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Abstract

In this contribution, we outline the estimation of measurement uncertainty of analytical
assays in a practical way, according to the so-called reconciliation paradigm, by consider-
ing the heritance of uncertainties according to the ISO Guide to the expression of uncer-
tainty in measurement (ISO/GUM) approach and the accuracy (bias and precision) study
coming from the in-house method validation. A cause and effect analysis is performed by
using the Ishikawa diagram or fishbone plot, consisting of a hierarchical structure reaching
a final outcome that is the analytical result. The procedure is illustrated with a case study.
This procedure may be very suitable for processing data in accreditation of routine assays.

Keywords: ISO/GUM approach, method validation, uncertainty measurement

1. Introduction

The quality of analytical results is crucial because future decisions will be based on them.

Uncertainty [1] is a good indicator of this quality. For example, two measurements made with

the same ruler on different days by different people would be equivalent depending on their

individual uncertainties.

Quality assurance measurements are a formal requirement in most of the analytical laborato-

ries. As a consequence, to ensure that laboratories provide quality data, they are under contin-

uous pressure to demonstrate their fitness for purpose, i.e., by giving confidence levels on

the results. Measurement uncertainty will show the degree of agreement among results.

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



This concept of measurement uncertainty will be applicable to many cases, besides of quality

control and quality assurance in production, such as complying with and enforcing laws and

regulations, conducting a basic research, calibrating standards and instruments or developing,

maintaining, and comparing international and national physical reference standards.

The ISO Guide to the expression of uncertainty in measurement, also known as the ISO/GUM or

“bottom-up” [1], is one of the best approaches to estimate the uncertainty of analytical procedures.

This procedure, originally conceived for use in physical measurements, has been suitably adapted

to chemical ones in the EURACHEM/CITAC (Cooperation on International Traceability in Ana-

lytical Chemistry) guide [2] “Traceability in Chemical Measurement.” However, this approach is

tedious, time-consuming andunrealistic from the analytical viewpoint because their principles are

significantly different from current procedures applied in analytical chemistry dealing with

matrix effects, sampling operations and interferences [3, 4]. A strategy for reconciling the informa-

tion requirements of ISO/GUM approach and the information coming from in-house method

validation has been described by Ellison and Barwick [5]. The use of “cause” and “effect” analysis

is the key for estimating the uncertainty of an analytical assay. In practice, this approach is

performed by using a cause and effect diagram called Ishikawa or fishbone plot [6], consisting of

a hierarchical structure that culminates in the “analytical result.” In order to carry out the cause

and effect analysis, the specification equation for the result is of utmost importance. The factors

appearing in the equation (that contribute to the uncertainty of the result) are themain branches of

the fishbone plot. For each branch, secondary factors can be considered, and so on, until their

contribution to the result uncertainty is negligible. Two additional main branches (Recovery and

Precision) come from the method validation. Nevertheless, these approaches exhibit some risks.

The blind consideration of uncertainties coming from different sources of variation may lead to

“double counting” in some instances. The analysts have to clearly identify the relationships

among the sources of uncertainty in order to avoid duplications. Also, some sources of uncertainty

that can be evaluated in a unique set of experiments must be suitably combined.

The combined uncertainty of the analytical measurand is the heritance of the uncertainties of

all contributing variables (xi) involved in the specification relationship where the value of

measurand (Z) is defined as

Z ¼ F x1; x2;…xnð Þ (1)

Thus, the general expression for the combined uncertainty of measurand according to the law

of propagation of uncertainty is given by

u2 Zð Þ ¼
X

n

i¼1

∂F

∂xi

� �2

u2 xið Þ þ 2
X

n�1

i¼1

X

n

j¼iþ1

∂F

∂xi

� �

∂F

∂xj

� �

cov xi; xj
� �

(2)

When the specification function consists of products or ratios only, and the factors are consid-

ered to be independent, then

u Zð Þ
Z

� �2
¼

X

n

i¼1

u xið Þ

xi

� �2

u2rel Zð Þ ¼
X

n

i¼1

u2rel xið Þ

(3)
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But this uncertainty does not consider the uncertainty contributions due to the intermediate

precision of the assay and the trueness evaluated from recovery experiments. Nevertheless,

it is possible to include these ones into the specification relationship either directly or by

using unit-value factors f i ¼ 1� u f i
� �� �

which do not contribute to the measurand value, but

do contribute to its uncertainty [7, 8]. Accordingly, the modified specification relationship

turns to:

Z ¼
F x1; x2;…xnð Þ

R
f prec (4)

The new involved parameters are the recovery, R, and the intermediate precision of the assay,

f prec. These contributions are issued from the data of method validation study. Accordingly, the

uncertainty of measurand can be written as:

u2rel Zð Þ ¼
X

n

i¼1

u2rel xið Þ þ u2rel Rð Þ þ RSD2
prec (5)

At this step, the considerations regarding to the sources of uncertainties have to be taken into

account in order to avoid either under- or over-estimations of the result uncertainty.

The specification relationship involves a given set of parameters depending on the analytical

procedure applied. Common factors are: mass determinations (obviously for sample weight

and used standards), volumetric measurements (glassware and other devices delivering vol-

ume), analyte concentration coming from indirect calibration, and the precision and recovery

of the analytical assay established in the validation study.

In the following, these factors will be outlined and their uncertainties will be discussed.

1.1. Uncertainty of sample mass

In a typical mass determination, the analytical balance is zeroed with the empty container on

the pan, and the container is the filled and weighed. In this case, the uncertainty of mass

measurements (without considering buoyancy) is given by [9]

u mð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S2r þ S2env þ
2

3
a2L þ

m2a2T ΔTð Þ2

9
þ u2CAL

s

(6)

where S2r þ S2env is the variance of replication (repeatability and environmental variances)

expressed as an weighting intermediate precision, aL is the linearity specification of the bal-

ance, aT is the sensitivity temperature coefficient, ΔT is the difference between the room

temperature and the calibration temperature (20�C) and ucal is the standard uncertainty for

balance calibration.

Because the intermediate precision study is carried out for the entire analytical assay at the

validation stage, individual contributions to the intermediate precision (here, weighting

intermediate precision) cannot be taken into account for avoiding redundant counting of

uncertainty. Thus, the uncertainty of mass will include the uncertainty contribution of lack
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of linearity of balance, the uncertainty due to temperature effect and the calibration uncer-

tainty

u mð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

3
a2L þ

m2a2T ΔTð Þ2

9
þ u2CAL

s

(7)

1.2. Uncertainty of glassware volume

As R. Kadis pointed out [10], the evaluation of uncertainty of volumetric measurements

consists of three kinds of contributions: specification limits for the glassware of a given class,

repeatability of filling the glassware to the mark and temperature effects. Again, in order to

avoid double counting and uncertainty redundancy, the precision of filling the flask is not

considered here; thus, the uncertainty in the volume measurement is given by

u Vð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2TOL

6
þ
χ2V2

ΔTð Þ2

3

s

(8)

where aTOL is the tolerance for a given class, χ is the dilatation coefficient for the filling liquid

(2.1 � 10�4 K�1 for water), and ΔT as indicated earlier.

1.3. Uncertainty of concentration coming from calibration

Generally, in routine analysis, analytical determinations involve instrumental method where

indirect calibration is applied. Common scenarios include external calibration, standard addi-

tion calibration (in case of matrix effects) and internal standard calibration (when intrinsic

analytical signal variations appear or analyte losses may occur owing to sample preparation

procedures [11]).

In case of linear calibration, the calibration straight line is established by preparing calibration

standards. The primary stock standard solution is made by weighing the suitable mass of

standard mstdð Þ, of a given purity Pð Þ in the corresponding volume of solvent Vsð Þ

Cstd ¼
mstdP

Vs
(9)

But this concentration has an uncertainty derived from the uncertainty in the weighting, in its

purity and in the uncertainty of the glassware. The working standard solutions are prepared

by diluting a volume V ið Þ of the stock standard solution to a final volume V f . So, the concen-

tration of any calibration standard is given by

Ci ¼ Cstd
V i

V f
¼

mstdPV i

VsV f
(10)

and has an uncertainty that can be suitably calculated. However, when applying ordinary

least-squares techniques (simple linear regression), three requisites have to be fulfilled [12]:
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• The independent variable x, is free from error ε xð Þ ¼ 0ð Þ or at least, ε xð Þ << ε Yð Þ.

