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Abstract

Ionotropic glutamate receptors (iGluRs) are a group of proteins with a high degree of 
sequence homology. At least 20 type of putative ionotropic glutamate receptor (iGluR)-
like channels have been identified in Arabidopsis thaliana. To uncover the role of iGluR-
like channels in plant root growth, we used a comprehensive set of compounds known to 
alter iGluR channels in the neurons. We found that Arabidopsis root system is highly sen-
sitive to these compounds. iGluR competitive antagonists 6-Cyano-7-nitroquinoxaline-
2,3-dione (CNQX) or 6,7-dinitroquinoxaline-2,3-dione acted (DNQX) acts as a negative 
regulator of primary root and lateral root density. Continuous growth on antagonist 
also leads to impairment of root meristem size, which suggests that iGluR-like chan-
nels may play a role in meristem maintenance. However, application of iGluR agonists 
L-glutamate recovered Arabidopsis root growth. Taken together, these results suggest a 
correlation between the putative iGluR-like channel function and the alteration of root 
growth and development in the Arabidopsis roots.

Keywords: glutamate receptor, lateral root, Glu, calcium, DNQX, CNQX

1. Introduction

A mixture of organic and inorganic materials that makes uppermost layer of the earth in 

which plants grow is known as Soil. The parent mineral rock derives inorganic materials 

and is found in the form of sand, silt and clay. However, organic materials come from dead 

and decayed parts of bacteria, fungi, algae, protozoa and soil animals such as nematodes, 

earthworms, beetles and termites. The inorganic nitrogen dissolved in soil is vital for nutri-

tional requirements of plants, and it can be directly used in the synthesis of amino acids, 
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peptides and proteins [1]. Plants absorb organic nitrogen from soil in the form of free amino 

acids [2, 3], which is derived mainly from decomposed organic matter and exudates pro-

duced by bacteria, fungus and living plants roots [4–9].

Among the 20 common amino acids, the six amino acids (glutamic acid, glutamine, aspar-

tic acid, asparagine, alanine and histidine) are mainly dominated in the soil, and they cover 

approximately 80% of the total soil amino acid pool [10–12].

An agonist is an inducing ligand that can bind to and induce channel-linked receptors. On 

the contrary, antagonist is a type of receptor ligand that can block the agonist-mediated 

responses. Since ionotropic glutamate receptors (iGluRs) are ligand-gated ion channels, bind-

ing of L-glutamate (Glu) will open gates and increase ions conductance. However, both ago-

nists and antagonists of iGluRs share structural similarity with glutamate and bind to iGluRs 

at the same site where Glu binds [13]. Interestingly, it has been observed that major amino 

acids (glutamate, glycine, alanine, serine, asparagine, and cysteine) present in the rhizosphere 

are strong agonist for iGlurRs [14].

Previous studies indicate that plant GLRs are functional, and involved in various functions, 

such as photosynthesis [15, 16], abiotic stress [17, 18], as C/N balance [19], plant-pathogen 

interaction [20, 21], root morphogenesis [22–24], pollen tube growth [25] and regulate cel-

lular calcium homeostasis [14, 20, 26–29]. Among studies with various cell types in plants, 

it was found that Glu induces intracellular Ca2+ current. Glu-induced rise in the intracellular 

Ca2+ level can be inhibited by the use of iGluRs antagonists, which are quinoxalinediones, 

6,7-dinitroquinoxaline-2,3-dione (DNQX) and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) 

[18, 27, 30]. Therefore, it was proposed that glutamate receptors (GLRs) can contribute to 

the network of Ca2+ signaling pathways in plant cells [16]. Atglr1.2 knock-out mutant plants 

displayed abnormalities in pollen growth [25]. Further, Analysis of Arabidopsis GLR mutant, 

atglr3.6, reveals a major role of the plant GLRs in the regulation of plant root development 

[24]. As a signaling molecule, glutamate is regarded to be the major neurotransmitter in the 
mammalian central nervous system. The application of exogenous Glu can also alter root 

phenotype [31, 32], indicating a role for GLR signaling in plants. Additionally, MEKK path-

ways can alter the glutamate sensitivity at the root tip suggesting for a glutamate signaling 

pathway in plants [33, 34].

