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Abstract

Sugarcane bagasse (SB) is one of the major residues obtained from agriculture, every year 
millions of tons of SB have been produced by the sugarcane agribusiness. This abundant 
residue has been showed potential as biosorbent in wastewater treatment. SB, in nature 
or chemically modified, has been widely reported as a promising sorbent for the removal 
of dyes or heavy metals from aqueous medium. The application of SB in oil sorption is 
rarer, especially for the treatment of used motor oil wastewater. However, in this chapter, 
we show that this material has good oil sorption capacity when compared to other com-
mercial and natural sorbents. This study evaluates the effect of several coupling agents 
over SB in used motor oil sorption as well as the influence of surfactant in this process.

Keywords: engine washing wastewater, oil sorption, sugarcane bagasse, dye sorption, 
biomass

1. Introduction

Agricultural waste by-products, such as sugarcane bagasse (SB), rice husk, coconut husk, 

sisal, and so on, have been extensively studied as a potential sorbent material for removing 

contaminants from water and wastewater [1]. These materials have many advantages such as 

the abundance, low cost, floatability, good flexibility and mechanical strength, and environ-

mentally friendly properties. Besides, the potential use of several agricultural by-products as 

biosorbent is supported by its native adsorption capacity derived from their main constitu-

ents such as cellulose, hemicellulose, and lignin. These are polymeric structures with high 

content of hydroxyl and carboxyl groups, which have a strong influence in the adsorption 
capacity of different chemicals present in the aqueous medium.

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



SB, in nature or chemically modified, has been reported as a potential renewable sorbent for 
wastewater treatment [2, 3]. Millions of tons of SB have been generated every year by the 

sugarcane agribusiness, encouraging its reuse and recycling. The sugarcane industry is based 

mainly on the production of sugar and ethanol, which generates huge volumes of SB and 

sugarcane trash [4, 5]. After sugarcane is milled for juice extraction, bagasse is obtained as 

a residue, which corresponds to about 25% of the total weight, and is composed of approxi-

mately 40% cellulose, 24% hemicellulose, and 25% lignin. The hydroxyl groups are the most 

abundant and reactive sites in this biopolymer and are used to attach a variety of functional 
groups [6]. The higher content of cellulose in the SB biomass favors its hydrophilicity, which 

improves its interaction with cationic species in aqueous medium. As a result, SB has been 

widely used for the removal of heavy metals and dyes from wastewater [7–9].

1.1. Sugarcane bagasse as a sorbent for heavy metals removal

The utilization of unmodified or modified SB as an adsorbent have been described as a cheaper 
and effective technology for the removal of metal ions from wastewater [10, 11]. The metal 

ion-binding mechanism of adsorption on SB is attributed to its abundance of hydroxyl groups 
from cellulose, in which aqueous medium favors ion exchange or complexation with metal 

ions. Batch studies [12] using natural SB as a sorbent for removal of Cd(II) show the maximum 

adsorption at pH 6. The pH dependence of Cd(II) uptake was linked to both the surface func-

tional groups and the metal ion species predominant in aqueous solution. The species Cd2+ 

and Cd(OH)+ are predominant at pH lower than 6, while the groups on surface are proton-

ated and cannot bind to metal ions in solution. Besides, at very low pH, the surface groups 

are associated with the hydronium ions (H
3
O+), negatively affecting the interaction with the 

metal cations. When the pH increases, the surface affinity with the metal also increases, and 
adsorption is improved.

The metal ion-binding capacity of SB can be intensified by the introduction of surface groups 
with capacity chelating as carboxylate or amine [13–15]. The introduction of carboxylic func-

tions (−COOH) on cellulosic fiber, lignin, and hemicellulose can be performed via cyclic anhy-

dride reaction. Figure 1 displays an example of succinylation [16] reaction as an alternative 

route to attach carboxylic acid onto the cellulose.

