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Abstract

Shock compression is a challenge for porous ceramics in application. In this chapter, 
numerical simulation and experimental observation have been introduced, which reveals 
generation of crack, damage, and fracture within porous ceramics upon shock wave load-
ing. Simulation of a two-dimensional lattice-spring model explains the effects of voids 
and grain boundaries on the mesoscopic deformation features of shocked porous ceram-
ics. Experiments confirm the fracture and fragmentation evolution in the post-shock 
ceramics. These understandings are conducive to the design, manufacture and usage of 
the porous ceramics under rapid impulsive loading. Furthermore, the concept of con-
trollable fracture is proposed, which is a strategy to modulate the propagation of shock 
fracture in porous ceramics for the avoidance or delay of the shock-induced functional 
failure. It is evidenced that a “shielded region,” i.e., free of severe shock fracture, could be 
formed with the sacrifice of a “damaged region” in the porous ceramics.

Keywords: porous ceramics, shock compression, lattice-spring model, deformation 
mechanisms, damage shielding

1. Introduction

Shock wave loading is generated often at impact, collision, and blast. A shock wave is a pow-

erful amplifier of defects in that it activates pre-existing defects (e.g., microvoids, cracks, and 
grain boundaries), extends cracks, and breaks media. The main challenge of porous ceramics 

in the application upon shock wave loading is its nonstationary behavior due to crack, dam-

age, and fracture of the heterogeneous structure [1–4]. Mechanical, electrical, and optical prop-

erties of ceramics are severely affected by shock waves, and consequently, it may deteriorate 
the designed functions of shocked ceramics, such as in the cases of high-strength ceramics for 

armor [5], piezoelectric and ferroelectric ceramics for converting mechanical energy to electri-

cal energy [6–8] and transparent ceramics for optical measurements in shock experiments [9]. 

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Hence, a good understanding of the dynamic response of porous ceramics under rapid impul-

sive loading is vital to the design, manufacture, and usage of these materials. To this objec-

tive, a two-dimensional lattice-spring model (LSM) has been newly established, and the shock 
compression behavior of porous ceramics is explored and the mechanisms and strategies for 

improving robustness are discussed.

2. Model of porous ceramics under shock wave compression

Dynamic response of porous ceramics under rapid impulsive loading relates to evolution of a 

crack network following the shock wave. Although some pioneer works have been conducted 

on modeling ceramic shock fracture via mesh-based computational methods [10–13], such meth-

ods encounter significant difficulties when dealing with fracture and fragmentation induced by 
shock wave compression. The reason is that partial derivatives are used in mesh-based methods 

to represent the relative displacement and force between any two neighboring particles [14]. 

But, the necessary partial derivatives with respect to the spatial coordinates are undefined along 
the cracks and need to be redefined. However, the redefinition requires us to know where the 
discontinuity is located. This limits the usefulness of these methods in addressing problems 

involving the spontaneous formation of cracks, in which one might not know their location in 

advance [14]. In contrast, as a particle method, the lattice-spring model (LSM, also known as 
discrete-element method) [15–20] could avoid various numerical difficulties caused by displace-

ment discontinuity. In this section, details of the LSM model (lattice interactions, spring map-

ping procedure, fracture criterion, microstructures, loading) and its validation are introduced.

2.1. Lattice-spring model

A two-dimensional LSM was established to explore the shock behavior of porous ceramics. In 
the LSM, continuum medium is described as discrete material particles. The nearest neighboring 
particles are interconnected and interact through springs. Evolution of this network can repre-

sent the global response of macroscopic materials, if the interactions of material particles are 

described accurately. Through simplifications of real materials and the model’s discrete nature, 
LSM has the advantage in treating fracture, fragmentation, and other dynamic damage processes 
of brittle materials subjected to tension, compression, shear, and other complex loading [17].

The model established here has an elastic-brittle interaction, which ignores the small plastic-

ity contribution to the response that possibly exists in brittle materials; only a linear elastic 
interaction is used. Particle interaction is shown in Figure 1. Between pairs of nearest-neighbor 

particles, indexed by i and j, there are the central potential forces   f  
ij
  n   and the shear resistance 

forces   f  
ij
  τ  . They could be visualized as forces provided by a normal spring that lies along the 

normal direction and a shear spring that lies along the tangent direction.

