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Abstract

Fuel cell modeling is an inherently multiphysics problem. As a result, scientists and
engineers trained in different areas are required to work together in this field to address
the complex physicochemical phenomena involved in the design and optimization of
fuel cell systems. This multidisciplinary approach forces researchers to become accus-
tomed to new concepts. Electrochemical processes, for example, constitute the heart of a
fuel cell. Accurate modeling of electrochemical reactions is therefore essential to success-
fully predict the performance of these devices. However, becoming familiar with the
complex concepts of electrochemistry can be an arduous task for those who approach
the study of fuel cells from fields other than chemical engineering. This process can
extend over time and requires careful reading of many textbooks and papers, the most
illuminating ones being hidden to the newcomer in a plethora of recent publications on
the subject. The authors, who engaged in the study of fuel cells coming from the field of
mechanical engineering, had to travel this road once and, with this contribution, would
like to make the journey easier for those who come behind. As an illustrative example,
the thermodynamic and electrochemical principles reviewed in this chapter are applied
to a complex electrochemical system, the direct ethanol fuel cell (DEFC), reviewing
recent work on this problem and suggesting future research directions.

Keywords: PEM fuel cells, direct alcohol fuel cells, fuel cell modeling, electrochemistry,
reaction mechanisms

1. Introduction

A fuel cell is an electrochemical device that converts the chemical energy stored in a fuel and an

oxidant directly into electricity, heat, and reaction products. The electric current is generated by a

pair of redox reactions that occur separated by an electrolyte. At the anode, the fuel is oxidized,

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



generating electrons and ions, while at the cathode the oxidant is reduced, consuming the

electrons and ions generated at the anode. The electrolyte is specifically designed so that it

cannot conduct electrons, which flow through an external circuit performing electrical work,

while it allows the flow of ions needed to maintain global electrical neutrality. Unlike conven-

tional batteries, fuel cells require that the fuel and the oxidant be supplied continuously to

sustain the electrochemical reactions.

The operation of a fuel cell is driven by chemical processes. As a result, these devices circum-

vent the Carnot cycle limitations of thermal devices and the mechanical limitations of systems

with moving parts. In addition, the amount of electrical energy that can be generated by a fuel

cell is only limited by the capacity of the fuel and oxidant reservoirs, which eliminates the long

recharge times characteristic of conventional batteries.

The discovery of the fuel cell operating principle is commonly attributed to Sir William

R. Grove [1], who also invented a practical device based on this principle: the so-called gaseous

voltaic battery [2]. Recent work, however, attributes the discovery to Christian Friedrich

Schöenbein, the famous German-Swiss chemist, better known for his discoveries of guncotton

and ozone, a year before Sir William R. Grove [3]. It is well known that both scientists

maintained a lively scientific correspondence, which may be the origin of the confusion.

Anyway, until the introduction of PTFE (Teflon) in 1950s, fuel cells were rather a scientific

curiosity than a practical system.

The first practical application of fuel cells was in space. The National Aeronautics and Space

Administration (NASA) used them in the Gemini program during the 1950s and later in the

Apollo program. The first mission that used a fuel cell was an unmanned suborbital flight on

October 30, 1960. The Gemini module launched in that mission mounted the first alkaline fuel

cell developed by General Electric, which generated 1 kW power with 29 kg weight and

provided a potable water source for the crew of future manned missions. During the Apollo

program, NASA used the alkaline fuel cells developed by Pratt &Whitney based on Sir Francis

T. Bacon patents [4, 5]. However, it was not until 1990s when the industry (Ballard, Plug

Power, etc.) started the development of commercial fuel cells, mainly for automotive and

backup power applications, and the US Department of Energy included fuel cells among its

main research interests.

Fuel cells are often classified by the type of electrolyte they use, because the charge transport

process that occurs in the electrolyte determines drastically the electrochemical reactions that

take place in the cell, the kind of catalysts required, the temperature range in which the cell

operates, the potential fuels, and other factors. These characteristics, in turn, affect the applica-

tions for which the different types of fuel cells are most suitable. According to the Fuel Cell

Technologies Office Multi-Year Research, Development, and Demonstration (MYRD&D) Plan

[6], the largest markets for fuel cells today are in stationary power, portable power, auxiliary

power units, backup power, and material handling equipment. Among fuel cell end users, the

automotive sector stands out as one of the most relevant ones [7, 8]. However, there are still

some barriers for the development of fuel cells, both technical and economical [6]. The use of

catalysts is mandatory to reach competitive power densities, as they significantly accelerate the

electrochemical reactions. In low-temperature fuel cells, the catalysts are usually based on
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noble metals, such as platinum, which are scarce and very expensive. The electrolyte is also

one of the main challenges. It often requires strict working conditions (in terms of temperature,

humidity, etc.) to operate properly. As well, fuels and oxidants are not always easy to manage

or store, which significantly increases system complexity.

The present volume is devoted to proton exchange membrane (PEM) fuel cells, whose partic-

ularities are summarized in Section 2. The specific topics of this chapter are addressed next. A

brief summary of the overall performance of PEM fuel cells (PEMFCs) is presented in Section 3.

Thermodynamic and electrochemical principles of PEM fuel cells are discussed in Sections 4

and 5. And a particular example of application of these principles to the modeling of multistep

electrochemical reactions in direct alcohol PEM fuel cells is given in Section 6. Finally, the main

conclusions are drawn in Section 7.

2. Proton exchange membrane fuel cells

PEM fuel cells (PEMFCs) use a polymeric electrolyte membrane to separate the anode from the

cathode. As previously discussed, the polymer electrolyte membrane allows the transport of

protons, but it is impermeable to electrons. The membrane is made of ionomers (synthetic

polymers with ionic properties), the most extended one being Nafion®, discovered in the late

1960s by Walther Grot of DuPont. It contains perfluorovinyl ethers terminated by sulfonic

acids with hydrophobic tetrafluoroethylene (Teflon) flexible structures. So the proton conduc-

tivity is achieved because the water into the membrane ionizes the acidic groups [9, 10]. The

sulfonic groups -SO3H (with general formula R-S ¼ Oð Þ2-OH, where R represents the generic

chain where the group is attached) are highly hydrophilic and can adsorb large amounts of

water, creating hydrated regions. In these regions, the Hþ are weakly attracted by the SO�
3

groups, which are rigidly attached to the Teflon structure, and they are able to move easily. The

hydrated hydrophilic regions thus behave as dilute acids, explaining why the membrane

needs to be well hydrated for the proton conductivity to be appreciable. Both the polymeric

nature of the membrane and the requirement of membrane hydration restrict the operational

temperature range between 60 and 90�C, although air-breathing or passive systems may

operate even at room temperature.

The transport of protons in the membrane forces the electrochemical reactions to produce or

consume protons as charge carriers. At the anode side, the most extended fuel in PEMFCs is

hydrogen [7], although alcohols are also used in direct alcohol fuel cells (DAFCs). The use of

alcohols generates significantly less power than hydrogen, but they offer safer operation for

unattended low-power missions. At the cathode side, oxygen is reduced with the protons and

electrons released in the anode to generate water as only reaction product. As previously

discussed, the protons reach the cathode crossing the membrane, whereas the electrons are

conducted through an external circuit generating current. The oxygen can be supplied as a

pure gas or diluted as part of an air stream feed directly to the cell.

