ¼ 1� ϱð Þws þ rwf where ϱ∈ 0; 1½ �, and the minimum

distance between an arbitrary node ni in G can be expressed by [36]

D ws;wf ; ni
� �

≜

D ϱ
∗ð Þ, if ϱ

∗ ∈ 0; 1½ �,

ni �wsk k, if ϱ
∗ < 0,

ni �wf

�

�

�

�, if ϱ
∗ > 1,

8

>

<

>

:

(17)

where

D ϱ
∗ð Þ ¼

ffi

ni �wsk k2 �
ws � nið ÞΤ ws �wf

� �

	
2

ws �wf

�

�

�

�

2

v

u

u

u

t ,

and

ϱ
∗ ¼

ws � nið ÞΤ ws �wf

� �

ws �wf

�

�

�

�

2
:

Then, the cost that penalizes the deviation of an edge in G from the nominal path is given by

Cdev ei, iþ1ð Þ ¼ D ws;wf ; ni
� �

: (18)

If small UASs are to be integrated seamlessly alongside manned aircraft, they may require to

follow right-of-way rules. Therefore, an additional cost can be also added to penalize edges that

violate right-of-way rules. In addition, this cost can be used to favor edges in the horizontal

Path Planning in the Local-Level Frame for Small Unmanned Aircraft Systems
http://dx.doi.org/10.5772/intechopen.71895

65

plane over those in the vertical plane. Since the positive direction of the y-axis in the local-level

frame is the right-wing direction, it is convenient to define right and left maneuvers as the

positive and the negative directions along the right-wing axis, respectively. Let e
!
i ≜niþ1 � ni be

the direction vector associated with the edge ei, iþ1 in G, where ni ≜ xi; yi; zi
� �Τ

∈R3 is the

location of ith node in the local-level reference frame. Let the direction vector e
!

i be expressed

as e
!

i ¼ eix ; eiyeiz

	
Τ

∈R3. We define E≜ eix ; L;R; eizð ÞΤ ∈R4, where eix and eiz are the x and the z

components of e
!

i. The y-component of e
!
i is decomposed into two components: left L and right

R, that are defined by

L, R≜
L ¼ eiy , R ¼ 0 if eiy ≤ 0,

L ¼ 0, R ¼ eiy if eiy > 0:

(

(19)

If we define the maneuvering design matrix to be J ¼ diag 0; cL; cR; cz½ �ð Þ, then the maneuvering

cost associated with each edge is given by

Cm ei, iþ1ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffi

EΤJE

q

, (20)

The costs cL and cR allow the designer to place more or less cost on the left or right edges.

Similarly, cz allows the designer to penalize vertical maneuvers. Multiple values of these cost

parameters may be saved in a look-up table, and the collision avoidance algorithm choses the

appropriate value based on the geometry of the encounter.

The overall cost for traveling along an edge comes from the weighted sum of all costs given as

[35]

C ei, iþ1ð Þ ¼ CL ei, iþ1ð Þ þ Ccol ei, iþ1ð Þ þ k1Cth ei, iþ1ð Þ þ k2Cdev ei, iþ1ð Þ þ k3Cm ei, iþ1ð Þ, (21)

where k1, k2, and k3 are positive design parameters that allow the designer to place weight on

collision risk or deviation from path or maneuvering preferences depending on the encounter

scenario. Once the cost is assigned to each edge in G, then a graph-search method can be used

to find the least cost path from a predefined start point to the destination point. In this work,

we have used Dijkstra’s algorithm.

Dijkstra’s algorithm solves the problem of shortest path in a directed graph in polynomial time

given that there are not any negative weights assigned to the edges. The main idea in Dijkstra’s

algorithm is to generate the nodes in the order of increasing value of the cost to reach them. It

starts by assigning some initial values for the distances from the start node and to every other

node in the graph. It operates in steps, where at each step, the algorithm updates the cost

values of the edges. At each step, the least cost from one node to another node is determined

and saved such that all nodes that can be reached from the start node are labeled with cost

from the start node. The algorithm stops either when the node set is empty or when every node

is examined exactly once. A naive implementation of Dijkstra’s algorithm runs in a total time

complexity of O Nj j
2

	

. However, with suitable data structure implementation, the overall

time complexity can be reduced to O Ej j þ Nj j log 2 Nj jð Þ [23, 35].