An energy threshold based on Griffith’s energy balance principle [21] has been used as the frac-

ture criterion. The summation of the deformation energy induced by tension in the normal spring 

and shear in the shear spring is calculated when the relative position between two neighboring 

particles changes. And the two springs break irreversibly to create a microcrack between the two 
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particles, when the sum exceeds a certain threshold corresponding to the fracture energy. The 

deformation energy induced by compression in the normal spring will not be counted in this cri-

terion, because it is assumed that hydrostatic compression would not cause fracture in the homo-

geneous media. When the microcrack forms between two particles, tension and shear interactions 

are removed; however, repulsion and friction interactions exist, when the broken particles come 
into collision.

2.2. Parameter mapping procedure

The parameters used in the interaction formulae of LSM were usually given empirically, resulting 
in a qualitative representation of mechanical properties of target materials. Several outstanding 
studies have been done to overcome this shortcoming [14–16, 22–25]. Gusev proposed a param-

eter mapping procedure between finite-element method (FEM) and LSM [26]: consider a net-

work that is both a LSM lattice and a FEM mesh; first, elastic constants of the target material are 
transformed into stiffness matrix of the FEM mesh; next, using the same network, the interaction-
parameter conversion between FEM and LSM is performed (Figure 1).

To obtain the deformation state for the FEM mesh, the force-displacement equations assem-

bled from all elements need to be solved, that is,

   {F}  =  [K]  {δ}   (1)

where {F} and {δ} are the respective column vectors formed from the external forces and displace-

ments of all nodes. The so-called global stiffness matrix [K] is a sparse symmetric matrix, which 

is determined by elastic constants of the material and geometrical structure of the mesh. Under 

the equilibrium state, the internal force f
i
 acting on node i can be written, according to Eq. (1), as

   f  
i
   = −  F  

i
   = −  ( K  

i1
   ×  δ  

1
   +  K  

i2
   ×  δ  

2
   + ⋯ + K  

ii
   ×  δ  

i
   + ⋯ + K  

ij
   ×  δ  

j
   + ⋯ + K  

iN
   ×  δ  

N
  )   (2)

Since motion of translation would not change the strain energy of the whole system, Eq. (3) 
holds between elements of the matrix [K] [26],

Figure 1. Particle interaction in the LSM model and schematic of the parameter mapping procedure.
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Using K
ii
, Eq. (3) could be rearranged as
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(4)

The resultant internal force f
i
 is the sum of the forces from all the neighbor particles (1, 2,…, 

j,…, N; i excluded). Hence, the internal force acting on particle i by particle j is

   f  
ij
   =  K  

ij
   ( δ  

i
   −  δ  

j
  )  =  K  

ij
   δ  

ij
    (5)

where   δ  
ij
   =  δ  

i
   −  δ  

j
   . Eq. (5) has the form of Hooke’s law. The K

ij
 could be taken as the stiffness 

coefficients of the springs of the LSM.

2.3. Model validation

In order to validate the parameter mapping procedure, dense and porous samples have been 

built and tested. Young’s modulus, E
0
 = 250 GPa; shear modulus, G

0
 = 104 GPa; and density  

ρ = 5 ×  10   3     kg /  m   3   are set into the lattice-spring networks of those samples. Samples with poros-

ity 0, 2, 4, 6, 8, and 10% are subjected to quasi-static compression and tension. The maximum 
and minimum strains are 0.1 and −0.1%, respectively. Young’s modulus of the dense sample is 
251 GPa, which is in good agreement with the preset E

0
 [17]. In porous samples, Young’s modu-

lus decreases with the porosity increasing.