• The error associated to Y variable, is normally distributed, N 0; σ2
� �

.

• The variance of theYvariable,σ2, remainsuniform in thewhole range of x (homoscedasticity).

In our case, the independent variable is the concentration of standard Cið Þ and the Y variable is

the analytical signal. In a typical case of multipoint calibration (external or internal), the three

requirements mentioned above applies, and the ordinary least-squares procedure gives the

calibration straight line bY i ¼ b0 þ b1Ci. The unknown analyte content is predicted from inter-

polation of the sample response signal Y0 according to

Ccal ¼
Y0 � b0

b1
(11)

whose uncertainty can be estimated from the variance propagation law:

u2 Ccalð Þ ¼
∂Ccal

∂Y

� �2

u2 Y0ð Þ þ
∂Ccal

∂b0

� �2

u2 b0ð Þ þ
∂Ccal

∂b1

� �2

u2 b1ð Þ þ 2
∂Ccal

∂b0

� �
∂Ccal

∂b1

� �
cov b0; b1ð Þ

¼
u2 Y0ð Þ

b21
þ
u2 b0ð Þ

b21
þ

Y0 � b0ð Þ2

b41
u2 b1ð Þ þ

Y0 � b0ð Þ

b31
cov b0; b1ð Þ

¼
u2 Y0ð Þ

b21
þ
u2 b0ð Þ

b21
þ

Y0 � b0ð Þ2

b41
u2 b1ð Þ �

Y0 � b0ð Þ

b31
Cu2 b1ð Þ

(12)

where C ¼ 1
N

PN

i

Ci, N being the number of calibration points.

Eq. (10) can be rearranged to give the well-known formula recommended by EURACHEM [2]:

u Ccalð Þ ¼
sy=x

b1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m
þ

1

N
þ

Ccal � C
� �2

PN

i¼1

Ci � C
� �2

vuuuut
(13)

Here, sy=x is the residual standard deviation of the regression line, m is the number of replica-

tions measuring the sample signal and N the number of calibration points [13].

Aside from the calibration uncertainty, an additional uncertainty contribution can be consid-

ered from the preparation of standards as indicated in Eq. (8) and may be accounted separately

in the uncertainty budget:

u2 Cið Þ

C2
i

¼
u2 mstdð Þ

m2
std

þ
u2 Pð Þ

P2
þ
u2 V ið Þ

V2
i

þ
u2 Vsð Þ

V2
s

þ
u2 V f

� �

V2
f

(14)

Thus, the uncertainty of concentration is given by the uncertainty on sample analyte concen-

tration coming from calibration, and the uncertainty due to the preparation of standards.
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1.4. Uncertainty of the analytical assay from the in-house data of method validation

(precision and trueness)

Intralaboratory assessment of method accuracy encompasses both precision and trueness

study.

As EURACHEM guide advices [2], “the precision should be estimated as far as possible over

an extended period of time.” This may be accomplished by performing a between-day labora-

tory precision study. This precision study is carried out either by analyzing a typical sample, a

quality control check sample or a validation standard [14] in “intermediate precision” condi-

tions. Intermediate precision is the intralaboratory global precision under varied conditions as

expected within a laboratory in a future assay. Accordingly, if a between-day precision study is

carried out by spacing out the measurement days in such a way that the analysts, the appara-

tuses, glassware, stock solutions…really change, the precision estimation (from ANOVA) is a

suitable “intermediate precision” estimation [14], leading to an evaluation of intermediate

precision uncertainty, uIP.

Again, according to EURACHEM [2], the trueness (bias) study can be performed

• by repeated analysis of a certified reference materials (CRM), using the complete mea-

surement procedure;

• by comparing the results of analyzed samples against a reference method; and

• by applying recovery assays, using spiked placebos (validation standards) when available

or spiked samples instead, and evaluating the recovery.

Thus, an estimation of the uncertainty of bias or recovery is calculated.

Both precision and trueness studies have to be carried out at least at three analyte concentra-

tion levels (low, medium and high) in order to cover the full range of analyte concentration

indicated in the method scope.

In his excellent paper, Kadis [13] discussed the double counting risk in the uncertainty

budget when calibration uncertainty is considered together with the precision uncertainty.

The term
sx=y
b1m

in Eq. 13 features the estimated precision of the analyte concentration in the

calibration experiment. The estimated precision (from in-house validation) considers all the

sources of variability, including calibration, therefore the contribution of
sx=y
b1m

in the calibra-

tion uncertainty is redundant. Accordingly, the first term under the radical in Eq. (13)

must be omitted to avoid double counting, or alternatively, the precision uncertainty can

be omitted in the budget. Moreover, the recovery uncertainty includes the precision of the

analyte mean value, which is used in the computation of recovery. Thus, some authors

do not include the precision uncertainty together with the recovery uncertainty in the

budget [13].

The use of cause and effect diagrams for designing the uncertainty budget including the in-

house validation data is illustrated in the following worked example selected as case study.
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2. Fluorimetric determination of quinine in tonic water

This working example has been prepared from the papers of O’Reilly [15] and González and

Herrador [14], and deals with the determination of quinine in tonic water samples from

fluorescence measurements. Solutions that contain quinine in acid medium (0.05 M sulfuric

acid) show fluorescence with a maximum excitation wavelength at 350 nm and a maximum

emission wavelength at 450 nm. The determination of quinine in tonic water samples is carried

out according to the following procedure [16]: 1 mL of tonic water (previously degassed by

15 min sonication in an ultrasonic bath) was pipetted into a 100 mL volumetric flask and dilute

to the mark with 0.05 M sulfuric acid. The fluorescence intensity of this solution is measured in

a fluorescence spectrometer in 10 mm pathway quartz cells at 350 nm excitation wavelength

and at 450 nm emission wavelength. The quinine concentration is interpolated in the

corresponding calibration curve. All analytical operations were done at 20 � 4�C.

The specification equation for estimating the quinine concentration (mg/L) in tonic water

samples is given by

Z ¼
CcalV

V0R
f prec (15)

where Ccal is the value (mg/L of quinine) interpolated in the calibration curve from the measured

fluorescence intensity of the assay, V is the volume of the assay (100 mL), V0 is the sample

volume (1 mL), R is the recovery of the assay and f prec is the factor corresponding to the assay

precision which has a value of 1, but an uncertainty equals to the precision standard deviation of

the Z measurement. Recovery and precision data are taken from the in-house validation study of

the method. The corresponding cause and effect Ishikawa diagram is depicted in Figure 1.

Figure 1. Cause and effect diagram for the fluorimetric determination of quinine in tonic water.
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According to the fishbone plot, the uncertainty budget is as follows:

u2rel Zð Þ ¼ u2rel Ccalð Þ þ
X

5

i¼1

u2rel Cið Þ þ u2rel Vð Þ þ u2rel V0ð Þ þ u2rel Rð Þ þ RSD2
prec (16)

Now, each uncertainty contribution is studied and evaluated.

2.1. Uncertainty coming from calibration and standards

In order to establish the corresponding calibration curve, a stock solution of quinine was

prepared by weighing 121.6 mg of quinine sulfate dihydrate with a minimum purity of 99%

(or 99.5 � 0.5%) and dissolving and diluting 0.05 M sulfuric acid to 1000 ml in a volumetric

flask. The concentration of this stock solution corresponds to 100 mg/L of quinine base.

Six working standards solution covering from 0.2 to 1.2 mg/L quinine were prepared by

pipetting 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6 mL of the stock solution and diluting with 0.05 M sulfuric

acid in a 50 mL volumetric flask, leading to concentrations of 0.2, 0.4, 0.6, 0.8, 1.0 and 1.2 mg/L

quinine, respectively. The fluorescence intensity of each working standard at 350 nm excitation

wavelength and at 450 nm emission wavelength was measured in triplicate. The results are

shown in Table 1.