These days pharmacology-based functional study of ionotropic glutamate receptors in plants 

has become very popular and useful approach [17, 18, 27, 32, 35–37]. We used comprehensive 

set of compounds that have been found to contain a strong ability to modulate the activity 

of mammalian iGluRs. In the present study, we introduced Glu to study the possible role of 

plant GLRs in root development. To minimize the chance of multiple effects of Glu, we also 
used artificial agonists (NMDA and AMPA) and competitive antagonists (DNQX and CNQX) 
to the glutamate binding site on receptors. In animals, these artificial agonists and antagonists 
are reported only for specific effects via their impact on iGluR activities [38]. In our pharma-

cological-based study, we investigate how glutamate and iGluRs antagonists directly affect 
plant root growth and development.
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2. Materials and methods

2.1. Plant materials and growth conditions

Arabidopsis thaliana (Col-0) seedlings were used in different analyses on root development. 
All seed germination treatments were carried out at same half-strength Murashige and Skoog 

(MS) medium [39] at constant pH 5.8. The root elongation under various treatments was 

quantified using ImageJ program (http://rsb.info.nih.gov/ij/).

2.2. Chemicals

L-aspartic acid (Sigma, USA), L-glutamic acid, monosodium salt (Sigma, USA), N-Methyl-

D-aspartate (NMDA; Sigma, USA), and 2-amino-3-(5-methyl-3-oxo-1,2- oxazol-4-yl) pro-

panoic acid (AMPA; Sigma, USA) were dissolved in water, adjusted to pH 5.8 and filter 
sterilized. Both receptor antagonists, 6,7-dinitroquinoxaline-2,3-dione (DNQX; Sigma, USA) 

and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; Tocris, USA) were dissolved in organic 

solvent Dimethyl sulfoxide (DMSO) (Sigma, USA). All treatments were used with vari-

able concentrations as indicated in the figure legends. In order to study the role of Glu in 
auxin balance inside the root cells, we used a synthetic auxin Naphthaleneacetic acid (NAA, 

Sigma) and a polar auxin transport inhibitor NPA (1-N-Naphthylphthalamic acid, Sigma) 

for treatments.

2.3. Seed sterilization

Prior to germination at growth media, seeds were first surface-sterilized in sodium hypochlo-

rite in active chlorine. Sterilization was carried out in a hood cabinet, and aliquots of seeds 

were placed in Eppendorf tubes and treated with active chlorine for 1–2 h.

2.4. Plant growth condition

Arabidopsis seedlings for analysis were grown in sterile petri dishes using half strength MS 

medium and the plate was sealed using Micropore TM tape. After this, seeds were stratified 
in the dark at 4°C for 2–3 days to synchronize germination. Plates were then transferred to a 

growth chamber at illumination of 120–150 μmol/m2 s continuous light and at temperature 

22–23°C.

2.5. Laser scanning and light microscopy

Confocal microscopy was performed using a Zeiss LSM510 META Confocal Imaging System 

(USA). To observe the apical root meristem through confocal microscopy, roots were counter-

stained in propidium iodide (PI, Sigma) (10 μM) for 2–3 min, rinsed, mounted in dH
2
O. Images 

were obtained by excitation with the Kr/Ar 488-nm laser line and emission was detected with 

a band-pass 500–550 nm filter.
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2.6. Statistical analysis

Each experiment was repeated at least three times. Values are expressed as mean ± SD. The 

statistical significance was analyzed using Student’s t-test analysis.

