
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



Chapter 3

Fractal Pyramid: A New Math Tool to Reorient and
Accelerate a Spacecraft

Alexander P. Yefremov

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.71751

Abstract

An original mathematical instrument matching two different operational procedures
aimed to change orientation and velocity of a spacecraft is suggested and described in
detail. The tool’s basements, quaternion algebra with its square-root (pregeometric)
image, and fractal surface are represented in a parenthetical but in a sufficient format,
indicating their principle properties providing solution to the operational task. A sup-
plementary notion of vector-quaternion version of relativity theory is introduced since
the spacecraft-observer mechanical system appears congenitally relativistic. The new
tool is shown to have a simple pregeometric image of a fractal pyramid whose tilt and
distortion evoke needed changes in the spacecraft’s motion parameters, and the respec-
tive math procedures proved to be simplified compared with the traditionally used
math methods.

Keywords: spacecraft motion, operation, quaternion, fractal surface

1. Introduction

In classical mechanics, rotation of a rigid body (in particular, a spacecraft) and its translational

motion are normally regarded as drastically different actions leading to changes in its position

and are respectively described by different groups. Relativistic mechanics, in its turn, deals

with these two types of motions “more homogeneously” since rotation and linear motion are

described in this case by 4 � 4 matrices from the Lorentz group SO 1; 3ð Þ. However, it is well

known that the special relativity limits itself by inertial motions of the involved frames of

reference while use of general relativity comprising any types of motion but demanding math

methods of tensor calculus seems unapproved sophisticated. Happily, there exists a simpler

vector version of the relativity theory admitting arbitrary accelerated motion of the frames. A

brief formulation of the theory is made with the help of quaternion vector units, each set of the
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units representing a Cartesian-type frame of reference. In this case, the rotation-and-translation

operator is given by 3� 3 matrix belonging to the group SO 3;Сð Þ known to be 1:1 isomorphic

to the group SO 1; 3ð Þ. However, the calculations of the body’s complex motions even within

the framework of the vector-quaternion relativity remain prolonged and cumbersome, a sim-

pler method is desired. Such a method is found due to existence of 1:2 isomorphism of the

groups SO 3;Сð Þ and SL 2;Сð Þ, the last being a spinor group operating in fractal two-dimen-

sional complex-number valued space (a fractal surface). It is necessary to mention that the

subgroup of SL 2;Сð Þ, rotational group SU 2ð Þ, is normally used in space-flight practice, pro-

viding comparatively simple mathematical computations for a spacecraft reorientation tasks

[1, 2]. This method is based upon similarity-type transformations of the initial quaternion triad,

in fact assuming nontrivial multiplication of at least three different quaternions, though it

straightforwardly gives the data describing the axis of single rotation and value of the respec-

tive angle. However, this method provides no translational motion.

In this study, we suggest an essential development of the last (single rotation) method leading,

first, to noticeable simplification of computations, and second, to possibility of introduction of

additional parameters responsible for the spacecraft acceleration. This development is fully

based on fundamental properties of subgeometric dyad forming the fractal space in a way

underlying the 3D physical space. Moreover, we suggest subgeometric images (fractal joystick

and fractal pyramid) of the math tools realizing the spacecraft’s reorientation and acceleration

tasks. As well, we give a brief comparative analysis of simplicity (or complexity) of conven-

tional and new methods.

The study is composed as following. In Sections 2–4 we offer a detailed mathematical introduc-

tion. In Section 2, we renew our knowledge of quaternion algebra giving traditional (Hamilto-

nian) and more compact (tensor) notions and correlations. In Section 3, we briefly reproduce

the quaternion version of the relativity theory. In Section 4, we consider main notions and

properties of the 2D fractal space and show how to build a 3D frame out of a dyad element.

Sections 5–7 are devoted to new math methods making operations of a spacecraft simpler and

more functional. Section 5 is devoted to presentation of three methods to reorient a spacecraft

with accent on convenience of the single rotation method involving a fractal joystick model. In

Section 6, we suggest a very simple way to introduce (apart from space rotation) an accelera-

tion of the spacecraft and demonstrate a subgeometric image of the respective math tool

having a shape of fractal pyramid. Finally, in Section 7, we give a sketch of a technological

map previewing necessary steps to simultaneously reorient and accelerate the spacecraft

followed by a series of relevant pictures.

2. Basic notions and relations of quaternion algebra

Quaternion (Q-) numbers were discovered by Hamilton in 1843 [3]. A quaternion is a math

object of the type q ¼ a1þ biþ cjþ dk (in Hamilton’s notation), where a, b, c, d are real coeffi-

cients at the real unit 1 (the symbol is normally omitted in the number) and at three imaginary

units i, j,k forming the postulated multiplication table (16 equalities).
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12 ¼ 1, i2 ¼ j2 ¼ k2 ¼ �1, 1i ¼ i1 ¼ i, 1j ¼ j1 ¼ j, 1k ¼ k1 ¼ k,

ij ¼ �ji ¼ k, jk ¼ �kj ¼ i,ki ¼ �ik ¼ j,
: (1)

Q-numbers and the multiplication law (1) can be more compactly rewritten in the vector (and

tensor) notations i, j,k ! q1, q2, q3 ! qk, j, k, l, m, n… ¼ 1, 2, 3; then, a quaternion is a sum of

scalar að Þ and vector bkqk

� �

parts q � aþ bkqk, where a, bk ∈R, and the multiplication table (1)

has the form

1qk ¼ qk1 ¼ qk, qk ql ¼ �δkl þ εklj qj, (2)

Summation in repeated indices is implied, and δkl and εklj are the 3D Kronecker and Levi-

Chivita symbols (see e.g., [4]).

Quaternions admit the same operations as real and complex numbers. Comparison of

Q-numbers is reduced to their equality: two Q-numbers are equal if coefficients at respective

units are equal. Commutative addition (subtraction) of Q-numbers is made by components.