Shear wave speeds (C
s
) of dense and porous samples have been obtained via acoustic velocity 

tests. Then, the shear modulus  G = ρ  C  
s
     2   could be calculated. For the dense sample, shear modu-

lus is 105 GPa, which is almost the same with the preset G
0
 [17]. As the porosity increases, shear 

modulus decreases. In rock physics, the elastic property of rock with spherical pores could be 

estimated from [27]

   β  eff 
   (η)  =  β  

s
   (1 +   

3 (1 −  ν  
s
  ) 
 _______ 

2 (1 − 2  ν  
s
  ) 
     
η
 ___ 

1 − η  )   (6)

where   β  
s
    is the compression coefficient (the inverse of bulk modulus) of the dense medium,   β  

eff
    the 

effective compression coefficient of the porous medium,   ν  
s
    Poisson’s ratio of the dense medium, 

and  η  porosity. With
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  G (η)  =   
3E (η) 
 ___________  

 (9 −  β  eff   (η) E (η) ) 
    (7)

together with βeff(η) estimated from Eq. (6) and Young’s moduli E(η) obtained from the simula-

tion, the shear moduli G(η) of the porous samples could be worked out. G/G
0
 extracted directly 

from acoustic velocity tests are in good agreement with G/G
0
 estimated via Eq. (7) [17]. Thus, 

the parameter-mapping procedure is verified as having the capability of representing elastic 
properties of both dense and porous brittle medium quantitatively.

2.4. Microstructures and shock wave loading

To capture the influence of grain boundaries (GBs) on porous ceramics, polycrystalline sketch-

ing has been randomly produced using Voronoi tessellation [10]. As shown in Figure 2(a), 
particles (small circles) in the model are assigned into grains (large polygons). If two particles 

connected by springs belong to different grains, then the springs are assumed to be a small 
segment of a GB. Given that media on GBs have higher energy state than media in grains, 

the deformation energy required for creating a pair of new crack surfaces on GBs is smaller 
than that in grains. The energy threshold on GBs is given as   U  

S
  GB  =  U  

S
  grain  −  E   GB  , where   U  

S
  grain   

and   E   GB   are the threshold in a grain and the additional energy that exists on GBs, respectively. 

Figure 2(b) shows the distribution of U
s
 in grains and GBs. Most GBs are high-angle GBs (red 

lines), which are much weaker than grains (blue media). A few GBs are low-angle GBs (green, 
yellow, and brown lines), which have various thresholds according to their relative angles.

Voids are set by removing portions of the model particles (Figure 2(c)). In the model, the bal-

ance distance between nearest neighbor particles is 1 μm, characteristic size of the grains is 

10 μm, and the diameter of a round void is 50 μm. The length of the model along the shock 

direction is 1.6 mm. The model is illustrated schematically in Figure 3. A piston composed of 

two columns of particles is set on the left-hand side of the model; it moves with piston veloc-

ity (v
p
) towards the right and produces a shock wave, which propagates from the left to the 

right. In order to reduce computational cost, periodic boundary conditions are applied on the 

upper and lower boundaries. Free boundary condition has been applied on the right side. At 

appointed simulation steps, evolution information such as particles’ coordinates, velocities, 
stresses, springs’ forces and connection states will be recorded.

Figure 2. (a) Sketch of polycrystalline model. (b) Fracture energy set in the polycrystalline model. (c) Sketch of porous 
ceramics. White circles are randomly distributed voids and small colored dots are grains.
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3. Mechanisms of damage and deformation in shocked porous 
ceramics

A shock wave relates to a high-power pulse, in which stress and the energy are sufficient 
to vanquish toughness of ceramics. It would activate pre-existing defects (e.g., microvoids, 
cracks, and grain boundaries), extends cracks, and breaks media. Mechanical, electrical, and 

optical properties of ceramics are severely affected by shock waves [28–30], and consequently, 
it may deteriorate the designed functions of ceramics. Hence, revealing the mechanisms of 

damage and deformation in shocked porous ceramics would be a foundation for modulation 

of shock behavior and enhancement of robustness of the porous ceramics involving shock 

applications. In this section, the effects of voids and grain boundaries on the mesoscopic 
deformation features of shocked porous ceramics have been explored and compared with 

shock experiments with the recovery of shocked porous ceramics. Microscope photographs of 

voids in the recovered sample have been analyzed and compared with computational results. 

A novel mechanism of slippage and rotation deformation has been revealed, which contrib-

utes to and enhances inelastic deformation of the shocked brittle materials. As the pressure 
increases, the rotational deformation becomes a universal and important mechanism for 

relieving shear stress and dissipating strain energy.

3.1. Void collapse under shock wave compression

Simulations reveal that void collapse is initiated from severe shear stress concentrations around 

the void after the shock sweeps through. When media far from the void experience a mild shear 

stress, media in four corners around the void achieve the fracture criterion. Figure 4 shows an 

isolated void that swept by a shock wave. Four shear cracks extend from the void, and broken 

fragments fill into void along shear cracks and occupy the free volume.