To optimize the power output of PEMFCs operated with hydrogen, adequate operating condi-

tions are needed. Most PEMFCs operate between 60 and 80�C to exploit the proton conductivity
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of the membrane. Proper humidification of the gas feed streams is often used to guarantee an

adequate membrane water content. The hydrogen and air streams are usually pressurized

(typically at 0:5 bar gauge pressure) to facilitate water management [11]. To provide these cell

conditions, additional systems are required. However, other operating conditions have also been

investigated to try to eliminate auxiliary systems. Passive fuel cells rely on natural mechanisms,

such as capillary forces, diffusion, convection, and evaporation, to achieve cell feeding without

extra power consumption. Among the passive systems used, one finds air-breathing systems for

the anode electrode [12], pressurized cannisters [13], and capillary liquid systems [14]. There are

also passive cells running on different fuels, such as hydrogen [12, 15, 16], methanol [17], and

ethanol [18]. In general, passive systems are more suitable for portable power sources [19]. In the

last decade, microbial fuel cells (MFCs), which use bacteria as the catalysts to oxidize organic

and inorganic matters, have also been developed with application to microdevices [20].

High-temperature polymer exchange membrane fuel cells (HT-PEMFCs) are another variant of

PEMFCs. They operate between 100 and 200�C, are able to run in dry conditions, and tolerate

impure fuel streams (e.g., hydrogen obtained from reforming gases), and the excess heat can

be used for cogeneration. These characteristics can be exploited to simplify the system design,

which increases its overall efficiency. Nevertheless, materials other than Nafion must be used

for the membrane (PBI, SPEEK, SPI, or SPSV) and the proton carrier (phosphoric acid or ionic

liquids) [21, 22]. High-temperature operation has also been considered for DAFCs [23–25] to

improve the effectiveness of the C–C bond breaking step in higher alcohols such as ethanol.

2.1. Direct alcohol PEM fuel cells

In addition to hydrogen, several liquid organic and inorganic compounds can be used as fuels

in PEMFCs [26]. Common inorganic compounds tested for use are ammonia, hydrazine,

borohydrides, and ammonia borane. Among the organic compounds used, there are alcohols,

hydrocarbons, acids, and glycol compounds. Most of the organic compounds tested are pro-

duced by renewable biomass sources, which makes them a suitable clean option. Besides PEM

membranes, also anion exchange membranes (AEMs) are used in alkaline cells [27]. Liquid

fuels can be used either pure or diluted for safety reasons. Water is the most used solvent due

to its natural properties and because of its importance for the correct operation of the mem-

brane. Alcohols are considered a promising source fuel to fuel cells [28]. Light alcohols, such as

methanol or ethanol, are able to electrooxidate at relative low temperatures (less than 90�C).

They also have a higher energy density than hydrogen. The electrooxidation of alcohols

consumes water, which makes water an optimum solvent for the fuel supply. In addition,

aqueous alcohol solutions are typically fed at low concentrations (0.5–2 M), which makes their

operation and storage safer. These advantages make DAFCs an alternative option for low-

power applications such as portable devices or unattended remote stations. Furthermore, more

complex alcohols (e.g., propanol isomers, 2-methylpropan-2-ol, and butan-2-ol) may be an

option at higher temperatures (up to 300�C). Nacef et al. [29] carried out an extensive thermo-

dynamic study about the potential performances of several alcohols used in PEM fuel cells.

Nevertheless, some disadvantages arise when alcohols are used in PEM fuel cells. Contrary to

hydrogen, alcohol electrooxidation is a sluggish process that involves many elementary reactions

Proton Exchange Membrane Fuel Cell124



generating high activation overpotentials. This results in a severe reduction of fuel cell perfor-

mance. Besides that, since the alcohols are supplied as aqueous dilutions and the membrane is

highly permeable to water, a crossover flux of fuel is established across the membrane. The fuel

that crosses the membrane is electrooxidized at the cathode electrode, generating an undesired

parasitic current that also results in larger cathode activation losses [30–37].

The electrooxidation of organic compounds is not straightforward, as it proceeds as a branched,

multistep, reaction [38, 39]. Due to the large number of chemical bonds of the compounds,

several reactions can be expected. Unfortunately, poisoning species such as carbon monoxide

are found among the reaction intermediates that are formed in the reaction path. The CO groups

remain adsorbed to the catalyst, blocking the active reaction sites. This produces a sharp reduc-

tion of the effective catalyst surface area, which also reduces cell performance [25, 40–42]. To

mitigate this effect, binary Pt-based catalysts include a secondarymetal, such as Sn or Ru [42–52];

the blockage of active sites is alleviated via a bifunctional mechanism that allows the absorption

of hydroxyl groups at lower potentials on the secondarymetal, thus favoring further oxidation of

Pt-adsorbates blocking the active catalyst sites [53–55]. It is interesting to note that the problem of

CO poisoning is not unique to DAFCs; low-temperature PEMFCs running on hydrogen have

very low tolerance to impurities (e.g., CO) in the fuel, requiring very high purity hydrogen that is

costly to produce. Fuel cells operated with reformate gas also exhibit this problem [56].

DAFCs are suitable for portable power applications (e.g., battery chargers, consumer electron-

ics, handheld terminals, unattended security devices, notebook PCs, emergency response

mobile communications, or even auxiliary power units) and material handling equipment.

The power requirements for these applications are low, and the cost targets and infrastructure

requirements are not as challenging as for transportation applications [6, 57].

Considering all the types of DAFCs currently under development, those running on methanol

and ethanol are, in this order, the ones that have reached further progress. Below we desc-

ribe the particularities of these fuel cells, indicating the main advantages and disadvantages

of both.

2.1.1. Direct methanol fuel cells (DMFCs)

Methanol is the simplest alcohol. Due to the lack of the C–C bond present in higher alcohols,

methanol is the alcohol with the largest number of hydrogens per carbon [58], which makes it

a good hydrogen carrier. However, reforming methanol to H2 is still under study. By contrast,

a DMFC uses methanol as fuel without producing H2 during the process. The device operates

with diluted methanol (1�2 M), and only a fraction of the diluted fuel is used. The device

recycles the outlet and replenishes it to keep methanol concentration [59]. Platinum-based

catalysts show the best results [60]; additionally, secondary metals are included to reduce the

impact of CO poisoning [39, 59, 61, 62]. As previously discussed, the main applications of

DMFCs are on small portable devices: battery chargers, consumer electronics, notebook PCs,

and portable generators [57, 59, 63]. Actual challenges for DMFCs marked by DOE include

reducing Pt loading, reducing methanol crossover to increase efficiency, simplifying the side-

on systems to increase energy and power density, improve reliability, and reduce cost [6].
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2.1.2. Direct ethanol fuel cells (DEFCs)

Ethanol is a fully renewable alcohol that can be readily obtained from the fermentations of biomass

and is much less toxic than methanol [27, 64]. Fuel Cell Technologies Office plans [6] include

ethanol tolerance for liquid-feed fuel cells operated with fuel blends. The number of patents in

DEFC is steadily growing since 2002, which suggests that DEFC technology is still under develop-

ment and further progress can be expected [57]. The complete electrooxidation of ethanol to CO2

would make DEFCs useful even for automotive purposes [27]. But the sluggish kinetics of the

ethanol electrooxidation reaction hinders this achievement [27, 65–67]. By way of contrast, due to

its larger molecular structure, ethanol has a lower crossover rate than methanol, which together

with its slower electrochemical oxidation kinetics produces a lesser effect on the cathode perfor-

mance [68, 69]. The complexity of ethanol electooxidation is originated by the difficulty of breaking

the C–C bond [43, 61, 66, 70–77], a problem that is shared with other higher alcohols.