3. Results

3.1. iGluR agonists and antagonists alter root growth in Arabidopsis

We used a comprehensive set of compounds that have been found to modulate iGluRs. All treat-

ments were performed with half strength of MS media [39] at a constant pH 5.8. The presence 

these compounds was observed to have a marked effect on root architecture of Arabidopsis. 
Both Glu and NMDA treatments had a stimulatory effect on primary root length (PRL) as well as 
lateral root density (LRD) in wild-type plants as compared to the non-treated plants. However, 

up to 10 days, AMPA showed a minor effect on root growth, but afterward, AMPA addition 
also nearly restored root growth of wild-type plants, making it visually indistinguishable from 

that of NMDA-treated plants (Figure 1A and B). These results indicated that glutamate recep-

tor agonists likely interact with signaling pathways to control root growth in plants. Further, to 

test whether root growth was specific to natural iGluR ligands (Glu), we used another kind of 
neurotransmitter amino acid L-aspartate (Asp) [40]. Interestingly, after 12 days of growth, Asp 

treatment showed modest activity at inhibiting root growth and failed to increase lateral root 

formation when supplied at the same concentrations as Glu (Figure 1A and B). These results 

indicate that Glu and Asp have different activity in Arabidopsis root growth modulation and 
that the effects of Glu on root development are likely due to a specific effect of Glu rather than 
as a consequence of acidic behavior of amino acids.

To determine more closely the effects of plant iGluR-like receptor on the architecture of the 
Arabidopsis root system, wild-type Arabidopsis seedlings were germinated and grown on 

vertically oriented agar plates containing half strength MS medium supplemented with 

iGluR antagonists (DNQX and CNQX) alone or in combination of antagonists with Glu. As 

expected, our results show that both DNQX and CNQX drastically reduced root growth, and 

induced approximately similar kind of effects on root growth (Figure 1C and D). It was seen 

that the PRL approximately reduced by 64.65% and 69.24% and LRD by 76.1% and 76.55% 

(respectively for DNQX and CNQX treatment) (Figure 1C and D). To observe the effect of 
agonist and antagonist treatment together, we used naturally occurring agonist, Glu, to com-

pete with DNQX and CNQX inhibitory actions [41]. It was observed that the external supple-

ment of Glu (at 0.5 mM) successfully recovered the reduced root growth (both PRL and LRD) 

(Figure 1C and D). In summary, root growth was promoted by iGluR agonists, and use of 

iGluR antagonists (CNQX and DNQX) drastically reduced root growth and then, again subse-

quently recovered by addition of Glu suggesting molecular correlation. Since, these compre-

hensive set of compounds are called the great modulator of iGluRs in mammalian cells, our 

results suggested the involvement of Arabidopsis iGluR-like channel in root development.
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3.2. Short-root growth in antagonist treated wild-type roots is contributed by 

reduced root meristem size

Previously we concluded that the glutamate receptor signaling may be involved in regula-

tory mechanisms in the control of root growth, indicating an essential role for plant GLRs 

in root meristem maintenance Therefore we analyzed cell division and meristem size 

among wild-type and antagonist-treated wild-type roots at different growth duration (4 and 
6 days). However, since treatments of both antagonists induced similar kind of inhibitory 

effect on root growth, and thus we selected only one antagonist (DNQX) for further studies. 

Figure 1. Variable effects of animal iGluR effector compounds on Arabidopsis thaliana root development. Arabidopsis 

(wild-type, Col-0 ecotype) seedlings were germinated on half strength of MS medium (MS/2, [39]) supplemented with 

1% of sucrose and agar. Immediately after germination, different treatments were done in MS/2 basal media adjusted 
to pH 5.8 with NaOH. Time course for agonist treatments response in days 2–14 of longitudinal primary root growth 

(A) and LR density (B) represented as LRs per centimeter primary root of Col-0 after incubation with 0.5 mM of each 

glutamate (Glu), NMDA, AMPA and aspartate (Asp) individually. Antagonist’s treatments were done in MS/2 basal 
media but control seedlings (Mock) were grown with equal volume of solvent (DMSO) as in DNQX (1 mM) and CNQX 

(1 mM) treated seedlings. Comparison of root growth under antagonist given alone (1 mM) or together in the treatment 

of 0.5 mM Glu. Root length (C) and LR density (D) of 11-day-old Col-0 seedlings. Values represent the mean of 15–18 

measurements in triplicate and error bars represent ±SD. The statistical analysis were performed by Student’s t-test 

(P < 0.005) indicated by asterisks.
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Interestingly, we observed that antagonist-treated wild-type root illustrated a smaller meri-

stem size compared to wild-type (Figure 2A and B). Simultaneously, the number of meriste-

matic epidermal cells (in a single file) was also significantly reduced in both 4 and 6-day-old 
roots of DNQX-treated wild-type plants (Figure 2C). Reduced meristem-enriched tissues 

in DNQX treated roots showed a putative vital contribution of putative AtGLR signaling in 

Arabidopsis root development.