To validate the computational results, shock experiments with the recovery of shocked porous 

ceramics have been implemented [31]. The lead zirconate titanate (PZT) ceramic has been used, 
which is a ferroelectric ceramic and generates megawatts of electrical power in a short period 
of time via a ferroelectric-to-antiferroelectric phase transformation driven by the shock wave 

from a high-explosive. Unpoled samples have been used, which have no bound charge and 

charge releasing under the shock experiments. Voids in the ceramics were introduced during 

fabrication by adding spherical polymethyl methacrylate particles. As shown in Figure 5(a), 

Figure 3. Schematic of the shock wave compression model for porous ceramics.
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the voids in sintered ceramics have diameters of ~50 μm. Bulk density of the samples is deter-

mined using the Archimedes method, and the sample porosity is calculated from the ratio of 

the bulk density to the theoretical density (ρ
0
 = 8010 kg/m3). The sample porosity is 9.3%.

In the recovery experiment, one wants to recover porous ceramic that contains shock compres-

sion fracture, and this fracture should only be produced by high-speed impact between the flyer 
and the target. Therefore, a momentum trap (Figure 5(b)), which has the same shock impedance 

as the ceramic, is needed to bear the intense dynamic tension produced by rarefaction waves 

and to fly away alone carrying most of the momentum input by the flyer. Figure 5(c) shows an 

incised sample: an integral recovered ceramic (yellow) is conserved in a brown brass packet. 
Samples are polished and acid etched before scanning electron microscopy (SEM) studies.

Figure 6 shows comparison of void collapse features observed in the model with an isolated 

void and recovered porous ceramics. Long-distance extended cracks that are emitted from 
voids are an important feature in the model (Figure 6(a)). Figure 6(b) shows representative 

Figure 4. Mesoscopic mechanisms of shock plasticity in porous brittle material. (a) Distribution of the maximum resolved 
shear stress when shock wave has just swept through a void. (b) A snapshot of shear cracks extension around the void after 
shock wave has swept through. (c) Relative slippage and rotational deformation revealed in post-shocked region.

Figure 5. (a) Microscopic observation of a void in initial porous lead zirconate titanate ceramic. (b) A schematic of the 
shock experiment with recovery of the shocked porous ceramics. (c) Cross section of a recovered sample.
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long cracks in the recovery sample subjected to 3.3 GPa compression. The extended crack 

directions deviate from those around the modeled isolated void (Figure 6(a)), and only two 

cracks are emitted. In Figure 6(c), no long crack exists around this void; instead, a thick crev-

ice forms at the top left corner of the void. It can be deduced that numerous grains in this area 

were damaged by multicracks and were scaled off during polishing to form such a feature. 
Many cracks that advance along GBs of porous PZT ceramic have been observed (Figure 6(d)). 
Hence, a more complex model, including multivoid and GBs, would be needed to reproduce 

these damaged features.

3.2. Characters of shear cracks around collapsing voids

Features of void collapse and shear fracture obtained from the polycrystalline model containing 

multivoid have been analyzed. In Figure 7(a), fragments of grains fill a damaged void, and long 
shear cracks extend from the void. All fragments have been removed in Figure 7(b) to compare 

with experimental observations (Figure 7(c)). In Figure 7(d), a wide area on the bottom left 
corner of the void has been damaged during crack evolution. When all fragments have been 

removed, a thick crevice is visible (Figure 7(e)), which is comparable with the deformation fea-

ture observed experimentally (Figure 7(f)). Figure 7(g–i) compares damage features between 

two voids. A few minor cracks, which are similar to the intergranular crack in Figure 6(d), exist 

around all the voids in the polycrystalline model.

The polycrystalline model also reveals the evolution of long cracks and thick crevices. For long 

cracks, an initially transgranular crack translates into an intergranular cracks after a certain 

propagation range. The translation should occur when the crack-driving force is decreased to a 

Figure 6. (a) Shear cracks emit from the void because of shear stress concentrations after the exposure to a shock wave. 
(b) Long-distance extended cracks and (c) thick cranny are observed representative mesoscopic deformation features. (d) 
Minor crack advances along GBs.
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value that cannot support transgranular fractures. This fracture mode is termed “transgranular-

to-intergranular crack mode.” However, intergranular cracks branch from the main transgranu-

lar crack during main crack propagation to form thick crevices. This fracture mode is termed 

“main (transgranular) crack and branching (intergranular) cracks mode.” Media in a wide area 
will be damaged in this fracture mode, and a thick crevice becomes visible after fragments have 

been removed.