Fluorescence intensities show a linear behavior against the quinine concentration according to

a calibration straight line with a correlation coefficient of about 0.999, and the following

features:

b1 ¼ 784:76, b0 ¼ 13:67, sx=y ¼ 3:15, N ¼ 18, C ¼ 0:7,
X

18

i¼1

Ci � C
� �2

¼ 2:1

The corresponding calibration uncertainty assuming that the analytical signal is measured in

triplicate (m = 3) from Eq. (11) is given by:

Working standard solution, mg/L Fluorescence, AU

Trial 1 Trial 2 Trial 3

0.2 171 172 171

0.4 327 328 330

0.6 484 481 481

0.8 642 640 643

1.0 800 798 799

1.2 954 958 955

Table 1. Fluorescence intensities (UA) for the five working standard solutions, measured in triplicate.
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u Ccalð Þ ¼ 4� 10�3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

3
þ 1

18
þ Ccal � 0:7ð Þ2

2:1

s

(17)

Uncertainty due to preparation of working calibration standards is computed from Eq. (12).

The uncertainty of the standard mass can be evaluated according to Eq. (7). In our case, the

balance specifications were: Linearity aLð Þ: 0.2 mg. Sensitivity temperature coefficient aTð Þ:
2.5 � 10�6 K�1. The calibration certificate indicates an expanded uncertainty of 8 � 10�4 g with

a coverage factor, k = 2. Because the analytical operations are performed at 20� � 4�C and

ΔT = 4�. Thus, we have:

u mstdð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

3
0:2ð Þ2 þm2

std 2:5� 10�6
� �2

4ð Þ2

9
þ 0:4ð Þ2

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:187þ 1:11� 10�11m2
std

q

; 0:432mg

The uncertainty of purity is evaluated from the specification: 0.995 � 0.005 and assuming a

rectangular distribution. Thus, u Pð Þ ¼ 0:005
ffiffi

3
p ¼ 2:9� 10�3. Uncertainty in volumes (from pipettes

or volumetric flasks) are calculated from Eq. (8). The corresponding tolerances for glassware

laboratory (Class A) are gathered in Table 2, except for the class A graduated pipette of 1 mL

(for delivering volumes from 0.1 to 0.6 mL) which is �0.006.

In the case of working standards, V i ¼ 0:1, 0:2, 0:3, 0:4, 0:5 and 0.6 mL for each working solu-

tion, Vs ¼ 1000mL and V f ¼ 50mL. Accordingly, we get

u V1ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:006ð Þ2
6

þ 2:1� 10�4
� �2

0:12 4ð Þ2

3

s

¼ 2:45� 10�3

u V2ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:006ð Þ2
6

þ 2:1� 10�4
� �2

0:22 4ð Þ2

3

s

¼ 2:45� 10�3

u V3ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:006ð Þ2
6

þ 2:1� 10�4
� �2

0:32 4ð Þ2

3

s

¼ 2:46� 10�3

u V4ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:006ð Þ2
6

þ 2:1� 10�4
� �2

0:42 4ð Þ2

3

s

¼ 2:46� 10�3

u V5ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:006ð Þ2
6

þ 2:1� 10�4
� �2

0:52 4ð Þ2

3

s

¼ 2:46� 10�3

u V6ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:006ð Þ2
6

þ 2:1� 10�4
� �2

0:62 4ð Þ2

3

s

¼ 2:47� 10�3

u Vsð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:3ð Þ2
6

þ 2:1� 10�4
� �2

10002 4ð Þ2

3

s

¼ 0:5

u V f

� �

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:05ð Þ2
6

þ 2:1� 10�4
� �2

502 4ð Þ2

3

s

¼ 0:0317
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The total relative uncertainty of the working standards can be evaluated by avoiding multiple

counting as follows:

u2rel Cið Þ ¼
u2 mstdð Þ

m2
std

þ
u2 Pð Þ

P2
þ
X

6

i¼1

u2 V ið Þ

V2
i

þ
u2 Vsð Þ

V2
s

þ
u2 V f

� �

V2
f

¼
0:4322

121:62
þ

2:9� 10�3
� �2

0:9952
þ

2:45� 10�3
� �2

0:12
þ

2:45� 10�3
� �2

0:22

þ
2:46� 10�3
� �2

0:32
þ

2:46� 10�3
� �2

0:42
þ

2:47� 10�3
� �2

0:52
2:47� 10�3
� �2

0:62

þ
0:52

10002
þ
0:03172

502

¼ 9:18� 10�4

(18)

2.2. Uncertainty of assay and sample volumes

The uncertainties of the assay and sample volume are also estimated from Eq. (8) and toler-

ances of Table 2:

u Vð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:08ð Þ2

6
þ

2:1� 10�4
� �2

100ð Þ2 4ð Þ2

3

s

¼ 0:058

u2rel Vð Þ ¼
0:0582

1002
¼ 3:36� 10�7

u V0ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:006ð Þ2

6
þ

2:1� 10�4
� �2

1ð Þ2 4ð Þ2

3

s

¼ 2:5� 10�3

u2rel V0ð Þ ¼
2:5� 10�3
� �2

12
¼ 6:25� 10�6

(19)

Level Theoretical concentration Predicted concentration

Day 1 Day 2 Day 3 Day 4 Day 5

1 66 65.33 66.81 67.44 65.72 66.61

1 66 65.38 66.79 67.48 65.70 66.36

1 66 65.22 66.72 67.48 65.88 66.70

2 83 84.49 82.83 82.65 82.30 83.74

2 83 84.53 82.77 82.70 82.51 83.82

2 83 84.60 82.92 82.56 82.48 83.65

3 100 100.25 101.36 99.98 98.84 99.60

3 100 100.20 101.44 100.02 98.93 99.77

3 100 100.32 101.50 99.87 98.75 99.82

Table 2. Predicted concentration of the spiked placebos expressed in mg/L quinine.
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2.3. Uncertainty of precision and trueness from in-house validation

The study of precision (intermediate precision) and trueness (recovery of assay) for the fluori-

metric determination of quinine in tonic water was performed by using validation standards

(spiked placebos) as indicated by González and Herrador [16]. Validation standards of quinine

in tonic water matrix were prepared at low (66 mg/L), medium (83 mg/L) and high level

(100 mg/L), covering the whole range of analyte concentrations (from 80 to 120% of 83 mg/L

of quinine that is the recommended value of quinine in tonic waters by the FAD [17]). Both

precision and trueness study was performed by predicting the actual concentrations of the

three spiked placebos according to the recommended fluorimetric procedure for quinine

determination. Measurements were made on 5 days for each validation standard with three

replications of the assay. The results obtained are presented in Table 3.

The best way to estimate both the uncertainty contribution of intermediate precision and the

recovery (or bias) of the analytical assay when validation standards are available, is using

ANOVA at a given concentration of the validation standard, namely T, considering p different

conditions (5 days in this case) and n replications (3 days in this case). From the ANOVA

results (within conditions variance, S2W , between conditions variance, S2B, and total mean, x),

the values of variance due to the condition (here, days), S2condition, the variance of repeatability,

S2r , the variance of intermediate precision, S2IP as well as the bias and recovery together with

their uncertainties can be easily computed [14, 18]:

S2condition ¼
S2B � S2W

n
; S2r ¼ S2W ; S2IP ¼ S2r þ S2condition; RSD

2
IP ¼

S2IP

x
2

R ¼
x

T
; u2 Rð Þ ¼

S2IP �
n� 1

n
S2r

pT2
; u2rel Rð Þ ¼

S2IP �
n� 1

n
S2r

px
2

(20)

Class A glassware. Capacity, mL Tolerance, mL

Burette 50 � 0.05

25 � 0.03

10 � 0.02

Pipette 40–50 �0.05

15–30 �0.03

8–10 �0.02

3–7 � 0.01

1–2 �0.006

Volumetric flask 1000 �0.3

500 �0.15

100 �0.08

50 �0.05

25 �0.03

Table 3. Tolerances for class A laboratory glassware.
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Thus, values of RSD2
IP and u2rel Rð Þ are obtained for each spiked placebo. These data are

presented in Table 4. A significance test has been used to evaluate if the recovery is signifi-

cantly different from unity for each spiked placebo:

t ¼
1� Rj j

u Rð Þ

This value is then compared with the two-tailed critical value of tabulated Student-t statistic

for np-1 degrees of freedom (14 in our case) at a 95% confidence level tcrit 14; 95%ð Þ ¼ 2:145ð Þ.