Kinematics66

The local-level path planning algorithm generates an ordered sequence of waypoints

Wc ¼ wc1,wc2,⋯,wci. Then, these waypoints are transformed from the relative reference

frame to the global coordinate frame and added to the original waypoints pathW. When the

ownship is avoiding a potential collision, the avoidance waypoints overwrite some or all of the

original waypoints. Next, a path manager is required to follow the waypoints path and a

smoother to make the generated path flyable by the ownship. One possible approach to follow

waypoints path is to transit when the ownship enters a ball around the waypointWi or a better

strategy is to use the half-plane switching criteria that is not sensitive to tracking error [36].

Flyable or smoothed transition between the waypoints can be achieved by implementing the

fillet maneuver or using Dubins paths. For further analysis on these topics, we refer the

interested reader to Ref. [36].

3. Simulation results

To demonstrate the performance of the proposed path planning algorithm, we simulate an

encounter scenario similar to the planner geometry shown in Figure 8. The aircraft dynamics

are simulated using a simplified model that captures the flight characteristics of an autopilot-

controlled UAS. The kinematic guidance model that we considered assumes that the autopilot

controls airspeed, va, altitude, h, and heading angle, ψ. Under zero-wind conditions, the

corresponding equations of motion are given by

_pn ¼ va cosψ, (22)

_pe ¼ va sinψ, (23)

_ψ ¼
g

va
φ, (24)

_va ¼ bv vca � va
� �

(25)

_φ ¼ bφ φc � φ
� �

(26)

€h ¼ b _h
_hc � _h

	

þ bh hc � hð Þ, (27)

where pn, pe are the north-east position of the aircraft. The inputs are the commanded altitude,

hc, the commanded airspeed, vca, and the commanded roll angel, φc. The parameters bv, bφ, bh,

and b _h are positive constants that depend on the implementation of the autopilot and the state

estimation scheme. For further analysis on the kinematic and dynamic guidance models for

UAS, we refer the interested reader to [36]. In the following simulation, the ownship starts at

0; 0;�200ð ÞΤ in the NED coordinate system, with an initial heading of 0 deg. measured from

north and follows a straight-line path at a constant speed of 22 m/s to reach the next waypoint

located at 1500; 0;�200ð ÞΤ . The encounter geometry includes three intruders flying at different

altitudes: the first is approaching head-on, the second is converging from the right, and the

third is overtaking from the left. We chose the intruders’s speed similar to the known cruise

speed of ScanEagle UAS, Cessna SkyHawk 172R, and Raven RQ-11B UAS. The speed of the

Path Planning in the Local-Level Frame for Small Unmanned Aircraft Systems
http://dx.doi.org/10.5772/intechopen.71895

67

intruders is 41, 65, and 22 m/s, respectively. In addition, the intruders are assumed to fly at

a constant speed the entire simulation period. As shown in Figure 8, the initial locations

of intruders in the NED coordinate system are �25; 1000;�225ð ÞΤ , 500; 1000;�180ð ÞΤ , and

25;�500;�200ð ÞΤ , respectively, with initial heading of 180, �90, and 0�, respectively.

In the following simulation, our choice of the collision volume is a cylinder of radius ds =

152.4 m (500 ft) and height hs = 61 m (200 ft) centered on each of the intruders. A collision

incident occurs when the horizontal relative range and altitude to the ownship are simulta-

neously below horizontal and vertical minimum safe distances ds and hs=2. We assume that

there exists a sensor and tracking system that provides the states of the detected intruders.