Q-numbers are multiplied as polynomials; the rules (1, 2) state that multiplication is

noncommutative (left and right products are defined), but still associative. A quaternion

q � aþ bkqk has its conjugate q � a� bkqk, the norm q2
�

�

�

� � qq ¼ qq, and the modulus (positive

square root from the norm) qj j �
ffiffiffiffiffi

qq
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ bkbk
p

. Inverse number is q�1 ¼ q= qj j2; so, for two

quaternions q1 and q2, division (left and right) is defined as q1=q2
� �

left
¼ q2q1= q2

�

�

�

�

2
and

q1=q2
� �

right
¼ q1q2= q2

�

�

�

�

2
. If q is a product of two multipliers q1 ¼ aþ bkqk and q2 ¼ cþ dnqn,

then from definition of the norm one finds

qj j2 ¼ q1q2
�

�

�

�

2
¼ q1q2

� �

q1q2
� �

¼ q1q2q2q1 ¼ q1q1q2q2 ¼ q1
�

�

�

�

2
q2
�

�

�

�

2
: (3)

Written in components, Eq. (3) becomes the famous identity of four squares

ac� b1d1 � b2d2 � b3d3ð Þ2 þ ad1 þ cb1 þ b2d2 � b3d2ð Þ2 þ ad2 þ cb2 þ b3d1 � b1d3ð Þ2þ

þ ad3 þ cb3 þ b1d2 � b2d1ð Þ2 ¼ a2 þ b21 þ b22 þ b23
� �

c2 þ d21 þ d22 þ d23
� �

:
(4)

Identities of the type (4) exist only in four algebras: of real numbers (trivial identity), of

complex numbers (two squares), of quaternions (four squares), and of octonions (the last

exclusive algebra with one real and seven imaginary units admits identity of eight squares;

multiplication in this algebra is no more associative).

Geometrically, the imaginary Q-units are associated with three unit vectors initiating a Carte-

sian coordinate system (Q-triad, Q-frame). This image, in particular, follows from the fact

that, according to Eq. (2), each imaginary unit appears as ordered product of the two others:

q1 ¼ q2q3, q2 ¼ q3q1, q3 ¼ q1q2 (vector products in Gibbs-Heaviside algebra). One can easily

construct a set of such units. To demonstrate this, we consider a couple of 2� 2-matrices,

A ¼
a b

c �a

� �

, B ¼
d e

f �d

� �

, traceless: TrA ¼ TrB ¼ 0, and not degenerate: detA 6¼ 0,

detB 6¼ 0. We use the matrices to build two different imaginary units as
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q1 ¼
A
ffiffiffiffiffiffiffiffiffiffiffi

detA
p , q2 ¼

B
ffiffiffiffiffiffiffiffiffiffiffi

detB
p : (5)

We form the product of the two units and demand that its trace vanishes that is given as

q1q2 ¼
AB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detAdetB
p , Tr ABð Þ ¼ 0; (6)

then Eq. (6) gives expression for the third imaginary Q-unit q1q2 ¼ q3, and as a whole, we get

the Q-triad qk, the real unit always remaining the unit matrix 1 �
1 0

0 1

� �

. One readily checks

up that the triad given by Eqs. (5) and (6) identically satisfies the multiplication law (2). Built in

a similar way, the simplest representation of Q-units q~k is given by the Pauli matrices p~k with

factor –i: q~k ¼ �ip~k

1 ¼
1 0

0 1

� �

, q~1 ¼ �i
0 1

1 0

� �

, q~2 ¼ �i
0 �i

i 0

� �

, q~3 ¼ �i
1 0

0 1

� �

, (7)

and the imaginary Q-triad given as Eq. (7) describes a constant Q-vector frame.

However, a Q-frame may be variable, rotating, and moving. There are two types of trans-

formations changing the frame but retaining the form of the multiplication law (2). The first is

rotational-type transformation

qk
0 ¼ Ok

0
nqn (8)

where Ok
0
n is a 3� 3-matrix (its components are in general complex numbers) having orthog-

onal properties Ok
0
nOm0n ¼ δkm, hence this matrix belongs to the special orthogonal group of 3D

rotations over field of complex numbers Ok0n ∈SO 3;Cð Þ. The matrix On0k can be always

represented as a product of plane (or simple) rotations, irreducible representations of

SO 3;Cð Þ. For such matrices, a special notation will be used, e.g., OΘn , where the lower index

indicates the rotation axis (the frame’s unit vector) and upper index shows the rotation angle.

Depending on the math nature of the angle Θ, we distinguish two types of simple rotations. If

Θ ¼ α∈R, then we have a real simple rotation O
Θ

n ! Rα
n ; if the angle is imaginary Θ ¼ η∈ i R,

then we have a simple hyperbolic rotation O
Θ

n ! Hη
n; for example Eq. (9)

Rα
3 �

cosα sinα 0

� sinα cosα 0

0 0 1

0

B

B

@

1

C

C

A

, H
η
3 �

cos hη �i sin hη 0

i sin hη cos hη 0

0 0 1

0

B

B

@

1

C

C

A

: (9)

Superposition of any number (N) of real rotations (product of relevant matrices) gives a

(nonplane) real rotation
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YN

j¼1

R
αj
nj ¼ Rα1

n1
⋯RαN

nN
! Rk0mSO 3;Rð Þ: (10)

Product of multiple hyperbolic rotations is physically sensible if accompanied by real rotations

in the framework of vector version of theory of relativity (see Section 3); so in general, the

matrices of the type

YN

j¼1

YM

s¼1

R
αj
njH

ηs
ms ¼ Rα1

n1
::H

η1
m1 ::R

αN
nN

::H
ηs
ms ! Ok0m ∈SO 3;Cð Þ (11)

are used in applications.

The second type of transformations is performed by an operator U and its inverse U�1 is

given as

qk0 ¼ UqkU
�1

: (12)

It is evident that the transformation (12) keeps the form of the basic law (2). The operators

U are known to form the (spinor) group U∈SL 2;Cð Þ of special linear 2D transformations

over field of complex numbers; this group is 2:1 isomorphic to SO 3;Cð Þ and similarly to the

Lorentz group. A special case of the transformation (12) is a real rotation made by means

of the subgroup SU 2ð Þ∈ SL 2;Cð Þ, and this spinor subgroup is 2:1 isomorphic to vector

group SO 3;Rð Þ. It is necessary to note that the transformation of the type (12) with

U∈SU 2ð Þ is most frequently used for solution of a spacecraft orientation problem (see

Section 5.2).

As well, in formulation of quaternion relativity (see Section 3), we shall need notion of a

biquaternion (BQ-) number. Such a number has the form b ¼ xþ ykqk, where x, yk ∈Cwhile

1, qk are Q-units. BQ-numbers admit addition, multiplication, and conjugation b ¼ x� ykqk.