For the three studied validation standards, recoveries were significantly equal to unity, and we

can set R ¼ 1 in all cases.

As can be seen in Eq. (20), the value of RSD2
IP contains u

2
rel Rð Þ and accordingly, as it was indicated

above, we can neglect the contribution u2rel Rð Þ in the uncertainty budget. The value of relative

precision for the determined quinine concentration is taken as RSD2
prec ¼

RSD2
IP

m (here, m = 3).

Now, all contributions of specification factors have been included in the budget. Consider now

that a sample of tonic water (Schweppes) has been analyzed by following the recommended

procedure. The response is measured in triplicate (m = 3), leading to a fluorescence intensity

(AU) of 617.5, 618.1 and 616.7. The mean value is Y0 ¼ 617:43 that corresponds to a quinine

concentration of the assay of Ccal ¼
617:43�13:67

784:76 ¼ 0:76936. Accordingly, the value of calibration

uncertainty from Eq. (17), but neglecting the radical term 1/3 in order to avoid double

counting, gives u Ccalð Þ ¼ 10�3 and u2rel Ccalð Þ ¼ 1:7� 10�6. The concentration of quinine in the

sample according Eq. (15) with R ¼ 1 and f prec ¼ 1 is Z = 76.936 ppm. We can interpolate this

value in Table 4 in order to estimate the corresponding RSD2
IP ¼ 1:31� 10�4 that leads to

RSD2
prec ¼

1:31�10�4

3 ¼ 4:38� 10�5. Then, by applying Eq. (16), disregarding the recovery contri-

bution, we get

u2rel Zð Þ ¼ u2rel Ccalð Þ þ u2rel Cið Þ þ u2rel Vð Þ þ u2rel V0ð Þ þ RSD2
prec

¼ 1:7� 10�6 þ 9:18� 10�4 þ 3:37� 10�7 þ 6:25� 10�6 þ 4:38� 10�5

¼ 0:00097

Thus, urel Zð Þ ¼ 0:03115 and u Zð Þ ¼ 76:936� 0:03115 ¼ 2:396. By assuming a Gaussian cover-

age factor of 95% confidence k = 2, the expanded uncertainty is U Zð Þ ¼ 4:792 and the quinine

concentration of Schweppes tonic water sample is Z ¼ 77� 5ppm.

Nominal concentration (T, mg/L quinine) x RSD
2
IP

R u2
rel

Rð Þ

66 66:38 1:65� 10�4 1:0057 3:28� 10�5

83 83:24 1:13� 10�4 1:0029 2:25� 10�5

100 100:04 8:87� 10�5 1:0004 1:77� 10�5

Table 4. Relative precision and uncertainty of recovery for the three validation standards in the fluorimetric

determination of quinine in tonic water.
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3. Selected applications in tabular form

A more detailed picture of most recent selected papers about the “Guide to the Expression of

Uncertainty in Measurement” is depicted in Table 5, giving an idea of the importance and

Content Authors Ref.

General overview about concepts, models, methods, and computations that are commonly

used for the evaluation of measurement uncertainty, and their application in realistic

examples drawn from multiple areas of science and technology.

Possolo and Iyer, 2017 [19]

A complete procedure to encompass an uncorrected bias into the expanded uncertainty

with a fixed coverage probability.

Synek, 2017 [20]

Reported scientific uncertainties by analyzing 41,000 measurements of 3200 quantities from

medicine, nuclear and particle physics, and interlaboratory comparisons ranging from

chemistry to toxicology.

Bailey, 2016 [21]

The GUM revision: the Bayesian view toward the expression of measurement uncertainty. Lira, 2016 [22]

Comparing methods for evaluating measurement uncertainty given in the Joint Committee

for Guides in Metrology ‘Evaluation of Measurement Data’ documents.

Stant et al., 2016 [23]

In pursuit of a fit-for-purpose uncertainty guide: the move away from a frequentist

treatment of measurement error to a Bayesian treatment of states of knowledge is

misguided.

White, 2016 [24]

Three controversies faced in the development of GUM document: (i) the acceptance of the

existence of ‘true values’, (ii) the association of variances with systematic influences and (iii)

the representation of fixed but unknown quantities by probability distributions.

Willink, 2016 [25]

A new way to express uncertainty of measurement is proposed that allows for the fact that

the distribution of values attributed to the measurand is sometimes approximately

lognormal and therefore asymmetric around the measurement value.

Ramsey and Ellison,

2015

[26]

Revision of the GUM: reasons why the Guide needed a revision, and why that revision

could not go in a direction different from the one that it has been taken.

Bich, 2014 [27]

Validating the applicability of the GUM procedure. Cox and Harris, 2014 [28]

Evolution in thinking and its impact on the terminology that accompanied the

development of the GUM

Ehrlich, 2014 [29]

The developments in uncertainty concepts and practices that led to the third edition of the

Eurachem Guide on uncertainty evaluation.

Ellison, 2014 [30]

A review of monte carlo simulation using microsoft excel for the calculation of

uncertainties through functional relationships, including uncertainties in empirically

derived constants.

Farrance and Frenkel,

2014

[31]

Evaluation of mass measurements in accordance with the GUM. The importance of

reporting calibration results in a compact way that is easily propagated down the

traceability chain is also discussed.

Nielsen, 2014 [32]

Overview about statistical models and computation to evaluate measurement uncertainty. Possolo, 2014 [33]

Discussion about recent situation in measurement science, and how to obtain a reliable

measurement result using the expression of metrological traceability together with

measurement uncertainty.

Imai,2013 [34]

A new strategy for the analytical validation based on the uncertainty profile as a graphical

decision-making tool, and to exemplify a novel method to estimate the measurement

uncertainty.

Saffaj et al., 2013 [35]
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Content Authors Ref.

Monte Carlo approach for estimating measurement uncertainty using standard

spreadsheet software.

Chew et al., 2012 [36]

General overview of the GUM and to show how the calculation of uncertainty in the

measurand may be achieved through a functional relationship.

Farrance and Frenkel,

2012

[37]

Estimation of the measurement uncertainty in quantitative determination of ketamine and

norketamine in urine using a one-point calibration method.

Ma et al., 2012 [38]

EURACHEM/CITAC workshop on recent developments in measurement uncertainty.

Contains a selection of the contributed papers at this workshop and show how the

evaluation of uncertainty is now being applied to a wide range of analyses.

Williams, 2012 [39]

Highlight some of the differences between the two concepts of total error and uncertainty

but also to stress their main similarities.

Rozet et al., 2011 [40]

The assurance as a result of blood chemical analysis by ISO-GUM and Quality Engineering. Iwaki, 2010 [41]

Managing quality vs. measuring uncertainty in the medical laboratory. The paper argues

that total error provides a practical top-down estimate of measurement uncertainty in the

laboratory, and that the ISO/GUM model should be primarily directed to and applied by

manufacturers.

Westward, 2010 [42]

Comparison of the approach to measure uncertainties proposed in ISO 5725 and GUM

from a statistician point of view.

Deldossi and Zappa,

2009

[43]

Utilizing the correlations between the N individual results, an equation is derived to

combine the N individual uncertainties of N measurements. Using the newly derived

equation including the correlation coefficient, three measurement uncertainties of three

measurement results are combined as an example.

Nam et al., 2009 [44]

From GUM to alternative methods for measurement uncertainty evaluation. Priel, 2009 [45]

Critical debate about the revision of the Guide to the expression of uncertainty in

measurement.

Bich, 2008 [46]

Course aimed at developing understanding of measurement and uncertainty in the

introductory physics laboratory. The course materials, in the form of a student workbook,

are based on the probabilistic framework for measurement as recommended by the

International Organization for Standardization in their publication GUM.