-1500 -1000 -500 0 500 1000 1500

East (m)

-1500

-1000

-500

0

500

1000

1500

N
o
rt

h
 (

m
)

ownship

intruder 1

intruder 2

intruder 3

(a)

1500

-500

10001500

1000 500

500

East (m)

0

North (m)

0

-500
-500

-1000
-1000

-1500-1500

0

-D
o

w
n

 (
m

) 500
ownship

intruder 1

intruder 2

intruder 3

(b)

-1500 -1000 -500 0 500 1000 1500

Right wing direction (m)

-1500

-1000

-500

0

500

1000

1500

H
e

a
d

in
g

 d
ir
e

c
ti
o

n
 (

m
)

intruder 1

intruder 2

intruder3

(c)

-500 0 500 1000 1500

Heading direction (m)

-300

-200

-100

0

100

200

300

H
e

ig
h

t
(m

)

intruder 1
intruder 3

intruder 2

(d)

Figure 8. Encounter geometry for the ownship and three intruders at t = 0.1 s. (a) Overhead view of initial locations of

aircraft; (b) 3D view of initial locations of aircraft; (c) overhead view of reference frame; (d) side view of relative reference

frame.

Kinematics68

However, not every aircraft that is observed by the sensing system presents a collision threat.

Therefore, we implemented a geometric-based collision detection algorithm to determine

whether an approaching intruder aircraft is on a collision course. The collision detection

approach is beyond the scope of this work, and we refer the interested reader to [37].

At the beginning of simulation, the predicted relative range and altitude at the closest point of

approach (CPA) are shown in Table 1. Imminent collisions are expected to occur with the first

and second intruders as their relative range and altitude with respect to the ownship are below

the defined horizontal and vertical safe distances. The time remaining to the closest point of

approach tCPA with respect to the first and second intruders is 15.77 and 16.56 s, respectively.

The scenario requires that the ownship plans and executes an avoidance maneuver well before

the tCPA. This example demonstrates the need for an efficient and computationally fast avoid-

ance planning algorithm. Table 2 shows the total time required to run the avoidance algo-

rithm, and the maximum and average time required to execute one cycle. The results show that

the proposed algorithm takes a significantly reduced time in computation with an average and

maximum time to execute one cycle of the code of 20 ms and 0.1326 s, respectively, and a total

time of 0.3703 s to resolve the collision conflict.

Figure 9 shows the planned avoidance path by the ownship. These results show that the

avoidance path safely maneuvers the ownship without any collisions with the intruders. In

addition, the ownship should plan an avoidance maneuver that does not lead to a collision

with intruders that were not on a collision course initially such as the case with the third

intruder. Initially, the third intruder and the ownship are flying on near parallel courses. The

relative range and altitude at CPAwith respect to the third intruder are 437.14 and 4361.07 m,

respectively, and the time remaining to the CPA is 1982.25 s. Obviously, both aircrafts are not

on a collision course. However, the third intruder is descending and changing its heading

toward the ownship. The path planner, however, accounts for predicted locations of the

detected intruder over the look-ahead time window, allowing the ownship to maintain a safe

distance from the third intruder. This example demonstrates that the proposed path planner

can handle unanticipated maneuvering intruders. Once collisions are resolved the path plan-

ner returns the ownship to the next waypoint of its initial path.

Intruder pr tCPAð Þ
�

�

�

� (m) prz tCPAð Þ
�

�

�

�

�

�
(m) tCPA (s)

1 24.90 25 15.77

2 141.33 20 16.56

3 437.14 4361.07 1982.25

Table 1. Relative range and altitude, and the time remaining to the closest point of approach.

Total run time (s) Max. run time (one cycle) (s) Average run time (one cycle) (s)

0.3703 0.1326 0.0206

Table 2. Collision avoidance algorithm run time.

Path Planning in the Local-Level Frame for Small Unmanned Aircraft Systems
http://dx.doi.org/10.5772/intechopen.71895

69

The relative range between the ownship and the intruders is shown in Figure 10. The results

show that no collisions have occurred, and that the ownship successfully planned an avoid-

ance maneuver. The avoidance planner ensures that when the relative horizontal range is less

than ds, the relative altitude is greater than hs=2. For example, as shown in Figure 10b, the

relative range to the first intruder over time interval [16.2, 18] s is below ds. However, over the

same time interval, the relative altitude is above hs=2.