But the norm is not well defined since the product bb ¼ x2 þ ykyk in general is not a real

(and positive) number. A real number “norm” exists in the subset of vector biquaternions

b ¼ wk þ i zkð Þ qk (13)

whose real and imaginary parts are mutually orthogonal

wkzk ¼ 0 ! bk k2 ¼ bb ¼ wkwk � zkzk: (14)

There are evidently zero dividers in Eq. (14), hence division is not well defined, but the subset

(13 and 14) comprises basic formulas describing relative motion of arbitrary accelerated frames

of reference.
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3. Vector-quaternion version of the relativity theory

According to Eqs. (13) and (14), the interval of Einstein’s relativity theory1

ds2 ¼ dx20 � dxkdxk ¼ dt2 � dr2 (15)

admits a BQ-square root

ds ¼ iekdtþ dxkð Þ qk, (16)

where displacement of observed object dxk is orthogonal to a unit vector ek directing change in

time dt : ekdxk ¼ 0. Under these conditions, square of Eq. (16) yields Eq. (15) dsds ¼ ds2. It is

convenient to explicitly relate displacement dxk to a plane orthogonal to time-directing vector

ek with the help of metric-projector bkn � δkn � eken dxk ¼ dxnbnk,

then the orthogonality condition is fulfilled automatically ekdxk ¼ ekdxnbkn ¼ 0:

The interval (15) is invariant under Lorentz transformations of coordinate system dxα
0

¼ Lα
0

λ dx
λ,

Lα
0

λ ∈ SO 1; 3ð Þ, while the Q-frame can be subject to SO 3;Cð Þ rotations qk0 ¼ Ok0lql; simultaneous

application of the transformations, together with demand that the BQ-vector (16) form be

conserved, leads to correlation between components of matrices Ok0l and Lα0λ
2 [5, 6]

iekOs0k ¼ ies0L000 þ Lm00bm0s0 , (17)

bnkOs0k ¼ �ies0L00m � Lm0kbm0s0 : (18)

Eqs. (17) and (18) inparticularmean thatwithin thegroupSO 3;Cð Þ a set of ordered simple rotations

of the type (11) are distinguished, real and hyperbolic, each performed about one-unit vector of

Q-triad. If for instance, direction No. 1 of Lα0λ is not involved in the transformation (ek ¼ ek0 ¼ δ1k),

then Eqs. (17) and (18) represent thematrixO as function of components of Lorentzmatrix L

Ok0m ¼

L0
0

0 �iL0
0

2 �iL0
0

3

iL2
0

0 L2
0

2 L2
0

3

iL3
0

0 L3
0

2 L3
0

3

0

B

B

@

1

C

C

A

: (19)

The matrix (19) may describe a series of simple rotations, but real rotations should be always

performed about vector q1 (initial or transformed), while hyperbolic rotations are allowed about

1

Standard interval of special relativity is regarded for simplicity; similarly, interval of general relativity can be considered

in tangent space ds2 ¼ θ2
0 � θkθk with θ αð Þ ¼ g αð Þλdy

λ being basic one-form and Greek indices in brackets enumerating

tangent space tetrad, and those without brackets are related to curved manifold holonomic coordinates

ηαβ ¼ diag 1;�1;�1;�1ð Þ

2

ds2 ¼ θ2
0 � θkθkθ αð Þ ¼ g αð Þλdy

λ: four-dimensional indices are raised and lowered by Minkowski metric ηαβ ¼

diag 1;�1;�1;�1ð Þ.
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vectors q2 and q3. It is easily checked up that all matricesO of the type (19) constitute a subgroup

SO 1; 2ð Þ⊂ SO 3;Cð Þ of the ordered rotations of Q-triads.

Main idea of Q-version of relativity is to replace line element of Einstein’s relativity (15) and its

invariance under Lorentz group by adequate BQ-vector (16) invariant under rotational group

represented by matrices O∈SO 1; 2ð Þ. Then, instead of quadratic form of four-dimensional

coordinates, an observer has at his disposal a movable Q-triad with time and distances mea-

sured along its unit vectors and dealt with the vector basement as with the Newtonian

mechanics or general relativity in tetrad formulation. However, on this way, an essential

peculiarity arises. Eq. (16) implies that the constructed space-time model has six dimensions,

and it is a symmetric sum of two three-dimensional (3D) spaces Q6 ¼ R3 ⊕T3, where R3 is the

usual 3D space where coordinate and velocity change, whereas T3 is also a 3D space but

imaginary with respect to R3. In this model, the observer works only with some sections of

the 6D space; but since the objects of the observations are found in real 3D space, and

imaginary time axis is distinguished, an illusion of four dimensions emerges.

Physical measurements in the Q-model are made with the help of three spatial rulers qk and

built-in geometric clock represented by “imaginary time rulers” (Pauli-type matrices) pk � iqk,

the two triads being obviously co-aligned. The tool-set Σ � pk; qk

� 	

with an observer in the

initial point represents full physical frame of reference, Eq. (16) can be rewritten as

ds ¼ ekdtpk þ dxk qk: (20)

Now, the principal statement of the Q-version of relativity follows: all physically sustainable

frames of reference are interconnected by “rotational equations”

Σ
0 ¼ OΣ, O∈ SO 1; 2ð Þ : (21)

The sustainability means form-invariance of BQ-vector (16) or (20) under transformations (21).

Kinematic effects of special relativity are straightforwardly found in the Q-version; here, we

demonstrate only one effect important for fractal pyramid technology accelerating a spacecraft

(see Section 6).

Boost. Σ-observer always can align one of his spatial vectors (e.g., q2) with velocity of moving

body, so basic BQ-vector can be written in the form

ds ¼ dtp1 þ dr q2: (22)

Let the frame Σ0 be a result of a hyperbolic rotation of a constant frame Σ

Σ
0 ¼ H

η

3 Σ, (23)

with the matrix H
η

3 from Eq. (9b) (rotation about q3 by angle η). This simple rotation, physi-

cally a boost, obviously keeping BQ-vector (20) form-invariant

Fractal Pyramid: A New Math Tool to Reorient and Accelerate a Spacecraft
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dtp1 þ drq2 ¼ dt0p10 þ dr0q20 (24)

yields familiar coordinate transformations

dt0 ¼ dtcosh η þ dr sinh η, dr0 ¼ dt sinh η þ drcosh η (25)

with respective effects of length and time segments contraction. If observed particle is the body

of reference of the frame Σ0, then dr0 ¼ 0, and one finds that the frame Σ0 is moving with the

velocity

V ¼
dr

dt
¼ tanhψ: (26)

Specific features of the Q-vector version of relativity will be effectively used below in the fractal-

pyramid math method to operate a spacecraft. Now, we turn to notions of a fractal space.

4. Fractal space underlying physical space

In this section, we show that a 3D space (e.g., physical space) may be endowed with a pregeo-

metry [7] mathematically described by a complex-numbered surface, a 2D fractal space, each

its vector having dimensionality half compared to that of the 3D space. We start with 2D space

and construct out of its basic elements a basis of 3D space.