3. Performance of PEM fuel cells

The overall performance of a fuel cell is usually represented by the current density (i.e., current

per unit surface) vs. voltage curve, often referred to as the polarization curve. Thermodynamics

teaches us that, in an ideal process in which mass and charge transport phenomena occur in a

reversible manner, the output voltage should remain constant independently of the current

density. Such an ideal reversible voltage, or potential, E, is determined by the electrochemical

reactions that occur in the cell and therefore is directly related to the redox pair. Operational

parameters such as temperature and pressure also influence the ideal reversible potential.

The deviations between the ideal equilibrium potential of the redox pair and the polarization

curve provide a measure of the fuel cell efficiency. The actual current density vs. voltage curve

for a particular fuel cell (geometry, catalyst/electrode characteristics, and electrolyte properties)

and operating conditions (reactant concentrations, flow rates, pressures, temperature, and

relative humidity) is dependent on both activation (i.e., kinetic), ohmic, and mass transport

losses, to be described below:

• Activation losses are originated by the finite rate of the electrochemical reactions that take

place in the cell electrodes.

• Mass transport losses arise when the reactants are not supplied at the same rate than they

can be consumed. Mass transport losses are dominated by the porous layers and interfa-

cial phenomena [78]. As previously discussed, one of the main tasks of the porous layers is

to smooth the channel-rib pattern of the bipolar plates to provide an as homogeneous

as possible supply of reactants to the catalyst layers. However, this task entails a certain

mass transfer resistance that produces significant mass transport losses at large current

densities.

• Ohmic losses are generated by the irreversible charge transport processes associated with

finite charge transport conductivities. Electrons move through the solid phase of the gas

diffusion layers and other elements of the cell and their interfaces, while protons are
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conducted through the polymeric membrane. Although the charge transport mechanisms

are different, both result in finite voltage drops. These losses grow linearly with the current

density as stated by Ohm’s law.

The actual cell voltage at a given current density can then be expressed as the ideal reversible

potential,E,minus the so-called activation (act), transport (transp), andohmic (ohm) overpotentials

V ¼ E� ηact � ηtransp � ηohm (1)

However, for modeling purposes, the voltage losses are often separated by regions rather than

processes

V ¼ E� ηa � ηc � ηmem (2)

where ηa, ηc, and ηmem denote the voltage losses (including activation, mass transport, and

ohmic contributions) at the anode, the cathode, and the membrane.

Electrooxidation reactions arise as a crucial issue in DAFCs, since they largely determine both

ηa and ηc. For instance, the incomplete electrooxidation of ethanol hinders the theoretical

maximum energy release in direct ethanol fuel cells, while at the same time it generates a

variety of partially oxidized products. An accurate DAFC model therefore has to predict

current density and overpotentials as well as a detailed description of the residual products.

For this purpose, a systematic formulation of the multistep electrochemical reactions that take

place in DAFCs is highly desirable.

4. Thermodynamic principles of PEM fuel cells

4.1. Redox pairs

The most important driving processes that take place in a fuel cell are the electrochemical

reactions between the fuel and the oxidant. As implied by the prefix electro-
1, these reactions

involve the transfer of electric charges, and this fact is achieved through a pair of redox (i.e.,

reduction–oxidation) reactions. A redox reaction is separated into two half-reactions: the

oxidation and the reduction reactions. In the oxidation reaction, the reactant species looses

electrons. By contrast, in the reduction reaction, the reactant species gains electrons. The

oxidation and reduction reactions take place in the anode and cathode electrodes, respec-

tively.

In a fuel cell, the redox half-reactions are kept separated by an electrolyte, with the electrodes

being electrically connected through an external circuit. The electrolyte is an ionic conductor,

while the electrodes and the external circuit are made of good electronic conductors. This

1

From Latin electrum, from Ancient Greek élektron, or “amber”, a natural resin, which when rubbed produces static

electricity.
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configuration makes it possible to separate the ionic and electronic currents, the latter being

used to perform electrical work through an external circuit.

As discussed above, the reactants used for the oxidation reactions in PEM fuel cells are

hydrogen and alcohols, mostly methanol and ethanol. Protons are the ionic charge carrier in

these cells, so the oxidation reaction must generate protons for the operation of the system. For

instance, the hydrogen oxidation reaction

H2 ! 2Hþ
þ 2e� (3)

generates two protons and two electrons per molecule of hydrogen consumed. This reaction

occurs in the anode of low-temperature hydrogen PEMFCs, where due to its extreme simplic-

ity the activation losses are very small. In addition to this, the catalyst, typically made of Pt-

based particles [39, 79], performs better for simpler reactions such as (3). As implied by the

above reaction, hydrogen electrooxidation produces no other products than charge carriers, in

this case electrons and protons; hence, it is not necessary to evacuate anything else from the

anode electrode, except (maybe) the heat evolved by the reaction.

For low-power portable applications, liquid-feed direct alcohol fuel cells (DAFCs) may also

be used. The simplest alcohol is methanol (CH3OH). The electrooxidation of methanol also

produces electrons and protons but generates CO2 as well and only occurs in the presence

of water

CH3OHþH2O ! CO2 þ 6Hþ
þ 6e� (4)

which requires the supply of water and the evacuation of CO2 bubbles. This introduces

stronger mass transport limitations in the anode of a DMFC than in hydrogen PEMFCs,

motivated in particular by the presence of the bubbles.

Themethanol oxidation reaction (MOR) takes place inmultiple steps [39], and some of them lead to

theproductionofundesirable intermediateproducts, suchasCO[25, 40–42, 56].Due to themultiple

species involved, the reaction is slower and more complex than Reaction (3), which leads to

significantly lower current densities in DMFCs than in hydrogen PEMFCs. As a result, complex

and expensive catalyst compositions (Pt-Ru nanoparticles supported on high surface area carbon)

must be used tominimize activation losses [42–52].

Ethanol is another alcohol used in DAFCs. It is a more complex molecule (CH3CH2OH) with a

highly stable C–C bond, which makes it even more difficult to react. It is well known that

ethanol electrooxidation may proceed through multiple pathways, which includes partial

oxidation to acetaldehyde, acetic acid, or methane, as well as complete oxidation to CO2,

according to the following overall reactions

CH3CH2OH ! CH3COHþ 2Hþ
þ 2e� (5a)

CH3CH2OHþH2O ! CH3COOHþ 4Hþ
þ 4e� (5b)

CH3CH2OHþH2O ! CO2 þ CH4 þ 4Hþ
þ 4e� (5c)
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CH3CH2OHþ 3H2O ! 2CO2 þ 12Hþ þ 12e� (5d)

While different oxidation reactions occur in PEM fuel cells depending on the fuel type, the

reduction reaction is common to all of them, namely the oxygen reduction reaction (ORR)

O2 þ 4Hþ þ 4e� ! 2H2O (6)

which combines the electrons and protons produced in the anode with a molecule of oxygen to

produce water.