Another important aspect to evaluate the performance of the proposed algorithm is its ability to

reduce the length of the avoidance path while avoiding the intruders. This is important because

it reduces the amount of deviation from the original path and ultimately the flight time, which is

of critical importance for the small UAS with limited power resources. Table 3 shows that the

length of the avoidance paths is fairly acceptable compared to the initial path length.

-3500 -3000 -2500 -2000 -1500 -1000 -500 0 500 1000

East (m)

-2000

-1500

-1000

-500

0

500

1000

1500

N
o

rt
h
 (

m
)

(a)

1500

1000

500-500

0

North (m)

-3000 -500

-2000 -1000

East (m)

-1000 -1500

-20000

1000

0

-D
o

w
n

 (
m

)

500

(b)

Figure 9. Avoidance path followed by the ownship and path tracks of the intruders at t = 75 s. (a) Overhead view of

avoidance path and (b) 3D view of of avoidance path.

0 10 20 30 40 50 60 70
0

2000

4000

re
la

ti
v
e

ra
n
g
e

(m
)

intruder 1 intruder 2 intruder 3 d
s

h
s

0 10 20 30 40 50 60 70

time (s)

0

50

100

re
la

ti
v
e

al
ti

tu
d
e

(m
)

(a)

16.2 16.4 16.6 16.8 17 17.2 17.4 17.6 17.8 18

-100

0

100

200

re
la

ti
v
e

ra
n
g
e

(m
)

intruder 1 intruder 2 intruder 3 d
s

h
s

16.2 16.4 16.6 16.8 17 17.2 17.4 17.6 17.8 18

time (s)

0

20

40

60

re
la

ti
v
e

al
ti

tu
d
e

(m
)

X: 17.2

Y: 66.17

X: 17.2

Y: 142.3

(b)

Figure 10. Relative horizontal range and altitude between the ownship and intruders. (a) Horizontal range and relative

altitude to intruders and (b) a close up view of Figure 10a.

Kinematics70

4. Conclusions

In this chapter, we have presented a path planning approach suitable for small UAS. We have

developed a collision avoidance logic using an ownship-centered coordinate system. The

technique builds a maneuver graph in the local-level frame and use Dijkstra’s algorithm to

find the path with the least cost.

A key feature of the proposed approach is that the future motion of the ownship is constrained

to follow nodes on the map that are spaced by a constant time. Since the path is represented

using waypoints that are at fixed time instants, it is easy to determine roughly where the

ownship will be at any given time. This timing information is used when assigning cost to

edges to better plan paths and prevent collisions.

An advantage of this approach is that collision avoidance is inherently a local phenomenon

and can be more naturally represented in local coordinates than global coordinates. In addi-

tion, the algorithm accounts for multiple intruders and unanticipated maneuvering in various

encounter scenarios. The proposed algorithm runs in near real time in Matlab. Considering the

small runtime shown in the simulation results, we expect that implementing these algorithms

in a compiled language, such as C or C++, will show that real-time execution is feasible using

hardware. That makes the proposed approach a tractable solution in particular for small UAS.

An important step forward to move toward a deployable UAS is to test and evaluate the

performance of the close-loop of sensor, tracker, collision detection, path planning, and colli-

sion avoidance. Practically, the deployment of any UAS requires a lengthy and comprehensive

development process followed by a rigorous certification process and further analysis includ-

ing using higher fidelity models of encounter airspace, representative number of simulations,

and hardware-in-the-loop simulation. Unlike existing collision manned aviation collision

detection and avoidance systems, an encounter model cannot be constructed solely from

observed data, as UASs are not yet integrated in the airspace system and good data do not

exist. An interesting research problem would be to design encounter models similar to those

developed to support the evaluation and certification of manned aviation traffic alert and

collision avoidance system (TCAS).