What is the dominant factor that leads to these two different fracture modes? As shown in 
Figure 7(d), the main crack comminutes media in a wide area during its propagation. The 

thickness of the main transgranular crack is ~10 μm. The violent extension of the main crack 

Figure 7. Comparison of deformation features observed in the polycrystalline model and recovery sample. (a)–(c) 
Representative long-distance extended shear cracks. (d)–(f) Representative thick crevices. (g)–(i) Crack transfixion between 
two voids.
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implies that the crack-driving force is very strong. The branching of numerous intergranular 

cracks from the main transgranular crack may be attributed to the need for more effective shock 
energy dissipation.

3.3. Slippage and rotational deformation of shatters

A novel mechanism of slippage and rotation deformation, which contributes to and enhances 

inelastic deformation of the shocked brittle materials, has been revealed by this model. In 
shocked porous ceramic, numerous shear cracks are emitted during void collapse, forming 
a crack network. As a consequence, the media are comminuted into scattered tiny shatters 
by interlaced cracks. When the field of the relative velocity in these comminuted regions is 
drawn (Figure 8), the arrows (which indicated the relative velocities and directions of media) 
revealed complex vortex structures, showing that the shatters were slipping and rotating 
under shock [17]. The complex vortex structures indicate that the network composed of shear 

cracks takes a similar role to that of shear bands in high-strength high-toughness metallic 

glasses [32, 33]. They provide the precondition for relative slippages of media and irreversible 

deformation of the sample.

The rotational deformations of different types of materials have been reported in shock and 
static high-pressure investigations carried out by experiments and simulations [34–38]. For 

example, nickel nanoparticles were found to rotate in a diamond anvil cell when the pressure 

rose from 3 GPa to more than 38 GPa. When the particle sizes were various from 500 nm down 

to 3 nm, the measurements indicated that more active grain rotation occurs in the smaller 

nickel nanocrystals. Investigations here and in literatures about rotational deformation of 

various materials and loading conditions indicate that it becomes a universal and important 

deformation mechanism under high pressure to help the loaded systems to relieve shear 

stress and dissipate strain energy, when other usual deformations (e.g., dislocation, twinning) 
are absent or repressed [38, 39].

Figure 8. Slippage and rotation of shatters induced by extending shear cracks.
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4. Design of energy absorbing and fracture control in shocked 
porous ceramics

Pre-existing defects in ceramics induce shock wave compression fractures and may lead to the 

failure of designed functions. One traditional strategy for failure prevention has been by sinter-

ing “defect-free” ceramics (e.g., a large, perfect single-crystal sample). However, such treatment 
by sintering is difficult in practice and costly in expense, and more importantly, it only increases 
the critical emergence stress of shock fracture rather more than eliminating the probability of 

shock failure. Adopting an approach that is the opposite of creating defect-free ceramics, one 

may be able to control shock fracture and avoid the shock failure of ceramics by properly intro-

ducing defects. The control of shock fracture by introducing defects may seem counterintuitive. 

However, under quasi-static loading, there have already been many successful cases in which 
defects are introduced to avoid catastrophic fracture. In nature, highly mineralized natural 

materials owe their exceptional toughness and quasi-ductility to microscopic building blocks, 
weak interfaces and architecture [40–42]. In engineering, the fracture toughness of “hard and 

brittle” glass and metal glasses has been increased by properly introducing microcracks and 
voids [43–45]. These mechanisms can be summarized as crack shielding, deflection, and bridg-

ing, which effectively reduce the crack-driving force [46]. In shock applications, however, the 

difference is that a shock wave relates to a high-power pulse. The stress and the energy input 
are sufficient to vanquish various toughening strategies. Hence, numerous cracks nucleate and 
grow inevitably. In this case, strategies for toughening brittle materials cannot be duplicated. 
Instead, a novel approach in addressing shock fracture is proposed, i.e., modulating the propa-

gation of crack network in shocked ceramics by deliberately adding pores.