When combining Reactions (3), (4), or (5) with Reaction (6), different global reactions can be

defined for the cell:

• Hydrogen PEM fuel cells (PEMFCs)

H2 þ
1

2
O2 ! H2O (7)

• Direct methanol fuel cells (DMFCs)

CH3OHþ
3

2
O2 ! CO2 þ 2H2O (8)

• Direct ethanol fuel cells (DEFCs)

CH3CH2OHþ
1

2
O2 ! CH3COHþH2O (9)

CH3CH2OHþO2 ! CH3COOHþH2O (10)

CH3CH2OHþO2 ! CO2 þ CH4 þH2O (11)

CH3CH2OHþ 3O2 ! 2CO2 þ 3H2O (12)

4.2. Electrical work and Gibbs free energy

The energy released in a fuel cell comes from the chemical energy stored in the fuel and the

oxidant, which is released by the electrochemical reactions that take place in the anode and

cathode electrodes. The energy released or consumed by a chemical reaction is represented by

its heat of reaction or enthalpy of reaction. This value is the enthalpy change produced in a

chemical reaction, and it is calculated as the difference in formation enthalpy between the

reaction products (P) and reactants (R) at a given temperature T

Δh0 Tð Þ ¼
X

P

υkh
0
k Tð Þ �

X

R

υkh
0
k Tð Þ (13)

In the above expression, υk is the stoichiometric coefficient of species k and h0k Tð Þ is the molar-

specific formation enthalpy of species k, which can be evaluated at temperature T from its

reference value at the standard temperature T0 as follows
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h0k Tð Þ ¼ Δf h
0
k T0ð Þ þ h0k Tð Þ � h0k T0ð Þ

� �

(14)

This expression shows that the molar enthalpy of a chemical compound is made up by its

molar enthalpy of formation at the reference temperature Δf h
0
k T0ð Þ plus the enthalpy change

associated with the state change at fixed composition h0k Tð Þ � h0k T0ð Þ [80]. An extended data-

base for these thermodynamic properties, containing data for over 2000 solid, liquid, and

gaseous chemical species, is provided by NASA [81].

During the chemical reactions, entropy also changes. Just like the enthalpy of reaction (13), the

molar entropy of reaction at a given temperature T and pressure p is defined as

Δs T; pð Þ ¼
X

P

υksk T; pð Þ �
X

R

υksk T; pð Þ (15)

Unlike enthalpy, entropy has no formation contribution. As established by the third law of

thermodynamics, the absolute entropy is defined as the entropy change between the actual

estate and the absolute-zero state. For crystalline substances, entropy is zero at the absolute-

zero state, whereas noncrystalline substances have a nonzero value of the entropy at the

absolute-zero state [80]. The value of the absolute entropy can also be obtained from the NASA

library of thermodynamic data [81].

It is well known that not all the energy available in a chemical reaction can be converted to useful

work. Therefore, in a fuel cell, not all the energy released by the electrochemical reactions can be

converted to electrical work as a result of entropy production. The Gibbs free energy

G ¼ H � TS (16)

represents the amount of useful energy that can be used as potential work. In a given process, the

amount of energy that can be released as potential work is the variation of the Gibbs free energy.

For an isothermal process, the variation of the molar-specific Gibbs free energy reduces to

Δg ¼ Δh� TΔs (17)

The work performed by a fuel cell is completely electrical. In general, electrical work is done

when moving a charge Q through a potential difference E. In a fuel cell, the electrical work can

be written as

W e ¼ nFE (18)

where n is the number of moles of electrons transferred in the reaction per mole of fuel

consumed and F ¼ 96485 C/mole of electrons is Faraday’s constant. Since the maximum

amount of electrical work that can be obtained is the reduction of the Gibbs free energy

(W e ¼ �Δg), the electrical reversible potential (or voltage) obtained from the cell is

E ¼
�Δg

nF
(19)
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The value of the electrical reversible potential at the standard conditions, T0 ¼ 298 K and

p0 ¼ 100 kPa, is called the standard reversible potential of the reaction E0.

As previously discussed, water is commonly produced in PEM fuel cells. Due to the low

temperatures of operation (T < 100�C), it can be produced in both liquid and gas phases.

However, the enthalpy of formation of both phases is different, the difference being the latent

heat of vaporization. As a result, the formation of liquid water yields a significantly higher

reaction enthalpy than that of water vapor. To decide which phase should be used for

determining the potential work, we have to apply the “philosopy” of the Gibbs free energy

calculation. This accounts for the maximum energy that can be released as work. Since the

formation of liquid water releases a larger amount of energy due to the latent heat of

vaporization, which is released during condensation, the use of the gas water formation

enthalpy implies an incomplete account of the available energy. The value of the reaction

enthalpy obtained assuming the formation of liquid water is therefore called the higher

heating value (HHV), while that obtained when water vapor is formed is called the lower

heating value (LHV).

Another voltage can be defined using the reaction enthalpy (13); the thermoneutral potential or

enthapy potential ETH is

ETH ¼
�Δh

nF
(20)

This potential is useful to evaluate all the available energy contained in the fuel.

The reversible potential E accounts for the decreasing of the energy due to the entrophy

generation of the chemical reactions. In a fuel cell, the actual voltage V established between

the electrodes is lower than the reversible potential E and the enthalpy potential ETH due to the

fuel cell irreversibilities. The unused energy is dissipated as heat. Then, the total heat produced

by the electrochemical reactions can be simply expressed as

Q ¼ I ETH � Vð Þ (21)

where I represents the amount of current drawn from the cell. It is interesting to note that

when using the LHV to evaluate the enthalpy potential ETH one obtains a lower estimation of

the residual heat Q than when using the HHV. The difference comes from the fact that the

HHV includes also the heat released during water condensation. However, the global energy

balance should remain the same in both cases as long as the latent heat of vaporization is

properly accounted for [78].

4.2.1. Hydrogen potentials

The standard potential of hydrogen PEMFCs is highly dependent on the phase of water

produced. The reversible potential at 25�C is 1.229 V for liquid water and 1.185 V for water

vapor (Table 1). In both cases, the potential decreases with temperature (Figure 1). Below

100�C, the production of liquid water releases more energy than that of water vapor, so the
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potential evaluated using the HHV is higher in that range, whereas the potential obtained

using the LHV is higher over 100�C. Low-temperature PEM fuel cells operate assuming the

HHV as maximum expected energy.

Global reaction Standard potential

@ T0 ¼ 298 K

H2 þ
1
2O2 ! H2O lð Þ E0 ¼ 1:229 V

H2 þ
1
2O2 ! H2O gð Þ E0 ¼ 1:185 V

CH3OHþ 3
2O2 ! CO2 þ 2H2O lð Þ E0 ¼ 1:213 V

CH3CH2OHþ 1
2O2 ! CH3COHþH2O lð Þ E0 ¼ 1:049 V

CH3CH2OHþO2 ! CH3COOHþH2O lð Þ E0 ¼ 1:151 V

CH3CH2OHþO2 ! CO2 þ CH4 þH2O lð Þ E0 ¼ 0:889 V

CH3CH2OHþ 3O2 ! 2CO2 þ 3H2O lð Þ E0 ¼ 1:151 V

Table 1. Standard reversible potentials of several global reactions of interest for PEM fuel cell modeling.
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Figure 1. Reversible potentials for various global reactions of interest in PEM fuel cells.
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4.2.2. Methanol potentials

Liquid-feed DMFCs operate at temperatures lower than 100�C, so the HHV is used for calcu-

lating their standard potential. At higher temperatures, the phase of methanol also needs to be

considered. Figure 1 shows the evolution of the standard potential for both liquid and gas

methanol and water. The potential predicted assuming both species in liquid phase decreases

sightly with temperature, while that obtained for gas phase is seen to increase with tempera-

ture. This fact is the basis to explore the posibility of using DMFCs at temperatures above

100�C [29].