Let there exist a smooth 2D space (surface) endowed with a metric gAB (and inverse:

gBCgBC ! gABg
BC

¼ δCA) and with a system of coordinates xA ¼ x1; x2
� 	

; here A, B, C ¼ 1, 2,

δCA is a 2D Kronecker symbol, summation in repeated indices is also implied. The line element

of the surface is

ds2 ¼ gABdx
AdxB; (27)

the surface may be curved, so covariant and contravariant metric components differ. In a point,

we choose a couple of unit orthogonal vectors aA, bB (a dyad)

gABa
AaB ¼ 1, (28)

gABa
AbB ¼ 0: (29)

A domain of the surface in vicinity of the dyad’s initial point (together with respective part of

tangent plane having the metric δMN ¼ δMN
¼ δNm) will be called a “2D-cell.”

Considering direct (tensor) products of the dyad vectors with mixed components [8], we can

construct only four such products (2� 2 matrices): two idempotent matrices
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GA
B � aAaB, HA

B � bAbB ! GA
BG

B
C ¼ GA

C , HA
BH

B
C ¼ HA

C
, (30a)

and two nilpotent matrices

DAB � aAbB, FAB � bAaB ! DABDBC ¼ 0, FABFBC ¼ 0: (30b)

Next, we built sum and difference of the idempotent matrices

E � EA
B � GA

B þHA
B ¼ aAaB þ bAbB, E2 ¼ E, (31a)

~K � ~K
A

B � GA
B �HA

B ¼ aAaB � bAbB, ~K2 ¼ E, (31b)

and sum and difference of the nilpotent matrices

~I � ~I
A

B ¼ DAB þ FAB ¼ aAbB þ bAaB, ~I2 ¼ E, (31c)

J � JAB ¼ DAB � FAB ¼ aAbB � bAaB, J2 ¼ �E : (31d)

If the units Eqs. (31b) and (31c) are slightly corrected so that their product is the third unit

(31d), then we obtain the basis of quaternion (and biquaternion) numbers

1 � E, q1 ¼ �i ~I ,q2 ¼ �i J,q3 ¼ �i ~K: (32)

Now, we recall the spectral theorem (of the matrix theory) stating that any invertible matrix

with distinct eigenvalues can be represented as a sum of idempotent projectors with the

eigenvalues as coefficients, the projectors being direct products of vectors of a biorthogonal

basis. The unit q3 defined in Eqs. (32), (31b) is the characteristic example

q3

�

�

B

A
¼ iaAaB � ibAbB ¼ iGA

B � iHA
B : (33)

Right and left eigenfunctions of q3 are vectors aA, bB and covectors aA, bB of the dyad,

respectively; the eigenvalues are þi (for a) and �i (for b), and GA
B , H

A
B are the projectors.

As mentioned above, the similarity transformation of the units

qk0 ¼ UqkU
�1, U∈ SL 2;Cð Þ (34)

preserves the form of algebras’ multiplication law (2). Therefore, vector units from Eq. (32) can

be obtained from a single unit, say, q3 by a transformation (34). Then, all vector units have

same eigenvalues �i, and the eigenfunctions of the derived units are linear combinations of the

eigenfunctions of the initial unit [9]. This also means that the mapping (34) is a secondary one,

but the primary one is SL 2;Cð Þ transformation of dyad vectors, thus forming a set of spinors

from the viewpoint of the 3D space described by the triad vectors qk.

Fractal Pyramid: A New Math Tool to Reorient and Accelerate a Spacecraft
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Hereinafter, we introduce shorter 2D-index-free matrix notations for the dyad: a vector is a

column, a co-vector is a row, and a parity indicator þ or � marks the sign of the eigenvalue �i

aA ! ψþ, aA ! φþ, b
A ! ψ�, bA ! φ�; (35)

this helps to rewrite the above expressions more compactly. The dyad orthonormality condi-

tions (28, 29) acquire the form

φ�ψ� ¼ 1, φ∓ψ� ¼ φ�ψ∓ ¼ 0 , (36)

the idempotent projectors are denoted as Cþ � G ¼ ψþφþ, C� � H ¼ ψ�φ� ,

and the units (32) are expressed through the single dyad vectors (co-vectors) as

1 ¼ ψþφþ þ ψ�φ�, (37a)

q1 ¼ �i ψþφ� þ ψ�φ�ð Þ, (37b)

q2 ¼ ψþφ� � ψ�φ�, (37c)

q3 ¼ i ψþφþ � ψ�φ�ð Þ: (37d)

Eq. (37) obviously demonstrates that the dyad elements are in a way “square roots” from 3D

vector units. So, if we put dimensionality of any 3D line to be a unity, then dimensionality of a

line on the 2D space (e.g., dimensionality of a dyad vector) must be ½; hence from the

viewpoint of the 3D space, the surface determined by a dyad is fractal. The next important

observation concerns transformations. The transformation (34) clearly results from the SL 2;Cð Þ

transformations of the dyad vectors (covectors)

ψ0� ¼ Uψ�, φ0 ¼ φ0�U
�1

: (38)

So, apart from vector-type (8) and spinor-type (12) transformations of a Q-triad (an element of

3D space), there exists a possibility to deal with more fundamental math elements, vectors, and

covectors describing “pregeometric” 2D cell of a fractal surface. These simpler math objects are

subject to evidently simpler mapping (38); moreover, in the following sections, we will show that

the operators of the transformations, being themselves BQ-numbers, suggest simpler and less

numerous equations to solve, thus reducing degree of math load and probability of mistakes.

5. Three methods to reorient a spacecraft and fractal joystick

The orientation tasks are relevant with computations over 3D flat space modeling a local

domain of the physical space. Two types of the orientation problem solutions are traditional:
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(i) a series of subsequent several angles rotation and (ii) a one-angle rotation about an instant

axis. Mixed variants exist, but are less productive, and they are not normally considered.

If magnitudes involved in calculations are generically measured in real numbers, then both

techniques (i) and (ii) are based on the vector rotation group SO 3;Rð Þ. Math content of the

technique (i) implies a multiple set of plane rotations [of type of Eq. (9a)] by Euler (or Krylov, or

others) angles about selected axes. The technique (ii) in its turn represents a nontrivial problem

of determining the instant axis of a single rotation.

Quaternions are widely known to fit better than real numbers for the orientation tasks

mostly due to the fact that three vector units represent models of three mutually orthogo-

nal gyroscope axes. As well, use of the Q-algebra formalism essentially simplifies calcula-

tions, especially for the technique (ii), since both the vector rotation group SO 3;Rð Þ and its

spinor “equivalent” SU 2ð Þ reflection group can be used whatever enigmatic were formulas

describing spinor rotations. However, the quaternion algebra reveals its unique property

to split axial 3D vectors into dyad sets belonging to a fractal subspace as in Eq. (37), see

also the basic work [10]. The above-described fractalization procedure, mathematically

nontrivial and much less known, on the one hand clarifies “mysterious” two-side SU 2ð Þ

quaternion vector multiplication and on the other hand endows all algebraic objects and

actions with distinct geometric sense; moreover, the calculations become most primitive.