Buffler et al., 2008 [47]

Scientific discussion about measurement uncertainty and chemical analysis. Kadis, 2008 [48]

Treatment of uncorrected measurement bias in uncertainty estimation for chemical

measurements.

Magnusson and

Ellison, 2008

[49]

A critical overview of the current doubtful practice on presentation of correlated data in the

physics literature and in the scientific and technological databases.

Ezhela, 2007 [50]

A detailed step-by-step guide to analytical method validation, considering the most

relevant procedures for checking the quality parameters of analytical methods.

González and

Herrador, 2007

[9]

Development of the concept of uncertainty in measurement and the methods for its

quantification from the classical error analysis to the modern approaches based on the

GUM.

Kacher et al., 2007 [51]

Measurement uncertainty: top-down and bottom-up approach, tools for its determination

uncertainty sources and practical examples.

Meyer, 2007 [52]

Critical review about calibration-, uncertainty-, and recovery-related documents from 10

consensus-based organizations.

Vanatta and

Coleman, 2007

[53]

Evolution of the GUM: documents relating to the GUM planned by Joint Committee for

Guides in Metrology.

Bich et al., 2006 [54]
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Content Authors Ref.

Calculating uncertainty of measurement for serology assays by use of precision and bias. Dimech et al., 2006 [55]

Comparison of ISO-GUM, draft GUM Supplement 1 and Bayesian statistics using simple

linear calibration.

Kacher et al., 2006 [56]

Estimation of the measurement uncertainty of analytical assays based on the LGC/VAM

protocol from validation data in the light of the study of precision, trueness and robustness.

González et al., 2005 [57]

Philosophy behind the GUM, and demonstrates, with a medical physics measurement

example of how the GUM recommends uncertainties be calculated and reported.

Gregory et al., 2005 [58]

The limitations of the GUM for evaluating the uncertainty of indirect measurements. The

propagation of distributions as the best way to evaluate the measurement. Uncertainty and

the use of Monte-Carlo method for performing the propagation of distributions is outlined

and discussed.

Herrador et al., 2005 [59]

Comparison of six commercial programs devoted to the estimation of measurement

uncertainty for feasibility in order to be applied in routine chemical analysis.

Jurado and Alcázar,

2005

[60]

Treatment of bias in estimating measurement uncertainty. O’Donnell and

Hibbert, 2005

[61]

Statistical analysis of Consultative Committees of the International Committee of Weights

and Measures (CIPM) key comparisons based on the ISO Guide.

Kacker et al., 2004 [62]

General overview of the uncertainty of measurement concept, with minimal metrological

terminology, and also practical guidelines to assist pathology laboratories comply with this

accreditation requirement.

White and Farrance,

2004

[63]

Approach to determine the overall uncertainty by combining the uncertainties of the

individual results when the difference is statistically significant by GUM.

Choi et al., 2003 [64]

An appraisal on the guide to expression of uncertainty in measurement approach for

estimating uncertainty.

Kristiansen, 2003 [65]

Critique of the Guide to the expression of uncertainty in measurement method of

estimating and reporting uncertainty in diagnostic assays.

Krouwer, 2003 [66]

Effect of non-significant proportional bias in the final measurement uncertainty. Maroto et al., 2003 [67]

Background of the GUM. The knowledge of the respective measurement and other

fundamental aspects which have been included in the EA-4/02 requirements document

published by the European co-operation for accreditation.

Kessel, 2002 [68]

Operational definitions of uncertainty taking into account the differences in the ways in

which truth, uncertainty and error are conceived.

Hund et al., 2001 [69]

Approaches to the evaluation of uncertainties associated with recovery Barwick and Ellison,

1999

[70]

Review of the concepts and practices of data quality in analytical chemistry in relation to

uncertainty. It is addressed primarily to the bodies that will be responsible for the

introduction of uncertainty into routine practice.

AMC, 1995 [71]

Future trends in analytical quality assurance, the evaluation of the quality of analytical

results by estimation of their uncertainties. The present state-of-the-art is described, and the

impact caused by the declaration of uncertainties in chemical results is foreseen.

Cortez, 1995 [72]

Critical reflexion about the uncertainty concept and its method for estimation. Thompson, 1995 [73]

Guidelines for evaluating and expressing the uncertainty of NIST measurement results. Taylor and Kuyatt,

1994

[74]

Table 5. Selected papers about the “Guide to the Expression of Uncertainty in Measurement (GUM)”.
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relevance of the topic in different fields. Emphasis is stressed on reviews and taking into

account the high number of references available, the authors apologize for those they may

have overlooked or inadvertently omitted. Selected applications about the estimation of uncer-

tainty in volumetric glassware, analytical balance and calibration curves, as well as the evalu-

ation of the measurement uncertainty in classical and instrumental techniques are shown in

Tables 6 and 7. Figure 2 shows the number of publications cited per year, whereas in Figure 3,

the number of paper cited by journal for the most cited journals appears.

Content Reference Ref.

Volumetric glassware

Uncertainty on using graduated volumetric glassware for the concentration of samples

(concentration tube) and its effect on measurement accuracy.

Matsuda et al., 2015 [75]

Experimental study on evaluation of uncertainty in volumetric measurement: pipettes,

graduated pipettes, graduated burettes, volumetric flasks and micropipettes used in

various analytical and biological studies.

Mukund et al., 2015 [76]

Influencing factors in uncertainty measurement that affect mass and volume

determination. Technical specification of an analytical balance such as: readability,

repeatability, linearity, off-center loading and hysteresis and for volumetric glassware:

repeatability, readability, temperature coefficient of sensitivity, temperature scattering,

meniscus reading and environmental conditions (temperature and humidity) are

considered.

Rahman et al., 2015 [77]

Analysis of the results obtained in the calibration of electronic analytical balances. Valcu and Baicu, 2012 [78]

Influence quantities for the uncertainty of a volumetric operation with glass

instruments: Calibration, handling repeatability, and the maximum permissible error.

Meyer et al., 2010 [79]

Comparison of two different approaches in the uncertainty calculation of gravimetric

volume calibration: mainstream GUM and Monte Carlo method.

Batista et al., 2009 [80]

Ranking of the contributions to the uncertainty of titrimetric results. Wampfler and Rösslein,

2009

[81]

Volume calibration of 1000 μl micropipettes. Inter-laboratory comparison between six

national metrology institutes.

Batista et al., 2008 [82]

Primer on weighing uncertainties in radionuclidic metrology. Collé, 2008 [83]

Measurement and uncertainty evaluation of nanofluid particle concentration using

volumetric flask method.

Kostic et al., 2006 [84]

Detailed analysis of relevant uncertainty sources with two different procedures for

evaluating the uncertainty identified: one of them relies on the prescribed tolerance

while the other is based on the experimental estimation of the actual performance in

the user’s hand. The uncertainty budget for each of these two approaches is evaluated,

analyzed and illustrated with a numerical example.

Kadis, 2004 [85]

Sources for both the gravimetric and spectrophotometric pipette calibration methods. Clark and Shull, 2003 [86]

Sampling variance of ultra-dilute solutions. Efstathiou, 2000 [87]

Experimental study using gravimetry in order to measure the variances observed in

aliquot volumes delivered by graduated burettes operating with various flow-rates

and surface tensions and with the burette tip immersed and not immersed in the

receiving liquid.

Schwartz, 1990 [88]

Statistical methodology required for rigorous calibration of devices that are designed

to deliver a fixed aliquot volume without having to read volume graduations lines.

Schwartz, 1989 [89]
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Content Reference Ref.

Minimizing relative error in the preparation of standard solutions by judicious choice

of volumetric glassware.

Lam and Isenhour, 1980 [90]

Practical guide to estimates of uncertainty of the calibration of balances. Anonymous [91]

Analytical balance

Calculating measurement uncertainty of the “conventional value of the result of

weighing in air”.

Flicker and Tran, 2016 [92]

Weighing uncertainties in quantitative source preparation for radionuclide metrology. Lourenço and Bobin,

2015

[93]

Influencing factors in uncertainty measurement that affect mass and volume

determination. Technical specification of an analytical balance: readability,

repeatability, linearity, off-center loading and hysteresis and for volumetric glassware:

repeatability, readability, temperature coefficient of sensitivity, temperature scattering,

meniscus reading and environmental conditions (temperature and humidity).