4.2.3. Ethanol potentials

The ethanol electrooxidation reaction in DEFCs has very complex kinetics with different

products [43, 61, 66, 70–77]. Table 1 shows the global reactions considered in this study

(Section 4.1). It is seen that the complete oxidation to CO2 has the higher reversible potential,

which decreases monotonically with temperature as shown in Figure 1. Although complete

oxidation to CO2 is difficult to achieve, the reversible potential of this reaction is often used as

reference for DEFC models.

4.3. The Nernst equation

So far, the effect of reactant and product concentrations on reversible cell potential has been

ignored. To understand this effect, we must introduce the chemical potential. The chemical

potential of species k is defined as

μk ¼
∂G

∂nk

� �

T,p,nl 6¼k

(22)

and represents the change of the Gibbs free energy produced by a change in the number of

moles, nk, of species k. Thermodynamics teaches us that the Gibbs free energy of a mixture can

be expressed as the sum of the chemical potentials of all the species composing the mixture

G ¼
X

k

nkμk (23)

and that the chemical potential of species k can be expressed as

μk ¼ μ
0
k þ RTln ak (24)

in terms of the activity of species k, defined as:

ak ¼

pk=p0 ideal gases

Ck=C0 for ideal dilute solutions

1 pure components

8

>

<

>

:

(25)

where C0 ¼ 1 M is the reference concentration.
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The variation of the molar-specific Gibbs free energy can then be written in terms of the

chemical potentials

Δg ¼

X

P

υkμ
0
k �

X

R

υkμ
0
k þ RTln

Q
P aυkkQ
R aυkk

(26)

where the variation of the chemical potentials in standard conditions can be written as the

standard change in the Gibbs free energy Δg0 for the reaction

Δg ¼ Δg0 þ RTln

Q
P aυkkQ
R aυkk

(27)

Using this expression to evaluate the reversible potential of the reaction E using Eq. (19), one

obtains the Nernst equation

E ¼ E0
�
RT

nF
ln

Q
P aυkkQ
R aυkk

(28)

which relates the reversible potential E of the electrochemical reaction to the standard revers-

ible potential E0, temperature, and activities, expressed in terms of concentrations or partial

pressures. Eq. (28) owes its name to the German chemist Walther Nernst2, who originally

obtained it exclusively from experimental work [83, 84], although his equation was later

deducted from first thermodynamic principles, as has been shown here.

5. Electrochemical principles of PEM fuel cells

The key point to the operation of a fuel cell is that the total reaction is split into two half-

reactions that take place separately in the anode and cathode electrodes. The Nernst equation

(28) applies to the global reaction and serves to determine the ideal reversible potential, E, but

a deeper understanding requires to study both half-reactions independently. Obviously, they

are electrochemical reactions as they involve electron transfer. In 1905, Julius Tafel proposed an

empirical equation that related the current density j produced by an electrochemical reaction to

the so-called overpotential η ¼ E� E⋆, defined as the difference between the applied potential

E and the equilibrium potential E⋆ [85]. This equation is commonly known as the Tafel equation

and is customarily written in the form

η ¼ aþ b log j with b ¼
2:3RT

αF
(29)

2

A detailed review of the historical development of Nernst equation can be found in Ref. [82]
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where α is the so-called charge transfer coefficient, whose value must be between 0 and 1, and

log indicates decimal logarithm. This equation is widely used in electrochemistry and can be

applied in several conditions [86].

Although Tafel obtained its equation purely by experimental methods, in the 1930s Butler and

Volmer (and coworkers) derived it from the Arrhenius equation for the rate constant of a

chemical reaction, rewriting the activation energy in terms of the Gibbs free energy of activa-

tion and the cell overpotential as discussed below.

5.1. From Tafel equation to Butler-Volmer equation

In 1889, Arrhenius [87]3 proposed that the temperature dependence of the rate constant of a

chemical reaction could be expressed as

K ¼ A exp
�ΔAE

RT

� �

(30)

where T is the absolute temperature, A is the frequency factor, and ΔAE is the activation

energy. The frequency factor gives the frequency of collisions between reactant molecules.

The activation energy can be defined as the change in internal energy from the reactant state

to the activated complex state, so it is also called the internal energy of activation.

Since all the reactions in a fuel cell can be considered as condensed-phase reactions,4 the

enthalpy of activation is approximately equal to the activation energy, so that

K ¼ A exp
�ΔAH

RT

� �

(31)

Rewriting now the parameter A as the product A0 exp �ΔAS=Rð Þ allows us to express the

reaction constant in terms of the Gibbs free energy of activation ΔAG

K ¼ A0 exp
�ΔAH � TΔAS

RT

� �

¼ A0 exp
�ΔAG

RT

� �

(32)

Advanced kinetic theories (e.g., transition state theory) have tried to estimate the values of A

and ΔAE corresponding to a certain electrochemical reaction and to relate them to molecular

properties. However, extending our discussion to such complex descriptions is outside the

scope of this work. For the interested reader, a deeper discussion of electron transfer kinetics

can be found in Ref. [90].

3

A detailed description of the development of Arrhenius equation is presented by [88]. An English translation of the

original paper of Arrhenius can be found in Ref. [89], first edited in 1967, pp. 31–35.
4

In general ΔH ¼ ΔEþ Δ pVð Þ but in condensed-phase reactions Δ pVð Þ can be neglected, so that ΔE ≈ΔH [90].
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5.1.1. Single-step single-electron reactions

To fix ideas, let us consider a generic single-step reversible electrooxidation reaction (similar to

the anode half-reaction of a PEMFC) involving the transfer of a single electron

R⇌Oþ e� (33)

At this point, it is important to note that the Gibbs free energy of activation at a given condition

can be written as the Gibbs free energy of activation at a reference state, usually taken as the

equilibrium state, hereafter denoted by the subscript 0, plus an additional term that accounts

for the deviation of the potential from its value at the reference state. Thus, for the forward (i.e.,

oxidation) reaction

ΔAGOx ¼ ΔAG
0
� αOxF E� E0

� �

(34)

while for the backward (i.e., reduction) reaction

ΔAGRed ¼ ΔAG
0
þ αRedF E� E0

� �

(35)

where αOx and αRed are the charge transfer coefficients of the oxidation and reduction reac-

tions. The charge transfer coefficients reflect the nature of the electron transfer process in

single-step electrochemical reactions [86]. For single electron reactions taking place on metallic

surfaces, the value αOx ≈ 0:5 is commonly accepted [11, 91]. The value of αOx is also related to

the charge transfer coefficient of the backward reaction, with the symmetry relation

αRed ¼ 1� αOx being frequently assumed. For a thorough derivation of the above expressions,

the reader is referred to Section 3.3.2 of the book of Bard and Faulkner [90].

According to Eqs. (32), (34), and (35), the reaction constants for the forward and backward

reactions can be written as

KOx ¼ A0

Ox exp
�ΔAGOx

RT

� �

¼ A0

Ox exp
�ΔAG

0
Ox

RT

� �

exp αOx

F E� E0
� �

RT

 !

KRed ¼ A0

Red exp
�ΔAGRed

RT

� �

¼ A0

Red exp
�ΔAG

0
Red

RT

 !

exp �αRed

F E� E0
� �

RT

 ! (36)

When expressed in moles of species R consumed per unit catalyst surface per unit time, the net

reaction rate can be written as follows

Γ ¼ CRKOx exp αOx

F E� E0
� �

RT

 !