QC surrounded with stem cells are pivotal in cell proliferation and meristem maintenance in 

root [42]. Thus we investigated the possibility of deformity in the stem cell niche which may 

result in impaired root growth after antagonist treatment. In confocal sections of propidium 

iodide (PI) stained roots (Figure 3A and B), we observed that in comparison to wild-type 

(four-celled QC), DNQX-treated wild-type roots were characterized by small dislocated colu-

mella cells with complicated-cellular-patterns. Altered columella root cap cells can also be 

Figure 2. Putative AtGLR regulates meristematic activity in primary-root apical meristem. (A) Confocal microscopic 

images of PI-stained 4-day-old wild-type and DNQX treated wild-type root. The border of root apical meristem is 

indicated by arrows in PI-stained roots. The longitudinal distance between the quiescent center (QC, marked in lower 

arrow) and the first elongating cell is correspond to the root meristem length (B) and the number of meristematic 
epidermal cells in single file of cells in wild-type and DNQX treated wild-type root at various time points (4 and 6-day-
old seedling) (C). Error bars represent SE (n > 15). Statistical significance in compared with wild-type were analyzed by 
Student’s t-test (P < 0.005).
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observed by Lugol staining of starch granule [43]. We found that DNQX treatment in wild-

type approximately abolished the starch grains from amyloplast (Figure 3C and D).

3.3. Externally supplied Glu can rescue the EGTA-inhibited root phenotypes

There are many studies which showed that Arabidopsis AtGLRs engage in calcium homeo-

stasis [27, 28, 30]. We investigated whether the induced root growth in Glu-treated seed-

lings was dependent on Ca2+. Various concentrations of EGTA (a Ca2+ chelator) was added 

to MS/2 supplemented with 0.5 mM Glu. At both concentrations of EGTA (0.5 and 1.0 mM), 

root elongation was drastically inhibited in wild-type seedlings. However, supplement of 

external Glu partially recovered root growth inhibited by low amount of EGTA (Figure 4). 

Collectively, these data suggest a role for Ca2+ in AtGLRs signaling to control root growth.

Auxin has been recognized as a key regulator in root development [44, 45]. NPA is a drug that 

known for inhibition of polar auxin transport. An induction of cytosolic Ca2+ was observed 

after auxin application, indicating a strong correlations between Ca2+ and auxin signaling. 

Therefore, we investigated whether the higher root growth observed in the Glu-treated 

seedlings is linked to the auxin and calcium. To elucidate this, we investigated whether 

Glu and CaCl
2
 are able to minimize the negative effect of NPA on Arabidopsis root growth. 

Interestingly, applications of Glu and CaCl
2
 to NPA-treated wild-type seedling had restored 

the number of LR (Figure 5A and B).

Figure 3. Putative AtGLR regulates meristematic activity in primary-root apical meristem. Statistical significance in 
compared with wild-type were analyzed by Student’s t-test (P < 0.005), indicated by asterisk. (A–B) Confocal images 

of 4-day-old PI-stained wild-type and DNQX treated wild-type roots. Columella cells have abnormal cell divisions in 

DNQX treated wild-type roots. Wild-type and DNQX treated wild-type roots in Lugol staining (C–D). Scale bar: 100 μm.
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Figure 4. Ca2+-dependent growth phenotypes of EGTA treated wild-type root seedlings. Putative ligand Glu can 

overcome reduced root growth by low amount of EGTA. Root phenotype of the 10-day-old wild-type seedlings under 

the different treatments. Supplement of 0.5 mM Glu successfully recovered the primary root growth which was reduced 
by 0.5 mM and 1 mM EGTA. The data presented are averages of three biological replicates. Asterisks represent statistical 

difference analyzed with a Student’s t-test; P < 0.005, n = 15.

Figure 5. Reduced root growth shown by NPA-treated wild-type roots can be rescued by the externally supplied Glu. 