Rahman et al., 2015 [77]

Procedure for evaluating the uncertainty of mass measurements when using electronic

balances based on the internal quality-control routine, the calibration process, the

specification data sheet, and the considered weighing scenario.

González and

Herrador, 2007

[9]

Influence factors that affect in uncertainty measurement of a mass determination.

Technical specifications of a balance: Readability, repeatability, non-linearity,

sensitivity tolerance, temperature coefficient of sensitivity and effects of environmental

factors such as: air humidity, air pressure and air buoyancy.

Salahinejad and Aflaki,

2007

[94]

The influence of atmospheric pressure, air temperature, and relative air humidity on

weighing results was determined in a long-term experiment.

Pozivil et al., 2006 [95]

The uncertainty evaluation of mass measurements when using “in-house” calibrated

analytical balances is revisited according to the GUM.

González et al., 2005 [96]

Good practice guide is intended as a useful reference for those involved in the practical

measurement of mass and weight.

Davidson et al., 2004 [97]

Influence factors which are part of the combined measurement uncertainty of a mass

determination and their interplay, namely the technical specifications of the balance

(repeatability, nonlinearity, sensitivity tolerance, and temperature coefficient of the

sensitivity) and the effect of air buoyancy.

Reichmuth et al., 2004 [98]

A new method to correct for the largest systematic influence in mass determination –

air buoyancy. Full description of the most relevant influence parameters and the

combined measurement uncertainty is evaluated according to the ISO–GUM

approach.

Wunderli et al., 2003 [99]

Evaluation of methods for estimating the uncertainty of electronic balance

measurements. Terminology used to describe measurement quality, i.e., “accuracy,”

“precision,” “linearity,” “hysteresis,” “measurement uncertainty” (MU), and the

various contributors to MU, and will discuss the advantages and limitations of various

methods for estimating MU.

Clark and Shull, 2001 [100]

The influence of variations in atmospheric pressure on the uncertainty budget of

weighing results.

Kehl et al., 2000 [101]

Comprehensive mass metrology: A survey of the current problems surrounding mass

determination that is comprehensive but does not purport to be complete.

Kochsiek and Gläser,

2000

[102]

Calibration curve

Common mistakes in evaluating the uncertainty when pursuing that strategy, as

revealed in current chromatographic literature.

Kadis, 2017 [13]
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Content Reference Ref.

The quality coefficient as performance assessment parameter of straight

line calibration curves in relationship with the number of calibration points.

de Beer et al., 2012 [103]

Comparison in the evaluation of measurement uncertainty in analytical

chemistry testing between the use of quality control data and a

regression analysis.

Sousa et al., 2012 [104]

Application of various methodologies concerning the estimation of the standard

uncertainty of a calibration curve used for the determination of sulfur mass

concentration in fuels.

Theodorou et al., 2012 [105]

The evaluation of uncertainty for linear calibration curves generation in analytical

laboratories.

Nezhikhovskiy et al.,

2006

[106]

Uncertainty functions: a way of summarizing or specifying the behavior of analytical

systems.

Thompson, 2011 [107]

Calibration in atomic spectrometry: a tutorial review dealing with quality criteria,

weighting procedures and possible curvatures.

Mermer, 2010 [108]

Critical review on the usual procedures for testing the accuracy of analytical methods. Kemény et al., 2009 [109]

Three different techniques for fitting straight lines to experimental data and evaluation

of uncertainty: (i) traditional fitting by least-squares, (ii) a Bayesian linear-regression

analysis and (iii) an analysis according to the propagation of probability density

functions attributed to the points measured.

Willink, 2008 [110]

New method for propagating uncertainty, based on interpolation theory, to solve the

problem in linear interpolating equations. The method is extended to nonlinear

equations, and to over-determined linear or nonlinear equations fitted by least-squares

methods.

White and Saunders,

2007

[111]

Propous theory to calculate the confidence intervals of calibration lines in the above

situations. Analyses made up of sample weighing, dilution, High Performance Liquid

Chromatography measurement and calibration with the linear least-squares fitting are

taken as examples.

Hayashi and Matsuda,

2006

[112]

Commonly used expression for the standard error of a result obtained from a straight

line calibration is extended to a quadratic calibration, and the case where weighted

regression is necessary.

Hibbert, 2006 [113]

The use of Crystal-Ball is illustrated with two working examples dealing with

specification models of non-linear features and with correlated variables (such as the

slope and intercept of calibration straight lines).

González et al., 2005 [114–

115]

Introduction of a novel approach on actual calibration data for the determination

of Pb by inductively coupled plasma-atomic emission spectroscopy. The improved

calibration uncertainty was verified from independent measurements of the same

sample by demonstrating statistical control of analytical results and the absence of

bias.

Heydorn and Anglov,

2002

[116]

Evaluation of measurement uncertainty for analytical procedures

using a linear calibration function: the uncertainty deduced from repeated

observations of the sample vs. the uncertainty deduced from the standard

residual deviation of the regression.

Brüggemann and

Wennrich, 2002

[117]

Evaluation of the most conflicting points concerning linear regression.

Confidence bands and a discussion about the use of a line through the origin

are also included. In addition, the simplest expressions for expressing parameters

to the appropriate significant figures from built-in calculator programs are also

provided.

Giordano, 1999 [118]
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Content Reference Ref.

Strategy for the validation of the calibration procedure in atomic absorption

spectrometry. In order to accomplish this, the suitability of different experimental

designs and statistical tests, to trace outliers, to examine the behavior of the variance

and to detect a lack-of-fit, was evaluated. Parametric as well as randomization tests

were considered.

Penninckx et al., 1996 [119]

The “precision pattern space” is introduced in order to find the general expression for

the law of random error propagation. A new approach to the determination of the

optimum working range in spectrophotometric procedures has been developed. The

method involves the use of the calibration curve and the application of the Laplacian

operator to concentration.

Asuero et al., 1988 [120]

Table 6. Selected papers about the estimation of uncertainty in volumetric glassware, analytical balance and calibration

curves.

Content Reference Ref.

Gravimetry

Evaluation of purity with its uncertainty value in high purity lead stick by

conventional and electro-gravimetric methods.

Singh et al., 2013 [121]

The determination of barium by the gravimetric method, in which the

precipitation of BaSO4 was formed and weighed, coupled with instrumental

measurement of trace constituents was studied. Sources of uncertainty were

assessed thoroughly.

Li et al., 2002 [122]

Titrimetry

Measurement procedure for precisely determining hypochlorite in commercial

bleaches, with established traceability and full description of its uncertainty using

automatic potentiometric titration.

Barbieri Gonzaga and

Rodrigues Cordeiro, 2014

[123]

Calculation of measurement uncertainty in the determination of the

concentration of a freshly prepared solution of sodium hydroxide using

potassium hydrogen phthalate as the primary standard.

Mettler Toledo, 2014 [124]

Evaluation of measurement uncertainty components associated with the results

of complexometric determination of calcium in ceramic raw materials using

EDTA.

Basak and Kundu, 2013 [125]

Target measurement uncertainty as a tool for validation of uncertainties

estimated by different approaches: determination of total hardness in drinking

and natural waters.

Calisto et al., 2013 [126]

An easy uncertainty evaluation of the chemical oxygen demand titrimetric

analysis in correlation with quality control and validation data.

Amanatidou et al., 2012 [127]

Uncertainty estimation in measurement of pKa values in nonaqueous media: a

case study on basicity scale in acetonitrile medium.

Sooväli et al., 2006 [128]

Uncertainty of chemical oxygen demand determination in wastewater samples.

The major sources of uncertainty of the result of measurement were identified as

the purity of reagents, volumetric operations, gravimetric operations, bias, and

the repeatability of the method.

Drolc et al., 2003 [129]

Analytical procedure for the determination of the concentration of hydrochloric

acid by titration against a standardized sodium hydroxide solution. The

expanded uncertainty of the final result is expressed, endeavoring, in particular

Pueyo and Vilalta, 1996 [130]
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to evaluate covariances and to take into account the chemical behavior of the

specific reagent.