Acknowledgements

This research was supported by the Center for Unmanned Aircraft Systems (C-UAS), a National

Science Foundation-sponsored industry/university cooperative research center (I/UCRC) under

NSFAward No. IIP-1161036 along with significant contributions from C-UAS industry members.

Scenario number Initial path length (m) Avoidance path length (m)

1 1500 1955

Table 3. Length of the avoidance path.

Path Planning in the Local-Level Frame for Small Unmanned Aircraft Systems
http://dx.doi.org/10.5772/intechopen.71895

71

Author details

Laith R. Sahawneh1* and Randal W. Beard2

*Address all correspondence to: lsahawneh@ufl.edu

1 Department of Mechanical and Aerospace Engineering, University of Florida, Florida, USA

2 Department of Electrical and Computer Engineering, Brigham Young University, Utah, USA

References

[1] George S. FAA Workshop on Sense and Avoid (SAA) for Unmanned Aircraft Systems

(UAS). 2009

[2] Hottman SB, Hansen KR, Berry M. Literature review on detect, sense, and avoid technol-

ogy for Unmanned Aircraft Systems. In: Technical Report. 2009

[3] Federal Aviation Administration. Subchapter F-Air Traffic and General Operating Rules.

2015

[4] Kuchar JK, Yang LC. A review of conflict detection and resolution modeling methods.

IEEE Transactions on Intelligent Transportation Systems. Dec. 2000;1(4):179-189

[5] Albaker BM, RahimNA. A survey of collision avoidance approaches for unmanned aerial

vehicles. International Conference for Technical Postgraduates (TECHPOS). 2009:1-7

[6] Hyunjin YK. Reactive collision avoidance of unmanned aerial vehicles using a single

vision sensor. AIAA Guidance, Control, and Dynamics. 2013;36(4):1234-1240

[7] Rajnikant S, Saunders JB, Randal Beard W. Reactive path planning for micro air vehicles

using bearing-only measurements. International Robotic Systems. 2012;65(1–4):409-416

[8] White BA, Antonios HS. UAV obstacle avoidance using differential geometry concepts.

In: 18th IFAC World Congress; Milano, Italy; 2011. Vol. 3. pp. 6325-6330

[9] Saunders J, Beard RW. Vision-based reactive multiple obstacle avoidance for micro air

vehicles. In: IEEE American Control Conference ACC’09; St. Louis, MO, June 10–12; 2009,

pp. 5253-5258

[10] George J, Ghose D. A reactive inverse PN algorithm for collision avoidance among

multiple unmanned aerial vehicles. In: American Control Conference; St. Louis, MO; June

10–12; IEEE. pp. 3890-3895

[11] Bilimoria KD. A geometric optimization approach to aircraft conflict resolution. In: Pro-

ceedings of the AIAA Guidance, Navigation and Control Conference and Exhibit; 2010

[12] Fiorini P, Shiller Z. Motion planning in dynamic environments using velocity obstacles.

The International Journal of Robotics Research. 1998;17(7):760-772

Kinematics72

[13] Chakravarthy A, Ghose D. Obstical avoidance in a dynamic environment: A collision

cone approach. IEEE Transactions on System, Man and Cybernitics, Part A: Systems and

Humans. 1998;28(5):562-572

[14] Lam TM, Mulder M, Van Paassen M, Mulder JA, Van Der FC. Force-stiffness feedback in

uninhabited aerial vehicle teleoperation with time delay. AIAA Guidance, Control, and

Dynamics. 2009;32(3):821-835

[15] Sahawneh LR, Beard RW, Avadhanamz S, He B. Chain-based collision avoidance for UAS

sense and avoid systems. In: AIAA Guidance, Navigation, and Control (GNC) Confer-

ence; Boston, MA; 2013

[16] Kavraki LE, Svestka P, Latombe JC, Overmars MH. Probabilistic roadmaps for path

planning in high-dimensional configuration spaces. IEEE Transactions on Robotics and

Automation. 1996;12(4):566-580

[17] LaValle SM. Rapidly-exploring random trees: A new tool for path planning. Technical