Recovery of arrested root growth suggest the role of auxin. Application 1-N-Naphthylphthalamic acid (NPA) caused 

arrest of root growth. However, exogenous application of Glu and Ca2+ (0.5 mM) to NPA-treated root is successfully 

minimized the NPA effect (A and B). Asterisks represent statistical difference analyzed with a Student’s t-test; P < 0.005, 

n = 15.
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4. Discussion

4.1. Effect of glutamate treatment on root growth

Root plays pivotal role in plant life as it is crucial for nutrient and water absorption. In 

Arabidopsis thaliana, a total of 20 types of AtGLR subunits have been identified. They have sig-

nificantly high sequence similarity with animal iGluR-like channels [46]. Probably due to phy-

logenetically conserved amino acid sequences, they may have a high potential for functional 

redundancy. Using specific drugs that alter the channel activities is a key to study the function 
of iGluR-like channels in Arabidopsis [21]. We used Glu, (a neurotransmitter), and other set 
of compounds known to agonize (activate) (NMDA and AMAP) and antagonize (deactivate) 

(DNQX and CNQX) the iGluR channels in mammalian cells. The use of broader set of drugs 

would allowed us to observe the specific effects related to Glu and iGluR-like channels in root 
cells. We observed that the application of these drugs potentially modulate the Arabidopsis 

root architectures indicating an importance for AtGLRs in root development. We observed that 

the application of iGluR agonists, Glu and NMDA were promoting root growth. In other stud-

ies it has also been reported that Glu could act as a root growth modifier [32, 47, 48]. Because 

Glu is an acidic amino acid which can cause low pH-induced toxicity (acidic), which could 

reduce root growth [31, 32, 48], we performed all experiments on constant pH range from 5.7 

to 5.8 designed for plant tissue culture medium. Our result showing correlation with other 

evidences which have been proved that plants possess Glu-activated ion channels like iGluRs 

[30, 35, 36]. More specifically, NMDA-like iGluR receptors are also predicted in plants [27, 

49]. Ammonium ion is a key form of inorganic nitrogen. Organic nitrogen compounds (amino 

acids, nucleic acids etc.) are derived from   NH  
4
  

+

    [50]. The assimilation of   NH  
4
  

+
   into Glu is the cru-

cial step in amino acid synthesis and nitrogen metabolism [51]. Glu is directly involved chloro-

phyll synthesis in developing leaves [52]. Although it cannot be ruled out that Glu metabolism 

plays an important part in plant nitrogen assimilation and its regulation, increasing evidence 

suggests signaling properties of Glu in animals may also develop in plant [53].

The specificity of Glu to promote root development is individual. We used another kind of amino 
acid neurotransmitter, aspartate (Asp). Unlike Glu, it failed to induce root growth, showing Glu 
signaling in root development is highly specific [19]. Both DNQX and CNQX are the potent 

competitive AMPA/kainate glutamate receptor antagonists [38, 54]. We reported that iGluR 

antagonists have drastic effect on root growth. In animals they are known to block the ionotropic 
glutamate receptors very precisely [55]. Moreover, some studies in plants also have defined that 
animal iGluR antagonist are capable of changing the ion activity inside the cells and hence the 

phenotypes [16, 19, 21, 35, 56]. More interestingly, additional supply of Glu is able to counter the 

negative effect of each antagonist, suggesting a strong evidence of the existence of functional glu-

tamate receptors in plant root development [17, 19, 20, 37, 56]. Similar evidence is also reported. 

Glu and Gly successfully revert back the effect of DNQX on Arabidopsis hypocotyl growth [27].

4.2. Root meristematic activity

In Arabidopsis, root meristem develops from a stem-cell niche situated at the apical part 

of the root [57, 58]. Glutamate Receptor–Like protein (GLR3.1) has been described to be 
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essential for meristematic activity in roots [22]. The roots grown by antagonist treatment 

significantly reduced meristematic cell number, and hence a contraction of meristem 
size was also observed. These observations certainly showed a correlation with less root 

growth under antagonist treatment [59]. The role of quiescent center (QC) is vital in the 

maintenance of root meristem [58, 60]. The majority of cells in the root meristem develop 

from stem cells which are derived from QC. In confocal microscopic analysis, antagonist 

treated-root showed a major change in QC organization which may resulted in less devel-

oped root meristem [61]. Numerous sedimented starch-filled amyloplasts in the root cap 
are distinguishing of columella cells [62]. In our study it was observed that columella 

cells of antagonist treated-roots possessed of defective amyloplasts in Lugol staining [63]. 