� COKRed exp �αRed

F E� E0
� �

RT

 !

(37)

where the constants KOx and KRed incorporate all the terms that are independent of the

potential

Kr ¼ A0

r exp
�ΔAG

0
r

RT

� �

, r ¼ Ox, Red (38)
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In general, the reaction constants Kr appearing in Eq. (37) depend on the temperature T, the

reaction being studied, and the type of catalyst where the reaction takes place.

To continue the discussion, it is convenient now to consider the equilibrium condition. At

equilibrium, the net reaction rate Γ is zero, since oxidation and reduction occur at the same

rate. At this state, the potential reaches an equilibrium value, E⋆, and the same happens with

the concentrations, C⋆

R and C⋆

O. From Eq. (37), at equilibrium, the reaction rate of the oxidation

and reduction reactions can be written as

Γ⋆
¼ C⋆

RKOx exp
αOxF E⋆

� E0
� �

RT

 !

¼ C⋆

OKRed exp �

αRedF E⋆
� E0

� �

RT

 !

(39)

Dividing Eq. (37) by Γ⋆ and rearranging yields

Γ

Γ⋆
¼

CR

C⋆

R

exp
αOxF E� E⋆

� �

RT

� �

�

CO

C⋆

O

exp
�αRedF E� E⋆

� �

RT

� �

(40)

This expression for Γ circumvents the difficulty of referring the potential to the standard

potential, as the overpotential is much simpler to measure experimentally. It was Tafel [85]

the first to write the reaction rate in this form, which can also be expressed as

Γ ¼ Γ⋆
CR

C⋆

R

exp
αOxFη

RT

� �

�

CO

C⋆

O

exp
�αRedFη

RT

� �� �

(41)

in terms of the overpotential, η ¼ E� E⋆. This equation is very often written using the simpler

notation

Γ ¼ CRkOx exp
αOxFη

RT

� �

� COkRed exp
�αRedFη

RT

� �

(42)

in terms of the oxidation and reduction rate constants

kOx ¼
Γ⋆

C⋆

R

and kRed ¼

Γ⋆

C⋆

O

(43)

The net current density generated by the electrochemical redox reaction, expressed in amperes

per unit catalyst surface area, can be obtained by multiplying the net reaction rate Γ given in

(41) by Faraday’s constant, resulting in the well-known Butler-Volmer equation

j ¼ j0
CR

C⋆

R

exp
αOxFη

RT

� �

�

CO

C⋆

O

exp
�αRedFη

RT

� �� �

(44)

where j0 ¼ Γ⋆F is the so-called exchange current density, a fundamental electrochemical prop-

erty that represents the rate of the oxidation and reduction reactions at equilibrium expressed

in terms of current density. It is interesting to note that Butler [92] and Volmer [93] found this

equation separately, so the name honors both. Under conditions where the backward reaction
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can be neglected, for example, for sufficiently high overpotentials, Eq. (44) reduces to the Tafel

equation, which is written here in exponential form

j ¼ FCRkOx exp
αOxFη

RT

� �

or η ¼
RT

αOxF
ln j�

RT

αOxF
ln FCRkOxð Þ (45)

It should be noted that the original Tafel equation was written using the decimal logarithm,

which yields the factor 2.3 in Eq. (29).5

The current density, j, appearing in Eqs. (29), (44), and (45) requires further comment. This

current density is expressed in amperes per unit catalyst surface area. In order to convert it to

amperes per unit volume, as often required for evaluating distributed current sources in three-

dimensional macro-homogeneous models of fuel cell catalysts layers, the current density j has

to be multiplied by a geometric factor representing the catalyst surface area per unit volume of

catalyst layer. This conversion factor is the so-called volume-specific catalyst surface area, often

denoted by the letter a in the literature. Integrating the volumetric current density aj over the

thickness of the catalyst layer at a certain location, one obtains the cell current density, hereaf-

ter denoted by i, which represents the current generated by the cell per unit surface area of

catalyst layer and coincides with the protonic current density crossing the membrane.

5.1.2. Multiple-step multiple-electron reactions

Electrochemical reactions in fuel cells usually involve more than a single step and more than a

single electron transfer. To deal with multistep reactions involving the transfer of several

electrons, it is convenient to assume that there exists an elementary step that is significantly

slower than the rest, the so-called rate-determining step (RDS) of the global reaction. Some

authors [11, 94] propose the relation

αOx þ αRed ¼
n

υ
(46)

where n is the total number of electrons transferred and υ is the number of times that the RDS

must occur for the overall reaction to occur. Other authors [86] propose to write the charge

transfer coefficient as a function of the overpotential following Marcus theory

αOx ¼
1

2
1þ

Fη

λ

� �

(47)

where the parameter λ is referred to as the reorganization energy, defined as the energy required

to change the nuclear configurations [95]6.

5

ln x ¼ log x= log e ≈ 2:3 log x.
6

Rudolph A. Markus received the 1992 Nobel Prize in Chemistry “for his contributions to the theory of electron transfer

reactions in chemical systems”. An extended review of Markus theory is presented in his review [96]. An extension to

organic reactions is presented in Ref. [97].
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Nevertheless, a closer look at the reactions involved in the whole process will give us a better

understanding. For a general electrochemical reaction of the form

R⇌Oþ ne
� (48)

the reaction mechanism could be divided in three parts: the reactions before the RDS

R⇌R0
þ n

0
e
� (49)

the RDS itself

R0
⇌O0

þ e
� (50)

and the reactions after the RDS

O0
⇌Oþ n

00
e
� (51)

As the RDS acts effectively as a bottleneck for the multistep reaction process, the reaction rate

of the global reaction is given in first approximation by that of the RDS. Applying Eq. (42) to

the RDS, the following expression is obtained

Γ ¼ CR0k
RDS
Ox exp

α
RDS
Ox F E� E

⋆RDS
� �

RT

 !

� CO0k
RDS
Red exp

�α
RDS
Red F E� E

⋆RDS
� �

RT

 !

(52)

Pre- and post-RDS reactions take place significantly faster than the RDS. As a result, the

concentration of the intermediate compounds (namely R’ and O0) can be approximated by the

equilibrium values obtained from the pre- and post-RDS reactions, respectively. Combining

Eq. (42) and the equilibrium condition (Γ ¼ 0) applied to the pre- and post-RDS reactions,

expressions for the concentration of the intermediate compounds in terms of the initial and

final products (R and O) can be obtained

CR0 ¼ CR
k
0

Ox

k
0

Red

exp
α
0

Ox þ α
0

Red

� �

F E� E
0⋆

� 	

RT

0

@

1

A

CO0 ¼ CO
k
00

Red

k
00

Ox

exp
� α

00

Ox þ α
00

Red

� �

F E� E
00⋆

� 	

RT

0

@

1

A

(53)

Substituting these expressions in Eq. (52) yields the following expression for the reaction rate

of the multistep electrochemical reaction

Γ ¼ CR
k
RDS
Ox k

0

Ox

k
0

Red

exp � α
0

Ox þ α
0

Red

� �

E
0⋆

þ α
RDS

E
RDS⋆

h i

F

RT

� �

� exp α
0

Ox þ α
0

Red þ α
RDS
Ox

� �

E
F

RT

� �

�
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CO
k
RDS
Red k

0 0

Red

k
0 0

Ox

exp α00

Ox þ α00

Red

� �
E
00⋆

� βRDS
E
RDS⋆

h i
F

RT

� �

� exp � α 00

Ox þ α00

Red þ αRDS
Red

� �
E

F

RT

� �

(54)