4.1. Control of the fractured region

Mesoscopic damage and deformation evolutions (void collapse, shear fracture, and rotational 
deformation) induced significant stress relaxation, leading to macroscopic “plastic” response, 
although the model particles and springs did not contribute to plasticity (only a linear elastic 
interaction was set in springs of the model). Note that here plasticity is taken in its broadest 

sense; it is identified not by dislocation movements, but by the macroscopic stress-strain curve 
and irreversible deformations. Figure 9 shows the correlation between macroscopic plasticity 

and mesoscopic damage evolution. Initially, a steep shock front is induced by the impact of the 

piston. The shock front broadens and splits into two waves during propagation inside a sample. 

The precursor wave is an elastic wave, which propagates with longitudinal acoustic speed. The 

second wave, which corresponds to an irreversible deformation, is usually termed the defor-

mation wave (it is called plastic wave in ductile metals). The propagation speed of the defor-

mation wave is slower than the elastic wave; thus, a plateau is produced between these two 
waves. After the deformation wave, the final equilibrium state, namely the Hugoniot state, is 
achieved. The deformation wave and the following plateau (the Hugoniot state) correspond to 
a “severely fractured state (SFS),” where shear fracture, void collapse, and rotational deforma-

tion of comminuted media are processed abundantly [10]. Note that the deformation wave and 
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Figure 10. Schematic of short pulse evolutions in (a) dense ceramic (with 0.5% porosity) and (b) porous ceramic (with 9.3% 
porosity). Degrees of damage of (c) dense and (d) porous samples at 800 ns after impact.

the SFS propagate synchronously. If the deformation wave is unloaded, then, without enough 

energy to maintain damage evolution, the SFS would be “frozen.” This is the foundation for 

modulating shock fracture.

Figure 10 shows schematics of controlling shock fracture. A traditional strategy for doing it is 

sintering “fully dense” ceramics (Figure 10(a)). Evolution of a dense sample with only 0.5% 

Figure 9. Comparison of (a) shock wave profiles and (b–d) damage distributions in dense, 5, and 12% porous ceramics, 
respectively.
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porosity was therefore simulated; Figure 10(c) shows that its average degree of damage is 

reduced to ~0.1, but the damage is distributed throughout the sample. An alternative approach 

is worth looking for. Instead of sintering fully dense ceramics, a new idea is to make use of 

the pores. As shown in Figure 10(b), voids are deliberately added in the ceramic; Figure 10(d) 
shows the degree of damage of a porous sample with 9.3% porosity (it is the porosity of PZT 
ceramics used in experiments) after sufficient evolvement: half of the porous sample has an 
average damage of ~0.4, and the other half of the sample is almost intact. A “shielded region” is 

acquired at the cost of severe fracture in the other parts of the sample (the “damaged region”).

The design of controlling fractured region is based on the following mechanism: (1) the defor-

mation wave would be slowed down by the deliberately increased porosity; (2) if the pulse is 
short compared with the thickness of the sample, then a rarefaction wave (the “trailing edge” 
of a stress pulse of shock) would catch up and unload the slow deformation wave; (3) the SFS 
would be frozen after the deformation wave vanishes, rather than sweep through the entire sam-

ple. After that, the ceramic will undergo elastic compression and stay in a mildly damaged state.

4.2. Validation by LSM simulation

Figure 11(a) shows the configuration of the model to investigate whether voids can protect 
part of a sample away from the SFS. In one of the simulation runs, the porosity of the sample is 

9.3% and the velocity of the flyer v
f
=300 m/s, which induces a ~5 GPa shock stress. The ultimate 

damage distribution after sufficient evolvement is shown in Figure 11(b). Half of the sample is 

in the SFS, whereas the other half is basically intact. Figure 11(c) plots three shock wave profiles 
at three midterm times. At 130 ns after impact, an elastic wave-deformation wave-rarefaction 

wave structure has formed; at 240 ns, the rarefaction wave has caught the deformation wave; 
at 350 ns, the deformation wave has unloaded completely, and the SFS should be frozen at 

that time. Indeed, the boundary between the damaged region and shielded region at 800 ns in 

Figure 11(b) matches the position where the deformation wave vanished in Figure 11(c).