Therefore short root phenotype is highly consistence with defected organization of the 

root cap and QC [42, 64, 65].

4.3. Glutamate and calcium in root growth

The iGluR is known to be a Ca2+ permeable channel [66]. Many studies revealed that 

Arabidopsis AtGLR induces Ca2+ current upon activation by Glu [27, 30, 67]. We investi-

gated whether the putative agonist and antagonist treatments alter the [Ca2+]cyt level in 

roots. EGTA is a well-known Ca2+-chelating agents [68]. In our study, application of EGTA 

shows a strong inhibition in root growth. Interestingly, however when Glu was introduced 

in same media, root growth was resumed. The presence of EGTA allows low availability 

of Ca2+ in free space. Animal cells and plant cells are similar in that they are both use 

endoplasmic reticulum (ER) as a calcium storage. Glutamate receptors are also reported to 

localized in ER [22, 69]. In animals, Glu-induced intracellular calcium levels through endo-

plasmic reticulum is reported [69]. However, application of Glu may lead to more activa-

tion of putative AtGLRs that allow more Ca2+ release to cytoplasm from endomembrane 

system which might play a role to recover the root growth. Calcium is key regulator of root 

growth [70, 71]. Previous report has also found that roots in EGTA containing media failed 

to grow toward gravity but it could be recovered by extra Ca2+ supply [72]. Furthermore, as 

we have discussed before that application of DNQX and CNQX reduced root apical meri-

stem and hence also root growth, but application external Ca2+ could resume root growth. 

These results suggest a role of AtGLRs in Arabidopsis root development.

4.4. Glutamate signaling and polar auxin transport in roots

Expressions of AtGLR genes inside the root tissue give strong evidence that these recep-

tors have vital role [46, 73]. Recent studies on chimeric and other plant iGLRs provided evi-

dence for Ca2+ permeability across membranes. We have also found that the glr3.6-1 mutant 

showed altered cytosolic calcium levels in root cells [24]. Calcium and auxin work together 

in many aspects of cellular processes. A similar effect has been observed in different stud-

ies in response to calcium-chelating agents. Dela Fuente and Leopold (1973) showed that 

basipetal transport of auxin is depressed by EDTA treatment and that subsequent addition of 

Ca2+ restores auxin transport in roots [74]. Root bend toward a calcium-containing agar block 
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 versus an agar block with the calcium-chelating agent EGTA, suggesting that auxin transport 

is regulated by local [Ca2+]
cyt

 levels [72]. NPA is a potent polar auxin transport inhibitor, which 

can highly reduce the lateral root emergence [75–77]. Supplement of Glu together with NPA 

(1-N-Naphthylphthalamic acid) (at 0.5 mM) showed approximately close root phenotype to 

the control seedlings. Addition of Glu in intact roots directly may induce Ca2+ which may lead 

to enhanced auxin transport and hence the suppressed negative effect of NPA Possibly appli-
cation of Glu can enhance the auxin supply to other deserved root cells rather than showing 

competition with NPA blockage.

5. Conclusion

In this study, we applied a comprehensive set of compounds to study how these com-

pounds affect Arabidopsis root growth. Arabidopsis root system is highly sensitive to 
these compounds known to alter the iGluR channels. Both Glu and NMDA promote the 

primary root growth and lateral root density in Arabidopsis. On the other hand, iGluR 

antagonists drastically reduced root growth at both parameters. Exogenous application 

of Glu successfully rescued reduced root phenotype inhibited by EGTA. Moreover, root 

growth reduced by polar auxin transport inhibitor NPA, could be rescued by Glu and 

CaCl
2
. As for AtGLRs function, although the mechanisms are not yet clear, the results 

presented provide evidence in support of a role of AtGLRs in regulating Arabidopsis root 

development.
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