Pereira et al. describe the chemical modification of SB by ethylenediaminetetraacetic (EDTA) 
dianhydride (EDTAD) in order to improve Zn2+ adsorption [14]. The EDTA molecule is a 

Figure 1. Scheme of possible synthetic route for introduction of carboxylic groups.
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 chelating group that enhanced the metal complexation on fiber surface. Other compounds 
such as citric acid and phthalic anhydrides have also been used for SB modification, resulting 
then in an increase of adsorption capacity for these fibers [9, 13, 17, 18]. Table 1 summarizes 

some studies where SB in nature or modified form is used to remove heavy metals from aque-

ous environment.

1.2. Sugarcane bagasse as an adsorbent for removal of dyes

With the expansion of textile sector, dyes in wastewater have become a serious environmental 

problem. Dyes are organic chemical compounds that appear colored due to the presence of 
chromophore groups such as nitrous, azo, and carbonyl [19, 20]. The release of dye waste into 

water bodies affects the life in aquatic environments, causing the ruining of soils and  poisoning 

Metal ion SB/modification Sorption capacity (mg g−1) References

Cd2+ SB without modification 69.06 [12]

Zn2+ Ethylenediaminetetraacetic dianhydride 105.26 [14]

45.45

Pb2+ Without modification 26.67 [17]

Pleurotus ostreatus (U2–11) 36.31

Lentinula edodes (U6–1), 27.68

Basidiomycetes 39.93

Ganoderma lucidum (U12–6) 36.00

Co2+ Trimellitic anhydride 1.153 [3]

Cu2+ 0.979

Ni2+ 0.849

Cu2+ Tetraethylenepentamine 0.016 [18]

Cu2+ Succinic anhydride 114 [15]

Cd2+ 196

Pb2+ 189

Co2+ Phthalic anhydride 0.561 [3]

Cu2+ 0.935

Ni2+ 0.932

Cr3+ Without modification 16.21 [13]

NaOH 26.41

Citric acid 17.2

NaOH/acylation with citric acid 31.28

Table 1. SB in nature or modified as metal sorbent reported in the studies.
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of drinking water. Besides, dyes cannot be removed by conventional treatment methods, and 

are resistant to aerobic digestion. As an alternative method, physical removal of dyes from 

effluent through biosorption has been extensively studied [8, 21]. A dye molecule is character-

ized by the presence of chromophore groups, which are responsible for producing the color, 

and also by groups known as auxochromes such as carboxylic acid, sulfonic acid, amino, and 

hydroxyl groups. These auxochromes are responsible for impacting or shifting of a particular 

color when attached to a chromophore, and also used to influence the dye  solubility. In fact, 

Dyes SB/modification Sorption capacity (mg g−1) References

Crystal violet Oxidation with H
3
PO

4
-NaNO

2
1018.2 [8]

Auramine O 571.8

Methylene blue Maleic anhydride 30.4 [25]

Rhodamine B Without modification 51.3 [2]

Methylene blue 28.0

Acid Alizarin Violet N Without modification 20.8 [26]

Methyl red Phosphoric acid 11.0 [21]

Without modification 5.7

Congo red Without modification 39.8 [24]

Methylene blue Ethylenediaminetetraacetic dianhydride 115.3 [27]

Crystal violet Meldrum’s acid 552.7 [7]

Methylene blue Ethylenediaminetetraacetic dianhydride 192.3 [19]

Gentian violet 357.1

Methylene blue Succinic anhydride 434.3 [16]

Gentian violet 1133.7

Erythrosin B Without modification 333.3 [22]

Methylene blue 1000.0

Table 2. Examples of dyes adsorption by SB.

Figure 2. Example of cationic (erythrosin B) and anionic (methylene blue) dyes.
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the auxochromes are important to enhance the affinity of the dye toward the fibers. As a result, 
natural fiber, as SB, presents greater potential to remove dyes from wastewater.