Potentiometry: Ion Selective Electrode

Uncertainty evaluation in the chloroquine phosphate potentiometric titration:

Application of three different approaches: The famous error-budget approach,

the analytical method committee top-down and the last method chosen was the

one proposed by Barwick and Ellison.

Rodomonte et al., 2006 [131]

Procedure to estimate the uncertainty of measurement applied to the fluoride

determination of waters and wastewaters matrices by selective electrode

potentiometry based on Eurachem Guide. The major sources of uncertainty were

identified as the calibration standard solutions, fluoride concentration obtained

by potential interpolation of the regression line and the precision.

Sousa and Trancoso, 2005 [132]

Estimation of uncertainty in measurement of the pKa of a weak acid by

potentiometric titration. The procedure is based on the ISO GUM.

Koort et al., 2004 [133]

Amperometry

Tutorial review on measurement uncertainty estimation in amperometric sensors. Helm et al., 2010 [134]

Electron probe microanalysis

Case study of ISO GUM-based estimation of measurement uncertainty of

quantitative surface elemental analysis by electron probe microanalysis.

Virro et al., 2008 [135]

Ultraviolet Spectrophotometry

Procedure to estimate measurement uncertainty of a validated UV

spectrophotometric method for quantification of desloratadine in tablet

formulation.

Takano et al., 2017 [136]

Uncertainty in spectrophotometric analysis – “Error propagation break up”, a

novel statistical method for uncertainty management. For the assessment of the

computations, different approaches are discussed, such as the contribution to the

Combined Standard Uncertainty of the reproducibility, the repeatability, the total

bias, the calibration curve, and the type of the measurand.

Amanatidou et al., 2011 [137]

Eevaluation of the uncertainty and metrological reliability of material

concentration measurement considering sample preparation and chemical–

physical transformation of spectrometric analysis.

Dobiliene et al., 2010 [138]

Uncertainty in modern spectrophotometers: An up-to-date view of UV–vis

molecular absorption instruments and measurements.

Galbán et al., 2007 [139]

Overview of the most important uncertainty sources that affect analytical UV–Vis

spectrophotometric measurements. Altogether, eight uncertainty sources are

discussed that are expected to have influence in chemical analysis.

Sooväli et al., 2006 [128]

Procedure for estimation of measurement uncertainty of photometric analyis

based on the ISO GUM method. Two variations of the procedure, for the

calibration graph and the standard addition method, are discussed.

Traks et al., 2005 [140]

Evaluation of the uncertainty of measurement in the determination of manganese

by spectrophotometric analysis. The standard uncertainty is evaluated for each

input quantity. These are then appropriately combined to get the combined

uncertainty of measurement.

Ramachandran and Rashmi,

1999

[141]

X-Ray Fluorescence Spectrometry

Evaluation of uncertainty in the energy dispersive X-ray fluorescence

determination of platinum in alumina.

Remya Devi et al., 2015 [142]
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Uncertainty measurement evaluation of wavelength dispersive and energy

dispersive X-ray fluorescence techniques for the Si and Utotal determination in

U3Si2 nuclear fuel.

Scapin et al., 2011 [143]

Uncertainty calculations for the measurement of in vivo bone lead by X-ray

fluorescence

O’Meara and Fleming, 2009 [144]

Effect of the sample matrix on measurement uncertainty in X-ray fluorescence

analysis.

Morgenstern et al., 2005 [145]

Atomic Absorption Spectrometry

Determination and uncertainty analysis of inorganic arsenic in husked rice by

solid phase extraction and atomic absorption spectrometry with hydride

generation.

Saxena et al., 2017 [146]

Optimization and measurement uncertainty estimation of hydride generation–

cryogenic trapping–gas chromatography–cold vapor atomic fluorescence

spectrometry for the determination of methylmercury in seawater.

Živković et al., 2017 [147]

Approach for the estimate of the uncertainty in measurement considering the

individual sources related to the different steps of the method under evaluation

as well as the uncertainties estimated from the validation data for the

determination of mercury in seafood by using thermal decomposition/

amalgamation atomic absorption spectrometry.

Torres et al., 2015 [148]

Methodology of evaluating the uncertainty of measurement of chemical

composition using atomic absorption spectrometry.

Mahajan et al., 2012 [149]

Comparison of ISO-GUM and Monte Carlo methods for the evaluation of

measurement uncertainty: Application to direct cadmium measurement in water

by graphite furnace atomic absorption spectrometry.

Theodorou et al., 2011 [150]

Evaluation of measurement uncertainties for the determination of total metal

content in soils by atomic absorption spectrometry.

Alves et al., 2009 [151]

Uncertainty statement of a mercury speciation analytical method using the

relationships fixed by GUM (Guide to the Expression of Uncertainty in

Measurement).

Jokai and Fodor, 2009 [152]

UV–Vis spectrophotometric and flame atomic absorption spectrometric analysis

for iron determination in a pharmaceutical product were compared in terms of

uncertainty budgets.

Jürgens et al., 2007 [153]

How to validate the calibration function is dealt with in detail using as an

example based on measurements obtained for nickel determination by flame

atomic absorption spectrometry. Assessing uncertainties related to linear

calibration curves is also discussed.

Chui, 2007 [154]

Three approaches are compared for the evaluation of the combined uncertainty

in the determination of mercury in aquatic sediments by an aqua regia extraction

procedure.

Guevara-Riba et al., 2006 [155]

Full validation of a cold vapor atomic absorption spectrometry method for

mercury determination in fishery products.

Haouet et al., 2006 [156]

Uncertainty of atomic absorption spectrometer. Hirano et al., 2005 [157]

Estimate of uncertainty of measurement from a single-laboratory validation

study: application to the determination of lead in blood.

Patriarca et al., 2004 [158]

Total uncertainty budget calculation for the determination of mercury in

incineration ash (BCR 176R) by atomic fluorescence spectrometry.

Tirez et al., 2002 [159]
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Uncertainty of measurement of the analysis of lead in blood by graphite furnace

atomic absorption spectrometry calibrating with a commercial available

standard.

O ‘Donnell, 2000 [160]

The major sources of uncertainty of a method for determination of Pb in whole

blood by atomic absorption spectrometry. The combined uncertainty was

compared to the experimentally determined variation and a satisfactory

agreement was found, indicating that no significant sources of uncertainty have

been overlooked and that the method is in a state of statistical control.

Kristiansen et al., 1996 [161]

Nuclear Magnetic Resonance Spectroscopy

Uncertainty budget for the results of measurements of purity of the agrochemical

glyphosate using 1H and 31P quantitative nuclear magnetic resonance

spectroscopy. The budget combines intralaboratory precision from repeated

independent measurements of a batch, and other Type A and Type B effects.

Al-Deen et al., 2004 [162]

Inductively Coupled Plasma

Results of prominent technologies of inductively coupled plasma mass

spectrometry, for determination of chloride-isotope ratios (35Cl/37Cl) and

inductively coupled plasma optical emission spectrometry for determination of

sodium, were evaluated in terms of the true level of uncertainty and revealed a

genuine problem for science that was not addressed in VIM3 and QUAM.

Andersen et al., 2016 [163]

Application of the GUM approach to estimate the measurement results

uncertainty for the quantitative determination of Al, Ba, Fe, Mg, Mn, Pb, Sr. and

Zn from document paper samples using Inductively Coupled Plasma Mass

Spectrometer. The measurement uncertainty estimation was done based on

identifying, quantifying and combining all the associated sources of uncertainty

separately.

Tanase et al., 2015 [164]

Development, validation, and evaluation of measurement uncertainty of a

method for quantitative determination of essential and nonessential elements in

medicinal plants and their aqueous extracts by using inductively coupled plasma

optical emission spectrometry.

Senila et al., 2014 [165]

Uncertainty budget for multi-elemental analysis of plant nutrients in

conifer foliar material using inductively coupled plasma atomic emission

spectrometry.