The above expression involves absolute potentials, which can not be readily measured. In

order to express the overall reaction rate Γ in a more convenient way, the first and second

terms can be multiplied by the unit factors

exp α0

Ox þ α0

Red þ αRDS
Ox

� � F E
⋆
� E

⋆
� �

RT

� �

and exp α00

Ox þ α 00

Red þ αRDS
Red

� � F E
⋆
� E

⋆
� �

RT

� �

(55)

where E
⋆ denotes the equilibrium potential of the complete reaction. This results in the follo-

wing expression

Γ ¼ CR
k
RDS
Ox k

0

Ox

k
0

Red

exp � α0

Ox þ α0

Red

� �
E
0⋆

� E
⋆

� 	

þ αRDS
Ox E

RDS⋆
� E

⋆
� �h i

F

RT

� �
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{

kOx

� exp α0

Ox þ α0

Red þ αRDS
Ox

� �
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{

αOx

F E� E
⋆

� �

RT

0

@

1

A

� CO
k
RDS
Red k

00

Red

k
00

Ox

exp α00

Ox þ α 00

Red

� �
E
00⋆

� E
⋆

� 	

þ αRDS
Red E

RDS⋆
� E

⋆
� �h i

F

RT

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

kRed

� exp � α00

Ox þ α 00

Red þ αRDS
Red

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

αRed

F E� E
⋆

� �

RT

0

B
@

1

C
A

(56)

which can be rewritten as Eq. (42) by introducing the overpotential η to give

Γ ¼ CRkOx exp
αOxFη

RT

� �

� COkRed exp �
αRedFη

RT

� �

(57)

The above discussion demonstrates how is it possible to define global charge transfer coeffi-

cients, αOx and αRed, and rate constants, kOx and kRed, for the overall electrochemical reaction

from those of the elementary reaction steps. This technique provides a powerful tool for the

analysis of complex electrochemical systems, such as the multistep ethanol oxidation reaction

(EOR) to be discussed below. As will be seen, the introduction of global kinetic parameters for

certain reaction paths is particularly useful when trying to adjust the kinetic constants so as to

fit the selectivities of the final products.
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5.2. Coverage factors

The electrochemical reactions that take place in a fuel cell need not only to occur but also to

have a sufficiently high reaction rate. To provide a favorable environment for the reactions,

catalysts are always used in fuel cells. A catalyst is a compound that favors the chemical

reaction, but it is not involved in it. The catalyst acts as substrate for the reaction, in that its

surface has places where the fuel molecules take place to proceed with the reaction. In fuel cells,

catalysts are pinned up to a porous matrix. The process where the reactive molecules take place

at the catalyst sites is called adsorption. Once the molecules have been adsorbed, they no

longer behave as free molecules; they remain attached to the catalyst site. The so-called

adsorbates may undergo electrochemical reaction and later be desorbed as reaction products

or, alternatively, be desorbed as unreacted free molecules.

The catalyst acts as an anchor to the adsorbed species. The concentration of these species has

no physical meaning because they fill spaces where there are catalyst places; actually, they

cover the catalyst surface. This behavior is equivalent to the adsorption described by [98] for

the atomic deposition over glass surfaces. The amount of absorbed species is thus described

by the surface coverage factor, Θ, which represents the fraction of the catalyst sites occupied by

this species.

The coverage factor of a given species cannot be larger than unity (full coverage of the catalyst

places). And if different species can be adsorbed into the same catalyst type, the sum of their

coverage factors cannot exceed unity either

X

k

Θk ≤ 1 (58)

From the definition of the coverage factors, the fraction of free catalyst sites is given by

ΘF ¼ 1�
X

k

Θk (59)

Using these expressions, it is possible to evaluate the net adsorption rate of species k. The

adsorption rate is proportional to the available catalyst sites, while the desorption rate is

proportional to the fraction of occupied sites, so that

qk ¼ KadsΘF � KdesΘk (60)

where the proportionality constants Kads and Kdes depend on the kind of absorption mecha-

nism. Langmuir [98] applied this model to the adsorption of a monoatomic layer in a flat

surface (e.g., glass); in electrochemical reactions, the absorption/desorption processes often

involve reactions with charge transfer. In these cases, the adsorbed species is not the same as

the free specie, but Eq. (60) can still be used with the required modifications.

As previously discussed, the reaction rates of the forward and backward reactions are propor-

tional to the molar concentrations of reactants and products, respectively. When an adsorbed

species is involved, its concentration is equal to the coverage factor of the adsorbate times the

concentration Cc of the catalyst
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Ck ¼ ΘkCc (61)

where Cc remains unchanged during the reaction. As a result, for adsorption/desorption reac-

tions, the catalyst concentration is usually included in the reaction constants, which are thus

also strongly affected by the catalysts type. The use of coverage factors in kinetic models of

catalytic reactions is widely used in fuel cell modeling [77, 99–104], and will be illustrated in

the example presented below.

6. Modeling the ethanol electro-oxidation reaction

Ethanol offers an interesting alternative as a fuel for PEM fuel cells because it can be readily

produced by fermentation of biomass, including agricultural raw materials, which makes it

currently the major renewable biofuel. On top of that, its mass energy density is about 30%

larger than that of methanol, and it is much less toxic [27, 64]. However, the electrooxidation of

the complex ethanol molecule is much slower than that of methanol. The ethanol oxidation

reaction (EOR) is known to proceed through a multistep reaction process that involves

adsorbed species like acetyl (CH3COads) and carbon monoxide (COads), leading to a variety of

partial oxidation products such as acetaldehyde (CH3CHO), acetic acid (CH3COOH), carbon

dioxide (CO2), and methane (CH4).

6.1. The ethanol oxidation reaction

According to the above discussion, one of the main difficulties encountered in the modeling of

DEFCs is the accurate description of the EOR. Different reaction mechanisms have been pro-

posed in the literature [38, 44, 45, 50, 106]. Due to the large amount of intermediate species, both

free and adsorbed, and of potential elementary reactions, mathematical models exhibit different

levels of complexity [77, 107, 108]. As a particular example, Figure 2 shows a reaction mecha-

nism for the EOR on binary Pt-based catalysts recently proposed by the authors [105], based on a

previous model by Meyer et al. [77] which ignored Reactions I, II, and III. The kinetic model

assumes that there are eleven elementary reactions, listed in Table 2, involving five adsorbed

species, four of them attached to the Pt-sites (CH3CHOHads, CH3COads, COads and CH3 ads), and

the fifth (OHads) to the secondary metal following the bifunctional catalyst assumption [53–55].

The full derivation of the model can be found elsewhere [105]. Here we will only consider

Reactions I and III to illustrate the application of the electrochemical rate laws introduced in

the previous sections. Reaction I represents the adsorption of ethanol to CH3CHOHads. This is

an oxidative adsorption reaction, with a net adsorption rate (in moles per unit volume of

catalyst layer per unit time) given by

qI ¼ 1�ΘCH3CHOHads
�ΘCH3COads

�ΘCOads
�ΘCH3 ads

� �

CE,aclkIf exp
αIF

RT
ηa

� �

�ΘCH3CHOHads
kIb exp �

1� αIð ÞF

RT
ηa

� � (62)
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The factor between brackets appearing in the forward reaction rate gives the fraction of

available Pt-sites, reduced due to the presence of the adsorbates, which act as site-blocker.