Solution of a spacecraft reorientation task as transformation of a fractal dyad represents

the third math method (iii) suggested here. However, all three math methods are described

in detail in this section.

5.1. Quaternion SO(3,R) approach to the reorientation problem: Technique (i)

Orientation of a spacecraft in 3D space is determined by three angles between axes of some global

coordinate system and unit vectors of a frame attached to the moving body taking into account

its physical symmetry. The global coordinates, e.g., are represented by a spherical system, and its

local initiating vectors pointing: q1 to the north along the Earth’s meridian), q2 along a parallel,

and q3 to zenith direction. The directing vectors qk are considered constant. Then, the orientation

of a spacecraft bearing a frame qk0 , (with q10 along the body, q20 a transverse one, and q30 along

gravity) is determined by three angles: “yaw” ψ, the angle between q1 and q10 (rotation about

q3); “roll” φ, angle q2 � q20 (rotation about q1); and “pitch” θ, angle q3 � q30 (rotation about q2).

Within these notations, the spacecraft’s orientation in the space is described by the matrix

equation

qn0 ¼ Rn0kqk, R∈ SO 3;Rð Þ: (39)

Outlined above technique (i) demands that the matrix Rn0k be represented as a product of

simple rotations, irreducible representations of SO 3;Rð Þ [a special notation for such matrix is

Rα
n , see Section 2, Eqs. (9, 10)], each performed about a frame’s unit vector. Simple rotations

with the above parameters of the probe’s orientations are given by the matrices
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R
ψ
3 �

cosψ sinψ 0

� sinψ cosψ 0

0 0 1

0

B

@

1

C

A
, R

φ
2 �

cosφ 0 � sinφ

0 1 0

sinφ 0 cosφ

0

B

@

1

C

A
, Rθ

1 �

1 0 0

0 cosθ � sinθ

0 sinθ cosθ

0

B

@

1

C

A
:

(40)

Direct reorientation problem, i.e., reaching object’s assigned orientation, can be solved by a

sequence of plane rotations mathematically described by a sequent multiplication of matrices

[see Eq. (10)]. This problem has no unique solution since the group SO 3;Rð Þ is not commuta-

tive; i.e., different multiplication order of the matrices (40) with the same parameters (angles)

generally gives different result; e.g., the products R ¼ R
ψ
3R

φ
2R

θ
1 and R0 ¼ Rθ

1R
φ
2R

ψ
3 are, in gen-

eral, different R 6¼ R0. Vice versa, different orders of the matrix product with other parameters

may yield the same result, e.g., products R ¼ R
ψ
3R

φ
2R

θ
1 and R0 ¼ Rθ0

1 R
φ0

2 R
ψ0

3 may represent

equivalent rotational result R ¼ R0. The possibility to represent an arbitrary SO 3;Rð Þ matrix

as a product of its irreducible representations given in different order in particular entails

uncertainty in solution of the inverse problem when one has to determine values of angles

securing an assigned reorientation of the spacecraft. Therefore, the technique (i) does not

provide single-valued results.

Even with more difficult, we meet trying to use matrices from the group SO 3;Rð Þin the

technique (ii). As is known from the theory of matrices (see e.g., [11]) in this case, we have to

solve the characteristic equation RX ¼ X searching for the matrix operator R an eigenvector X

with unit eigenvalue, the vector X pointing direction of the instant rotation axis. This tough

algebraic task then followed by sophisticated calculations aimed to find the instant rotation

angle. The use of hypercomplex numbers essentially helped to avoid these math troubles, and

about half of a century ago, quaternion algebra became a common tool serving for engineering

goals of navigation and orientation. Indeed, the similarity transformation UqU�1 of a quater-

nion q performed with the help of auxiliary quaternion U � aþ bq geometrically leads to

conical rotation of the vector part of q about an axis whose direction is determined by the unit

Q-vector q (e.g., [2]); the value of the instant rotation angle is computed as 2 arctan b=að Þ.

Below, we suggest a detailed analysis of this type of description of rotations.

5.2. Reorientation by a single rotation of the quaternion frame: Technique (ii)

Consider a 2� 2matrix (with complex-number components) U �
x z

w y

� �

, belonging to a

special linear group U∈ SL 2, Cð Þ, detU ¼ xy� wz ¼ 1. The multiplication law (6) is obviously

form invariant under the similarity-type transformation

qn0 ¼ UqnU
�1: (41)

One readily demonstrates that the matrix U is a biquaternion with the definable norm; indeed,

Space Flight46



U ¼
x z

w y

� �

¼ xþ y

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� xþ y

2


 �2
r

q � aþ bq (42)

where

a ¼ xþ y

2
, b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� xþ y

2


 �2
r

, (43)

and q is a Q-vector unit

q ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� a2
p

x� y

2
z

w � x� y

2

0

B

@

1

C

A
,q2 ¼ �1: (44)

The unit vector (44) represented through the constant basis (7) has the form; q ¼ lkqk ¼ bk=bð Þ qk

where lk ¼ bk=b are components of a unit vector pointing in 3D space a vector with components

bk, then the condition detU ¼ xy� wz ¼ 1 takes the form a2 þ b2 ¼ 1, b2 ¼ bkbk. This general

biquaternion case will be used in subsequent studies when combined rotation-plus-translational

motion is regarded (see Section 6). In this section, we consider only quaternion case: a, bk ∈R, so

the matrix U is unimodular if

a � cosα, b ¼
ffiffiffiffiffiffiffiffi

bkbk
p

� sinα (45)

therefore,

U ¼ cosαþ sinαð Þ lnqn, U�1 ¼ cosα� sinαð Þ lnqn (46)

with lk representing cosines of angles between Q-vectors qk and the direction determined by q.

With the help of Eqs. (46) and (2), we reproduce the transformation (42) in the developed form

qk0 � UqkU
�1 ¼ cosαþ sinα lnqn

� �

qk cosα� sinα lmqm

� �

¼
¼ 2 sin 2

αlklnqn þ cos 2αqk þ sin 2αlnεnkmqm ¼
¼ lkln þ cos 2α δkn � lklnð Þ þ sin 2αlmεmkn½ �qn:

(47)

Eq. (47) in fact interlinks the SO 3;Rð Þ rotation matrix components and the parameters of SU 2ð Þ
transformations of a Q-frame [compare with (39)]. As well, Eq. (47) helps to make the follow-

ing geometric analysis.