Basically, dyes can be classified as cationic or anionic. Figure 2 shows, for example, the mol-

ecules of erythrosin B (EB) and methylene blue (MB). Cationic dyes carry a positive charge 
in their molecule, while anionic dyes carry a negative charge [22–24]. In aqueous solution, 

the dye molecules will present positively or negatively charged as a function of pH, and the 

electrostatic interaction with the fiber surface will direct the adsorption process. Therefore, 
the dyes adsorption route by SB can be described in a similar way as observed for metal 

ions. At low pH, the surface of SB became positively charged and the cationic dye adsorption 

will decrease, while for anionic dyes the reverse process occurs. In contrast, at high pH, the 

cationic dye removal will increase because the surface appears negatively charged and the 

anionic dye adsorption became inhibited. Table 2 summarizes some results of adsorption of 

dyes using SB, natural or modified, as a sorbent.

2. Sugarcane bagasse-based sorbents for motor oil removal

Research involving oil sorbents was firstly encouraged by the great environmental accidents 
generated by oil spills at sea [28–30]. In these cases, the adsorption processes are more suitable to 

remove and recover the oil. The sorbent material facilitates a transformation from liquid to solid 

phase, and then oil can be removed together with the sorbent. The main characteristic of crude 

oil sorbent material is the hydrophobicity and oleophilicity in order to attract oil preferentially to 
water. However, the amount of sorbents added to an oil polluted environment is a critical factor, 

because the inappropriate and excessive use can present subsequent waste disposal problems. 

It is especially important when organic synthetic products are used as sorbents. Synthetic sor-

bents, as polypropylene, do not degrade and are very expensive. Therefore, agricultural waste 

by-products were firstly used as an alternative oil sorbent to replace the conventional and non-

degradable sorbent used to clean up oil spills. These biosorbents are biodegradable, renewable, 

abundant, and low cost. Teas et al. [31] compared the oil sorption capacity of cellulose with the 

expanded perlite and polypropylene in artificial seawater containing crude oil. These authors 
observed that for crude oil, the sorption capacity of cellulose overtakes the other sorbents. When 

light cycle oil and light gas oil were used in artificial seawater, they observed lower sorption by 
cellulose in relation to polypropylene, but similar behavior to expand perlite. The oil sorption 

capacity of vegetal fibers observed by several authors has been attributed to the interaction with 
hydrophobic sites in the biomass. Lignocellulosic fibers contain both hydrophilic and hydro-

phobic groups; however, the cellulose structure has hydrophilic nature with excellent wettabil-
ity. The chemical functionalization of cellulose can increase its hydrophobic character, which is 

possible by changing the hydrophilic groups, hydroxyl (−OH) in the raw coir cellulose to hydro-

phobic hydrocarbons [32–34]. The biomass acetylation has been extensively used to increase 

its oil sorption capacity. Sun et al. [35] observed that SB acetylated presents greater machine 

oil sorption capacity (13.5–20.2 g g−1) than polypropylene fibers (10 g g−1). Table 3 summarizes 

other studies that have been demonstrated the potential sorbent of agricultural by-products to 

oil removal and the effect of biomass modification in the sorption capacity.
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In spite of crude oil sorption favored by hydrophobic surface, in the case of used motor oil, 

this behavior is not completely precise. The crude oil and fresh motor oil composition is based 

on a mixture of hydrocarbons, and hence present affinity for hydrophobic sorbent. However, 
the composition of used motor oil has been changed through thermal degradation and con-

tamination from generated waste in the engine. This process leads to the formation of low-

molecular weight compounds and oxidation products [43]. Recently, Guilharduci et al. [44] 

showed that introduction of hydrophilic groups on SB improve the oil sorption from engine 

washing wastewater. Besides, it was also verified that surfactant present in wastewater affect 
the motor oil sorption.