Report TR 98–11. Computer Science Department, Iowa State University; October 1998

[18] Dijkstra EW. A note on two problems in connection with graphs. Numerische Mathe-

matik. 1959;1:269-271

[19] Dechter R, Pearl J. Generalized best-first search strategies and the optimality of a*. Journal

of the ACM (JACM). 1985;32(3):505-536

[20] Mirolo C, Pagello E. A cell decomposition approach to motion planning based on colli-

sion detection. In: Proceedings of the 1995 International Conference on Advanced Robot-

ics. 1995. pp. 481-488

[21] Angelov P. Sense and Avoid in UAS: Research and Applications. Chichester, West Sussex,

United Kingdom: John Wiley & Sons, Ltd; 2012

[22] Koren Y, Borenstein J. Potential field methods and their inherent limitations for mobile

robot navigation. In IEEE International Conference On Robotics And Automation; IEEE.

1991;2:1398-1404

[23] LaValle SM. Planning Algorithms. Cambridge University Press; 2006

[24] Bortoff SA. Path planning for UAVs. In: Proceedings of the American Control Conference.

Chicago, Illinois; June 2000. pp. 364-368

[25] McLain TW, Beard RW. Trajectory planning for coordinated rendezvous of unmanned air

vehicles. In: Proceedings of the AIAA Guidance, Navigation, and Control Conference.

AIAA Reston, VA; 2000. Vol. 4369. pp. 1-8

[26] Argyle ME, Chamberlain C, Beard RW. Chain-based path planning for multiple UAVs.

In: 50th IEEE Conference on Decision and Control and European Control Conference,

Orlando, FL, USA. Dec. 2011

[27] Luders BD, Karaman S, How JP. Robust sampling-based motion planning with asymp-

totic optimality guarantees. In: AIAA Guidance, Navigation, and Control Conference

(GNC), Boston, MA. 2013

Path Planning in the Local-Level Frame for Small Unmanned Aircraft Systems
http://dx.doi.org/10.5772/intechopen.71895

73

[28] Luders BD, Karaman S, Frazzoli E, How JP. Bounds on tracking error using closed-loop

rapidly-exploring random trees. In: American Control Conference (ACC). IEEE; 2010. pp.

5406-5412

[29] Luders B, Karaman S, How JP. Robust sampling-based motion planning with asymptotic

optimality guarantees. In Guidance, Navigation, and Control (GNC) Conference, Boston,

MA. 2013. AIAA

[30] Kothari M, Postlethwaite I. A probabilistically robust path planning algorithm for UAVs

using rapidly-exploring random trees. International Robotic Systems. 2013;71:231-253

[31] Standard Specification for Design and Performance of an Airborne Sense-and-Avoid

System. Tech. Rep. TR F2411-07. West Conshohocken, PA: ASTM International; 2007

[32] US Department of Transportation and Federal Aviation Adminstration. Aeronautical

Information Manual Official Guide to Basic Flight Information and ATC Procedures

[33] Lee SM, Park C, Johnson MA, Mueller ER. Investigating effects of well clear definitions on

UAS sense-and-avoid operations. In: Aviation Technology, Integration, and Operations

Conference, Los Angeles, CA. AIAA. 2013

[34] Consiglio M, Chamberlain J, Munoz C, and Hoffler K. Concept of integration for UAS

operations in the NAS. In: 28th International Congress of the Aeronautical Sciences

(ICAS); Brisbane, Australia; 2012

[35] Sahawneh LR, Airborne Collision Detection and Avoidance for Small UAS Sense and

Avoid Systems [PhD Thesis] Brigham Young University; 2016

[36] Beard RW,McLain TW. Small Unmanned Aircraft: Theory and Practice. New Jersey, USA:

Princeton University Press; 2012

[37] Sahawneh LR, Argyle ME, Beard RW. 3D path planning for small UAS operating in low-

altitude airspace. In International Conference on Unmanned Aircraft Systems (ICUAS).

IEEE, 2016. pp. 413-419

Kinematics74