Multiplied by lk (with summation in index k), Eq. (47) yields the equality lkqk0 ¼ lnqn, meaning

that vectors of the transformed frame qk0 have the same projections onto vector lk as the initial

frame qk; i.e., the transformation may be represented as a conical rotation about lk, Φ � 2α,

which is angle of the rotation in the orthogonal plane with the metric pkn ¼ δkn � lkln [see the
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second term in Eq. (47)]. Let two unit vectors ek, nk form this plane pkn ¼ eken þ nknn, then

lmεmkn ¼ eknn � ennk, and the SO 3;Rð Þ-matrix comprised in Eq. (47) acquires the form

Rk0n ¼ lkln þ cosΦ eken þ nknnð Þ þ sinΦ eknn � eknnð Þ: (48)

Introducing now two artificial unit vectors with complex number components sk � ek þ inkð Þ=
ffiffiffi

2
p

and s∗k � ek � inkð Þ=
ffiffiffi

2
p

, we get the final (canonical) expression

Rkn ¼ lkln þ eiΦ sks
∗

n þ e�iΦ s∗ksn: (49)

Eq. (49) is just an explicit formulation of the spectral theorem applied on a 3D orthogonal

matrix. Since its determinant differs from zero, this matrix is nonsingular, all its eigenvalues

λ ið Þ are different, so it is simple; therefore, it can be expanded into a series of projectors C ið Þ with

λ ið Þ as coefficients

R ¼
X

3

i¼1

λ ið ÞC ið Þ: (50)

Here, λ 1ð Þ ¼ 1, λ 2ð Þ ¼ eiΦ, λ 3ð Þ ¼ e�iΦ, C 1ð Þkn ¼ lkln, Cð2Þkn ¼ sks
�
n, C 3ð Þkn ¼ sks

∗

n; the projectors are

idempotents CN
ið Þ ¼ C ið Þ, N being a natural number, TrC ið Þ ¼ 1, detC ið Þ ¼ 0. It is important to

note that the decomposition of a matrix R into the series (49, 50) necessarily leads to appear-

ance of the complex-numbered 2D basis sk s
∗

k ; we will indicate similar features in the fractal

technique (iii) below.

The value of the single rotation angle follows from computation of the trace of the matrix (49)

Φ ¼ 2α ¼ arccos
Ok0k � 1

2

� �

; (51)

antisymmetric part of the matrix yields the components of unit vector directing the rotation axis

lj ¼ isks
∗

mεknj ¼
Ok0mεkmj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3�On0nð Þ 1þOn0nð Þ
p : (52)

Eqs. (51) and (52) represent parameters of the single rotations, the angle Φ. and components lj

of the vector pointing the rotation axis, as functions of an arbitrary SO 3;Cð Þ rotation angles,

e.g., yaw, roll, and pitch ψ;φ;θf g, and parameters of an equivalent single rotation, the value of

the angle Φ and components (in the initial frame) lj of the vector pointing the rotation axis.

5.3. Reorientation as transformation of a fractal surface, technique (iii)

In Section 4, we demonstrated that each vector of any Q-triad qk is a linear combination of

vector-covector direct products of its proper biorthogonal basis ψ�; φ�� �

belonging to a
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domain of complex-number valued 2D fractal space [see Eqs. (37)]. Then, rotation (reorien-

tation) of the frame qk by the technique (ii) on the base of the transformation (42) induces

specific type of the “interior” rotation on the fractal surface level [see Eq. (38)]

ψ0� ¼ Uψ�,φ0� ¼ φ�U
�1

: (53)

Further on, we use for the dyad the eigenvectors ψ� [and eigencovectors as Hermitian conju-

gation of the vectors φ� ¼ ψ�
� �T

] of q3 of any Q-triad, where respective eigenvalues being �i.

In the simplest case of q3 from Eq. (7), the constant dyad is

ψþ ¼
0

1

� �

,φþ ¼ 0 1ð Þ,ψ� ¼
1

0

� �

,φ� ¼ 1 0ð Þ: (54)

Normalization and orthogonality conditions are identically satisfied. The matrix U, as a qua-

ternion (46), is expressible in terms of the fractal basis

U ¼ cosαþ lnqn sinα ¼

¼ cosαþ �l1i ψ
þφ� þ ψ�φþð Þ þ l2 ψþφ� � ψ�φþð Þ þ l3i ψ

þφþ � ψ�φ�ð Þ½ � sinα,
(55a)

U
�1 ¼ cosα� �l1i ψ

þφ� þ ψ�φþð Þ þ l2 ψþφ� � ψ�φþð Þ þ l3i ψ
þφþ � ψ�φ�ð Þ½ � sinα: (55b)

Therefore, Eq. (53) takes the form

ψ0þ ¼ cosαþ il3 sinαð Þψþ � sinα il1 þ l2ð Þψ�, (56a)

ψ0� ¼ sinα �il1 þ l2ð Þψþ þ cosα� il3 sinαð Þψ�, (56b)

φ0þ ¼ cosαþ il3 sinαð Þφþ � sinα il1 þ l2ð Þφ�, (56c)

φ0� ¼ sinα il1 þ l2ð Þφþ þ cosαþ il3 sinαð Þφ�
: (56d)

Eq. (56) shows that the nonlinear problem formulated within the technique (ii), on the fractal

surface level, is reduced to a linear task of the 2D basis rotation.

To get technological formulas convenient for fast numerical computation, we denote the final

values of the new 2D basis as

A � cosαþ il3 sinα, B � sinα il1 þ l2ð Þ: (57)

Then, we notice that only one new dyad vector is to be computed,

ψ0þ � Aψþ � Bψ�
: (58a)

The second vector ψ0� and the co-vectors are simply expressed through the factors (57) and

their complex conjugation
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ψ0� ¼ B∗ψþ þ A
∗ψ�,φ0þ � A

∗φþ � B∗φ�,φ0� ¼ Bφþ þ Aφ�
: (58b)

This helps to represent the 3D reorientation processes “subgeometrically”, on the 2D fractal

level, as a displacement of a “joystick” tool (see [12] and Figure 1).

2D complex-numbered space can be imaged as a pyramid (with no base) consisting of one real,

one imaginary, and two mixed real-imaginary joined surfaces. The joystick has one of its end

matched with the pyramid’s top by a hinge; a certain shift of the stick gives components of a

new dyad vectors and co-vectors. From these fractal elements, a new Q-frame providing the

assigned reorientation of the spacecraft is straightforwardly built.

All reorientation parameters providing operations in the fractal space are in fact the compo-

nents of the matrix U∈ SU 2ð Þ; therefore, the unit vector directing the axis of instant rotation is

given by Eq. (52); the fractal rotation angle is

α ¼ arccos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þOk
0
k

p

2

 !

: (59)

Eqs. (59), (52), (56), and (37) suggest a very simple algorithm for computation of all parameters

of a single rotation and resulting matrices of a reoriented Q-triad describing new orientation of

a spacecraft.