Note that this term does not account for the presence of adsorbed OH groups, because in the

binary catalysts typically used in DEFCs they are preferably attached to the secondary metal.

Reaction 3 represents the dissociative adsorption of water to yield adsorbed hydroxyl groups,

a reaction that in binary Pt-based catalysts occurs on the secondary metal. The resulting water

activation rate is given by

q3 ¼ k3f 1�ΘOHads

� �

exp
α3F

RT
ηa

� �

� k3bΘOHads
exp �

1� α3ð ÞF

RT
ηa

� �

(63)

where now the forward reaction rate is proportional to the fraction of free sites existing on the

secondary catalyst, only blocked by the adsorbed hydroxyl groups, while the inverse reaction is

proportional to the coverage factor of this adsorbate. In these expressions, αi are the global charge

transfer coefficients and ki the global reaction constants, which could be related to those of the

elementary reaction steps involved in each global reaction as suggested in Eqs. (56) and (57). It

CH 3CH 2OH

CH 3CHOCH 3CHOH ads

CH 3CO ads

CH 3COOH CO ads CH 3ads

CO 2 CH 4

R III

RII

RI

R2

R5
R4

R6 R7 R8

2e

e

e

5e

e

e

2e
e

H2O

OH ads

R3 e

Figure 2. Reaction mechanism for the electron oxidation reaction (EOR) on binary Pt-based catalysts proposed in Ref.

[105]. Pt-site adsorbed species are indicated by a dashed box; OHads is boxed using dotted lines to indicate that it is

adsorbed at the secondary metal sites. Reactions 4, 6, and 7 use the adsorbed hydroxyl groups to proceed. The exact

stoichiometries are shown in Table 2.
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should be noted that the volume-specific molar reaction rates, qr, can be readily obtained from the

surface-specific molar reaction rates, Γr, discussed in Section 5 by multiplying the latter by the

volume-specific catalyst surface area, qr ¼ aΓr.

Similar rate laws can be written for the remaining reaction steps, leading to a full kinetic model

that involves 26 adjustable kinetic parameters: 9 transfer coefficients and 17 reaction constants

(see Table 2). Using the quasi-steady-state approximation for the adsorbates, that is, assuming

that the coverage factors θk do not change with time, yields a nonlinear system of equations

that can be solved to evaluate the θk in terms of the local conditions at the anode catalyst layer.

Complementing the kinetic model with appropriate descriptions for mass and charge trans-

port gives rise to a suitable mathematical model for the anode of a DEFC. This model provides,

in particular, polarization and power density curves, as well as the variation of the product

selectivity and effective electron generation number as a function of the local current density.

Using anode polarization and product selectivity data obtained from carefully designed exper-

iments [75], the kinetic parameters can be fitted to reproduce the observed results, leading to a

fully predictive model of the anode of a DEFC [105].

6.2. The oxygen reduction reaction

Although the oxygen reduction reaction (ORR) is much simpler than the EOR, it is also

known to be a multistep reaction, involving the formation of a number of intermediate

Reaction — — nα

I. CH3CH2OH⇌CH3CHOHads þHþ
þ e- kIf αI 1

kIb — 1

II. CH3CHOHads ! CH3COads þ 2Hþ
þ 2e- kIIf αII 2

kIIb — 2

III. CH3CHOHads ⇌CH3CHOþHþ
þ e- kIIIf αIII 1

kIIIb — 1

1. CH3CH2OH⇌CH3CHOþ 2Hþ
þ 2e- k1f α1 2

k1b — 2

2. CH3CHO⇌CH3COads þHþ
þ e- k2f α2 1

k2b — 1

3. H2O⇌OHads þHþ
þ e- k3f α3 1

k3b — 1

4. CH3COads þOHads ! CH3COOH k4 — —

5. CH3COads ! COads þ CH3ads k5 — —

6. COads þOHads ! CO2 þHþ
þ e� k6 α6 1

7. CH3ads þ 2OHads ! CO2 þ 5Hþ
þ 5e� k7 α7 5

8. CH3ads þHþ
þ e� ! CH4 k8 α8 1

Table 2. The 11-step reaction mechanism proposed in [105].
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species. The complex nature of the ORR is reflected by the doubling of the Tafel slope at

intermediate potentials, which is thought to occur due to a change in the rate determining

step of the reaction [78]. This change can be qualitatively described using the double-trap

kinetic model [109], which involves four elementary reaction steps: dissociative adsorption

of O2 to Oads, reductive adsorption of O2 to OHads, reductive transition of Oads to OHads,

and reductive desorption of OHads to H2O. However, reproducing quantitatively the dou-

bling of the Tafel slope requires a more detailed analysis, similar to the one discussed above

for the EOR. Complementing the kinetic rate expressions for the four elementary steps with

the quasi-steady-state approximation for the two adsorbates, Oads and OHads, and using

appropriate experimental data in order to fit a certain set of adjustable parameters using

optimization algorithms, a fully predictive ORR kinetic model is finally obtained [110].

However, the kinetic model of the ORR proposed in Ref. [110] is anticipated to fail when applied

to the cathode of a DEFC. In this case, the effect of the parasitic reactions induced by ethanol and

acetaldehyde crossover is expected to affect the reaction kinetics in two ways: (1) by introducing

mixed potentials required to draw the excess (i.e., parasitic) current density due to crossover and

(2) by poisoning the catalyst by adsorbed intermediates of the parasitic reactions, which block a

large amount of the available active catalyst sites [111]. Further research is still needed to clarify

these complex electrochemical phenomena, which will surely benefit from the systematic

approach laid out by the recent investigations discussed in this chapter.

7. Conclusions

In this chapter, the thermodynamic and electrochemical principles of PEM fuel cells have been

presented and discussed. These principles have been applied to the study of a complex

electrochemical system, the direct ethanol fuel cell, reviewing recent work on this problem

and suggesting future research directions.

Nomenclature

Symbols

ak Activity of species k

Ck Molar concentration of species k [mol m�3]

E Electric potential [V]

F Faraday constant F ¼ 96480 C

h Molar enthalpy [J mol�1]

H Enthalpy [J]

g Molar Gibbs free energy [J mol�1]

G Gibbs free energy [J]
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I Electric current [A]

i Electric current density [A m�2]

j Electric current density per catalyst surface area [A m�2]

n Number of electrons transferred

Nk Molar flux of species k [mol m�2 s�1]

pk Pressure of species k [Pa]

Q Heat [W]

q Volume-specific molar rate of reaction [mol m3 s�1]

R Ideal-gas constant 8.3143 [J mol�1 K�1]

s Molar entropy [J K�1 mol�1]

S Entropy [J K�1]

T Temperature [K]

V Electric voltage [V]

W e Electrical work [W]

Greek letters

α Charge transfer coefficient

Γ Surface-specific molar rate of reaction [mol m2 s�1]

η Overpotential η ¼ E� E⋆ [V]

Θk Coverage factor of species k

μk Chemical potential of species k

r Density [kg m3]

υk Stoichiometric coefficient species k [0.35 cm]

ac/agdl Anode channel/gdl interface

cc/cgdl Cathode channel/gdl interface

e Electric

f Formation

k Species

Ox Oxidation reaction
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r Reaction

Red Reduction reaction

Superscripts

0 Reference state conditions

⋆ Equilibrium state conditions
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