Figure 11. Mechanism of earning a shielded region where the severely fractured state will not enter. (a) Configuration 
of the model. T refers to a very long momentum trap. (b) Damage distribution in the sample at 800 ns. (c) Stress wave 
evolution at three midterm times.
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Damage evolutions of dense, 5, and 12% porous ceramics have been further simulated and 

their ultimate damage distributions after the flyer impact at 300 m/s are compared. Figure 12 

plots the void collapse ratio r
collapse

 for all samples. The samples are divided into segments; the 
r
collapse

 is calculated from the ratio of the number of collapsed voids to the total number of voids 

in each segment. The boundary between the damaged region and shielded region corresponds 

to a rise of r
collapse

 from 0 to 1. For the same shock stress and the pulse width, as the porosity 

increases, the thickness of the shielded region increases accordingly. The dense ceramic has no 

shielded region, whereas the 12% porous ceramic has a shielded region of about 1 mm.

4.3. Validation by soft recovery experiment

Figure 13(a) and (e) shows the fracture characteristics of the sample subjected to a compression 

of 3.3 GPa and that of 1.4 GPa, respectively. Each image is composed of 19 SEM frames, which 

are successively scanned along the “scanned area” marked in Figure 13(b). The image has a 

width of 766 μm and a length of nearly 8 mm. The direction of the shock wave propagation is 

from the left of the image to the right. The green circles represent the voids that are basically 

intact. Figure 13(c) shows that they are concavities that are almost hemispheric and show 

no sign of collapse. The red rectangles represent the voids that have collapsed. Figure 13(d) 
shows that they are hollows that are believed to have been voids, but no longer retains their 

hemispheric shape.

For the sample loaded by a 3.3 GPa shock wave, an elastic wave-deformation wave structure 

emerged once, then the deformation wave is unloaded. The shield ratio should be rshield≈0.76, 
which means that ~1/4 of the sample would stay in the SFS and the other ~3/4 of the sample 

would be shielded. In Figure 13(a), all the voids close to the impact surface have collapsed; 
but in the other half of the sample, there are numerous voids that are basically intact. While 

the distribution of the collapsed voids in the experimental samples is not as ideal as that in 

the modeled sample, this sample can still be divided distinctly into a damaged region and a 

shielded one. However, for a fully dense (0.5%-porous) sample, the simulation showed that a 
shielded region did not form under the same condition. For the sample loaded by a 1.4 GPa 

shock wave, only one elastic wave (which would not cause void collapse) emerged. And in 
Figure 13(e), basically intact voids can be found throughout the sample.

The results obtained from simulations and experiments have a similar trend, except that about 

40% of the voids were identified as collapsed void in the shielded region of the experimental 

Figure 12. Comparison of collapse ratios of dense and porous samples with different porosities under the same shock 
stress and pulse width. r

collapse
 represents collapse ratio.
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sample. We attribute this “additional damage” in the shielded region of the recovered sample 
to two main reasons. First, there is roughness on the rear interface between the ceramic and 

the packet, which induced dynamic tensile stress after the shock wave has swept through and 

resulted in additional void damage. Second, the PZT ceramic is soft; a lot of grains are scaled off 
during polishing, which has a significant influence on the results counting. If one deducts the 
additional damage, then the experimental result is in good agreement with the simulation result.

5. Conclusion

With the lattice-spring model simulation and the shock recovery experiment, mechanisms of 
damage evolution, including void collapse, shear fracture, and rotational deformation, are illu-

minated, and their contributions to the damage toleration of the shocked porous ceramics are 

demonstrated, which would be beneficial to the understanding of porous ceramics in applica-

tion upon shock wave loading.

Here, adding pores deliberately does not mean to fabricate “foam ceramic.” As the porosity 

increases, the length of the shielded region increases accordingly, and it should be considered 

integrally when one designs porous ceramics.
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Figure 13. Fracture character of porous ceramics in recovery experiments. (a) Voids evolution in the sample subjected 
to compression of 3.3 GPa. (b) Cross section of recovery sample. (c) Green circle represents basically intact void. (d) Red 
rectangle represents void which has collapsed. (e) Voids evolution in the sample subjected to compression of 1.4 GPa.
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