Ohlsson, 2012 [166]

Method for simultaneous inductively coupled plasma mass spectrometer

determination of 13 elements in three types of honey from Poland. The method

was validated, and the uncertainty budget was set up.

Chudzinska et al., 2012 [167]

Evaluation of the combined measurement uncertainty in isotope dilution by a

multi-collector inductively coupled plasma mass spectrometer and the use of

high-purity reference materials.

Fortunato and Wunderli,

2003

[168]

Validation of the determination of lead in whole blood by inductively coupled

plasma mass spectrometer. Uncertainty of the centroid of the calibration graph

was preferred to the evaluation of the linearity with ANOVA to validate the

calibration procedure.

Bonnefoy et al., 2002 [169]

The measurement uncertainty associated with the determination of Ni in

aqueous samples by inductively coupled plasma mass spectrometer has been

calculated using a cause-and-effect approach. A cause-and-effect diagram was

constructed to aid in the identification of the sources of uncertainty associated

with the method.

Barwick et al., 1999 [170]
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Mass spectrometry

The application of the GUM to calculate standard uncertainties for routine

uranium isotope mass spectrometry measurements for nuclear safeguards and

nuclear metrology.

Bürguer et al., 2010 [171]

Chromatography

Study to estimate a reasonable uncertainty for the measurement of the identified

measurand, which is the mass concentration of ethanol, methanol, acetone, and

isopropanol determined through dual capillary column headspace gas

chromatograph (GC): GC calibration adjustment slope, GC analytical, and

certified reference material.

Hwang et al., 2017 [172]

Development, validation and different approaches for the measurement

uncertainty of a multi-class veterinary drugs residues liquid chromatography-

mass spectrometry method for feeds.

Valese et al., 2017 [173]

Critical challenges regarding the validation of a quantitative multi-residue

method for pharmaceuticals in wastewater making use of modern solid phase

extraction-liquid chromatography-orbitrap high-resolution mass spectrometry.

Particular attention is given to study in detail response linearity, to realistically

estimate detection limits, and to express the measurement precision of the analyte

concentration, obtained by external calibration.

Vergeynst et al., 2017 [174]

Validation and uncertainties evaluation of an isotope dilution-solid phase

extraction-liquid chromatography–tandem mass spectrometry for the

quantification of drug residues in surface waters.

Brieudes et al., 2016 [175]

Rapid determination of residues of pesticides in honey by gas chromatography–

electron capture detector and gas chromatography–tandem mass spectrometry:

Method validation and estimation of measurement uncertainty according to

document No. SANCO/12571/2013.

Paoloni et al., 2016 [176]

A fast and simple liquid chromatography–tandemmass spectrometry method for

detecting pyrrolizidine alkaloids in honey with full validation and measurement

uncertainty.

Valese et al., 2016 [177]

Comparison of different methods to estimate the uncertainty in composition

measurement by chromatography: two of them (guide to the expression of

uncertainty in measurement method and prediction method) were compared

with the Monte Carlo method.

Ariza et al., 2015 [178]

The role of uncertainty regarding the results of screening immunoassays in blood

establishments.

Pereira et al., 2015 [179,

180]

Determination of polybrominated diphenyl ethers in water by a simple

dispersive liquid–liquid microextraction–gas chromatography–mass

spectrometry method. Validation parameters, including the calculation of the

expanded uncertainty associated to the results in the range of quantification is

included.

Santos et al., 2015 [181]

Establishing measurement of uncertainty for simultaneous bio-analytical

determination of L-Carnitine and Metformin in human plasma by liquid

chromatography–tandem mass spectrometry.

Terish Bino et al., 2015 [182]

Contribution of each stage in the developed procedure on the uncertainty

measurement of the determination of volatile aromatic hydrocarbons in surface

and underground water. The uncertainty sources were identified and illustrated

in an effect diagram.

Pavlova et al., 2014 [183]
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Evaluation of the sources of uncertainty in the determination of

repaglinide in human plasma using liquid chromatography–tandem mass

spectrometry.

Li et al., 2013 [184]

Measurement uncertainty of food carotenoid determination. The ISO guide was

interpreted for analytical chemistry by EURACHEM. Measurement uncertainty

was estimated based on laboratory validation data, including precision and

method performance studies, and also, based on laboratory participation in

proficiency tests.

Dias et al., 2012 [185]

Comparison of measurement uncertainty component estimations for three

methods using the high-performance liquid chromatography techniques:

determination of the type and content of aromatic hydrocarbons in diesel fuels

and petroleum distillates by normal phase high-performance liquid

chromatography, determination of nitrates in water samples by ion

chromatography, and determination of molecular weights of polystyrene by size

exclusion chromatography technique.

Tomić et al., 2012 [186]

The estimation and use of measurement uncertainty for a drug substance test

procedure validated according to USP <1225>.

Weitzel, 2012 [187]

Estimation of the global uncertainty associated to the determination of

pentachlorophenol in aqueous samples, by gas chromatography with mass

spectrometric detection, after solid phase microextraction.

Brás et al., 2011 [188]

A high-performance technique that was originally developed for inductively

coupled plasma optical emission spectrometry has been successfully translated

to ion chromatography to enable analyses with extremely low uncertainty

(0.2% Relative Expanded Uncertainty).

Brennan et al., 2011 [189]

Estimating the uncertainty related to GC-MS analysis of organo-chlorinated

pesticides from water.

Pana et al., 2011 [190]

Development of a model system of uncertainty evaluations for multiple

measurements by isotope dilution mass spectrometry: determination of folic acid

in infant formula.

Kim et al., 2010 [191]

Basic terms, sources of uncertainty, and methods of calculating the combined

uncertainty.

Konieczka and Namieśnik,

2010

[192]

Evaluation of uncertainty of measurement from method validation data: An

application to the simultaneous determination of retinol and -tocopherol in

human serum by high performance liquid chromatography.

Semeraro et al., 2009 [193]

Estimating the measurement uncertainty in forensic breath-alcohol

analysis.

Gullberg, 2006 [194]

Uncertainty budget for final assay of a pharmaceutical product based on reverse

phase high performance liquid chromatography.

Anglov et al., 2003 [195]

Analytical method to verify the accuracy of the natural abundance

butyltin standard concentrations that are needed for their subsequent

use in the reverse spike isotope dilution quantitation of enriched

species-specific spikes. A full combined uncertainty calculation,

accounting for all possible sources of uncertainty in the

measurement process.

Yang et al., 2002 [196]

Propagation of uncertainty in high-performance liquid chromatography with

UV–VIS detection.

Hibbert et al., 2001 [197]

Table 7. Selected papers on evaluation of the measurement uncertainty in classical and instrumental techniques.
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Figure 3. Number of papers cited by journals.

Figure 2. Number of publications cited per year.
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4. Final comments

Uncertainty is a measure of the quality of a measurement. It is of vital importance in many
sectors of analytical chemistry to introduce quality control and quality assurance in production,
complying with and enforcing laws and regulations; calibrating standards and instruments or
developing and comparing international and national reference standards among others.

One of the best-known approaches to estimate the uncertainty of analytical procedures is the ISO/
GUM. However, from an analytical viewpoint, this approach is sometimes tedious, time-
consuming and unrealistic. One way to overcome these limitations is the procedure for evaluat-
ing uncertainty of analytical assays in routine analysis using the GUM approach together with
the data from in-house validation based on the cause and effect diagram coming from the
analytical specification function. Expressions to calculate the different contributions of uncer-
tainty have to be carefully adapted in order to avoid double counting. The procedure is illustrated
with a case study on fluorimetric determination of quinine in tonic water showing that it is very
suitable for evaluating the uncertainty of the analyte content of future samples in routine analysis.

Finally, a summary including modern reviews on the estimation of measurement uncertainty of
analytical assays by GUM is outlined in tabular form, which can be a useful guide for those
interested in the subject. Moreover, selected application ranging from volumetric glassware,
analytical balance, calibration curves, as well as the evaluation of the measurement uncertainty
in classical and instrumental techniques in a wide variety of fields are given. Graphs on the
number of references cited (over 200) per year and the number of papers by most cited journals
are also included.
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