The technological scheme of the reorientation procedure can be briefly outlined as the follow-

ing steps:

• A spacecraft reorientation is assigned by a series of simple rotations [Eq. (40)].

• Components of the rotation axis vector are computed [Eq. (52)].

Figure 1. Fractal “joystick tool”.
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• The angle of fractal rotation is computed [Eq. (59)].

• The dyad and resulting Q-triad are computed [Eqs. (56), (37), much simpler than in

Eq. (49)].

• If the computed and assigned frames match, then the rotation parameters are sent to the

operational systems realizing the reorientation.

The study suggested in Section 5 gives detailed analysis of math mechanisms linking two

different approaches to solution of an object’s reorientation task, a consequent 3D rota-

tions described by matrices and a single rotation about an instant axis described by

matrices. We like to emphasize importance (and original form) of Eqs. (48) and (49)

explicitly demonstrating the projector-eigenvalue decomposition of any SO 3;Rð Þ matrix,

so immediately giving technological values of the single rotation. Another novel math

feature of the problem is its connection with subgeometric properties of a fractal complex

number surface.

However, thorough analysis of the Q-math reveals its additional, and important, option quite

helpful in operational tasks. Namely, extension of the groups SO 3;Rð Þ and SU 2ð Þ to the

rotations with complex parameters, SO 3;Сð Þ and SL 2;Cð Þ, respectively, with the vector-

quaternion version of relativity theory taken into account, may open a possibility not only

reorient but as well simultaneously endow a spacecraft with velocity assigned in value and

direction. Apparently, this math tool matching rotations and accelerations, if possible in 3D

space, should exist as fractal mechanism. Designing of such original (and exotic) operational

instrument is a challenging task; it is in detail analyzed in the next section.

6. Hyperbolic rotations and a fractal pyramid

In this section, we essentially extend the methods briefly described above. The crucial point of

the extension is introduction of an imaginary parameter of rotation, thus involving hyperbolic

functions. We assume that this action will result in possibility to control not only orientation,

but as well dynamics of the spacecraft. We will prove the assumption within extended formu-

lation of the technique (iii).

But at first, to make the picture more clear, we show it in framework of 3D serial rotations

[technique (i)], and for simplicity, we implement just one supplement plane hyperbolic rotation

about one axis

O
iη

3 ¼

cos iηð Þ � sin iηð Þ 0

sin iηð Þ cos iηð Þ 0

0 0 1

0

B

@

1

C

A
¼

cosh η �i sinh η 0

i sinh η cosh η 0

0 0 1

0

B

@

1

C

A
� H

η

3 , (60)

so that hyperbolic functions are introduced. Then, complete rotational operator is
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O ¼ H
η

3R (61)

We rewrite the operator (61) in the spinor-type form where the tilde denotes some initial basis

U ¼ cosh
η

2
� i sinh

η

2
q3


 �

cos
Φ

2
þ sin

Φ

2
l~kq~kÞ,

�

(62)

and the components of the instant rotation axis vector given by Eq. (52). It is important to note

that in the computation procedure, we have to deal with vectors belonging to the same frame.

Therefore, we express q30 ¼ R3nqn and make multiplication in Eq. (62) to obtain

U ¼ cosh
η

2
cos

Φ

2
� i sinh

η

2
R3~n l~n þ cosh

η

2
sin

Φ

2
l~n � i sinh

η

2
cos

Φ

2
R3~n þ sin

Φ

2
R3~j l~mεjmnÞ

� �

qn:



(63)

This expression is again a quaternion and we denote it as

U ¼ cosΘþ sinΘð Þq, U�1 ¼ cosΘ� sinΘð Þq (64)

where

cosΘ � cos
η

2
cos

Φ

2
� i sinh η sin

Φ

2
R3~n l~n , (65)

sinΘq � cosh
η

2
sin

Φ

2
l~n � i sinh

η

2
cos

Φ

2
R3~n þ sin

Φ

2
R3~n l ~mεjmn;Þ

� �

qn,



(66)

parameter Θ being a complex number. One straightforwardly verifies fulfilling the identity

cos 2Θþ sin 2
Θ

� �

q2 ¼ cosh
η

2
cos

Φ

2
� i sinhη sin

Φ

2
R3~n l~n

� �

cosh
η

2
cos

Φ

2
� i sinhη sin

Φ

2
R3~p l~p

� �

þ

þ cosh
η

2
sin

Φ

2
l~n � i sinh

η

2
cos

Φ

2
R3~n þ sin

Φ

2
R3~j l ~mεjmnÞ

� �

�



� cosh
η

2
sin

Φ

2
l~n � i sinh

η

2
cosh

Φ

2
R3~n þ sin

Φ

2
R3~l l~pεlpsÞ

� �

q~nq~s ¼ 1:



(67)

Expression for the vector-directing axis of the single rotation is found from Eqs. (65) and (66)

ln ¼
cosh η

2 ; sin Φ

2 l~n ;�i; sinh η

2 ; cos Φ

2 R3~n þ sin Φ

2 R3~j l ~mεjmn




ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� cosh η

2 cos
Φ

2 � i sinh η sin Φ

2 R3~n l~nÞ cosh η

2 cos
Φ

2 � i sinh η sin Φ

2 R3~p l~pÞ:
��

q (68)

Eq. (61) represents an operator performing the serial rotation, and Eqs. (65), (68) give param-

eters of a single rotation. Physical content of this rotation is easily revealed when the mapping
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is made in the fractal surface format, and then returned into 3D space. Despite seeming

complexity of the given expressions, the final calculation is shown to be very simple.

So, following the ideology of geometrization of the algebraic actions, we plunge into the fractal

medium, and we consider the technique (iii). We rewrite fractal mapping with the operator

(62) in the form

ψ� ¼ Uψ0� ¼ cosh
η

2
� i sinh

η

2
q3


 �

ψ0� (69)

where the intermediate dyad is a result of the real rotation (similar with the covectors)

ψ0� ¼ cos
Φ

2
þ sin

Φ

2
lkqk

� �

~ψ�: (70)

We also stress that all dyad elements used in the computations are always the eigenvectors

(eigencovectors) of the quaternion unit q3

q3ψ
þ ¼ þiψþ, q3ψ

� ¼ �iψþ, φþq3 ¼ þiφþ, φ�q3 ¼ �iφ�; (71)

hence, Eq. (69) produces a new fractal basis simply multiplying the intermediate dyad by an

exponent

ψþ ¼ cosh
η

2
þ sin

η

2


 �

ψ0þ ¼ eη=2ψ0þ, ψ� ¼ e�η=2ψ0�, φþ ¼ e�η=2φ0þ, φ� ¼ eη=2φ0�: (72)

By other words, one dyad vector and one co-vector (here ψþand φ�) become longer, and the

others (ψ� and φþ) become shorter, all of them though preserving unit length, i.e., rescaled.

This primitive mapping has clear physical sense concerning kinematic of a spacecraft. To

reveal it, we, using Eq. (75), build an “imaginary constituent” of the 3D frame vector q10 as in

Eq. (37b).

q10 ¼ �i ψ0þφ0� þ ψ0�φ0þ

 �

¼ �i eηψþφ� þ e�ηψ�φþð Þ: (73)

However from Eqs. (37b, c), we find

ψþφ� ¼
1

2
iq1 þ q2

� �

, ψ�φþ ¼
1

2
iq1 � q2

� �

; (74)

substitution of the Eq. (74) into Eq. (73) yields

iq10 ¼ cosh η iq1 þ tanhη q2

� �

: (75a)

Eq. (75a) rewritten in terms of the Pauli-type matrices [as in Eqs. (20), (22)] p � iq has the form
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p10 ¼ cosh η p1 þ tanhη q2

� �

: (75b)

Using results of Section 3, we associate the hyperbolic functions with the time ratio

cosh η ¼
dt

dt0
(76)

(linking time dt of an immobile frame and proper time dt0 of moving spacecraft) and with the

relative velocity ratio (c is speed of light).

tanhη ¼ V=c: (77)

Then, Eq. (75b) takes the form of “vector interval” of quaternion version of relativity theory

(23)

dt0 p10 ¼ dt p1 þ
V

c
q2

� �

; (78)

when squared, it gives the spacecraft’s special relativistic space-time interval linked with the

frame at rest by the Lorentz (hyperbolic) transformation

dt0
2
¼ dt

2 1� V2=c2
� �

(79)

describing kinematics of a frame moving along q2 with velocity V, while the vectors p1(or p10 )

play the role of direction of time in the immobile (or moving) spacecraft. It is always possible to

choose the direction q2 as pointing the “yaw” of a spacecraft. In particular, the velocity can be

small sufficiently to reduce the calculations into classical format

V=c ¼ tanhη ≈ η (80)

besides, the velocity modulus may be variable in time; hence, the spacecraft is accelerated.

So, introducing imaginary rotation angles, we obtain a possibility to control an arbitrary space

reorientation of a spacecraft with variation of its velocity in the direction that can be as well

changing with time (In this sample, the vector q2 is in fact permanently rotating.)

This math tool has two important properties. First, a spacecraft endowed by the tool with a

velocity is initially described as a relativistic system; one comes to the classical mechanics

considering the hyperbolic parameter small. Second, the tool accelerates the spacecraft always

in the direction of the frame vector appointed to indicate “yaw”; if this vector rotates, changing

the yaw, the acceleration arrow changes with it; i.e., the spacecraft is accelerated along a curve

line. These properties can be useful in real motion control.

On the 2D fractal level, the spacecraft’s more complex 3D motion comprising reorientation and

acceleration is accompanied by respective rotation and deformation of the mentioned above

fractal pyramid. Here, this subgeometric image of the math instrument necessarily enriches a
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simpler model of the joystick, and moreover, to make the picture symmetric, we show positive

and negative directions of the pyramid (see Figure 2).

Computations providing the spacecraft’s reorientation and acceleration are performed on the

fractal level by Eq. (58) with the functions A, B generalized as
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A � cos
Φ

2
þ il3 sin

Φ

2

� �

eη=2, B � sin
Φ

2
i l1 þ l2ð Þe�η=2, (81a)

with hyperbolic conjugation ( ⊕ : e�η=2 ! e∓ η=2
� �

), similar to the complex conjugation, intro-

duced, e.g.,

A
⊕ � cos

Φ

2
þ il3 sin

Φ

2

� �

e�η=2, B∗⊕ � sin
Φ

2
�i l1 þ l2ð Þeη=2, (81b)

where vector lk directs axis of the single space rotation by angle Φ. Then (as in Section 5), only

one equation is to be solved, e.g., that determining the dyad vector

ψ0þ ¼ A ψþ � B ψ�, (82a)

and rest of the dyad elements is found by primitive math actions

ψ0�A
∗ψþ þ B∗ψ�, φ0þ ¼ A∗⊕ φþ � B∗⊕ φ�, φ0� ¼ A

⊕φþ þ B⊕φ�: (82b)

Eqs. (82), (37) immediately give expressions of all spacecraft’s frame vectors, thus solving the

reorientation and acceleration problem in explicit form.

One straightforwardly finds that use of the fractal technique (iii) essentially simplifies compu-

tation procedures. In paper [13], we compare math difficulty of the discussed three techniques

in solution of the simple problem of the spacecraft’s one-plane space rotation and acceleration.

It is demonstrated there that the techniques (i) and (ii) demand solution of at least seven

equations, among them are matrix equations, while the fractal technique (iii) suggests solution

of only four relatively simple algebraic equations.

Figure 2. Case (a): The spacecraft performs a 3D rotation, the pyramid is tilted by respective halfangle. Rotations and

displacements of a spacecraft (Pioneer-10) accompanied by respective 2D rotations and deformations of the fractal pyramid.

Case (b): The reoriented spacecraft rectilinearly moves with some velocity, and the tilted pyramid is distorted: Two its edges

become shorter, and the other two edges become longer. Case (c): The spacecraft (“frees-framed”) is reoriented by another

angle, and the distorted pyramid as tilted by respective halfangle. Case (d): The spacecraft moves along a curve trajectory

with changing velocity (accelerated), and the pyramid is subject to permanent respective tilt and distortion.
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7. Technological scheme and concluding remarks

A sketch of technological scheme aimed to realize mixed rotation-acceleration maneuver of a

spacecraft can be suggested as the following consequence of actions fit for any mentioned

above approach.

• The initial and final parameters of reorientation and acceleration are assigned andmemorized.

• Parameters as functions of time must be determined and input.

• Time intervals are divided into standard steps (quantized), the standard input.

• Process of computation of quantum steps starts resulting in obtaining of a series of related

parameter values describing the orientation and velocity of the spacecraft’s frame.

• The data of each step are transmitted to the systems changing the spacecraft orientation

and velocity until the assigned values are achieved.

And we emphasize two most important results of this study.

First, we succeeded to show that an extrarotation by an imaginary angle entails endowing a

spacecraft with a (relativistic) velocity, hence in addition to reorientation, to accelerate it. This

math observation seems to be a novel one since no similar information is met in related

literature.

Second, we show that the most mathematically economical way to compute operational

parameters needed for realization of the maneuver is to utilize the “fractal pyramid” technique

(definitely a new tool) comprising minimal number of math actions, where major of them are

simple algorithms, other approaches having no such advantages.
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