The biomass acylation is well established in the literature, and the method is based on the 

reaction of hydroxyl groups (−OH) of the fiber surface with acyl groups (RCO–). Considering 
that the reaction with fiber is a heterogeneous reaction, not all hydroxyl groups is esterified, 

Adsorption/sorption 

conditions

Sorbent/treatment Sorption 

capacity (g g−1)

References

Crude oil in dry conditions Dacryodes edulis leaf Unmodified leaf 3.440 [33]

Acetylated with 

acetic anhydride

4.990

Raw cotton 30.5 [36]

Crude oil in distilled water Sisal (Agave sisalana) 3.0–6.4 [28]

Coir fiber (Cocos nucifera) 1.8–5.4

Sponge-gourd (Luffa cylindrica) 1.9–4.6

Crude oil in artificial 
seawater

Mangrove barks Untreated bark 1.666 [37]

Treated with oleic 

acid

3.333

Treated with palmitic 

acid

3.333

Machine oil in distilled water Sugarcane bagasse Untreated bagasse 8.9 [35]

Acetylated with 

acetic anhydride

11.4–16.5

Sugarcane bagasse modified with acetic anhydride 13.5–20.2 [38]

Synthetic effluent of crude 
petroleum

Sugarcane bagasse 6.65 [39]

Motor oil in water Natural wood fibers 33–43 [40]

Wastewater of used motor oil Natural wood fibers 5.56 [41]

Engine oil in dry conditions Ceiba pentandra (L.) Gaertn. fibers (Kapok) packing 
density 0.02 g mL−1)

47.4 [42]

Used engine oil in dry 

conditions

50.8

Table 3. Examples of oil sorption by biomass.
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and a nonuniform product may be obtained [32, 35, 38, 45]. In the case of SB, the acetyla-

tion with acetic anhydride should introduce the methyl group and increase hydrophobicity 

at surface. Other acylating agents such as maleic [46], phthalic [9], and succinic [16] anhy-

drides have been used to introduce carboxylic groups on fibers and increase its surface 
hydrophilicity.

Another class of coupling agents recognized as efficient to promote the fiber hydrophobicity 
or hydrophilicity are the silanes. They have been extensively used to modify the surface of 

natural fibers to produce composites with thermoplastics or thermosets [47]. The aminosi-

lanes, as the aminopropyltriethoxysilane (APS), are the most reported coupling agents for 

natural fibers. Recently, APS was successful used to modify the SB surface in order to improve 

its hydrophilic properties, and increase its oils sorption capacity [44].

Despite the great demand for treatment of effluents containing used oil, there is a scarcity of 
literature on this problem. In this study, this subject is explored in order to verify the potential 

of SB fibers for oil wastewater treatment. The effect of several coupling agents over SB capac-

ity for sorption of used motor oil is investigated as well as the influence of surfactant in this 
process.

2.1. Methodology

2.1.1. Reagents

Acetic anhydride (99%), maleic anhydride (96%), phthalic anhydride (99%), succinic anhy-

dride (97%), and aminopropyltriethoxysilane (APS) (97%) were purchased from Sigma-

Aldrich and used without further purification. The other analytical grade reagents were 
obtained from Merck (Brazil) and were used as received. The used motor oil used in this study 

was obtained from Retifica del Rei (São João del Rei, MG, Brazil). SB was supplied by Cachaça 
Coqueiro (Nazareno, MG, Brazil). The bagasse was washed repeatedly with distilled water 

to remove all the dirt particles. The washed fiber was then dried in an oven (Q314M, Quimis) 
at 60°C for 24 h under a flow of air. It was subsequently ground and sieved through 30 mesh 
sieves (TE648, Tecnal). The resulting natural fiber was designated as SBN and was used as the 
starting material to produce the modified SB.

2.1.2. Fiber modification

Thermal treatment of SBN at 200°C for 24 h was performed to obtain the sample SB-200. 

The SBN acylation was obtained based on previous reports [44]. Briefly, the fiber was firstly 
soaked in 10% NaOH solution (using a ratio of 1 g/1 mL) at 0°C for 2 h. The bagasse was 

then washed with Milli-Q water until neutral pH and dried at 60°C for 24 h. Following this 
procedure, 70 g of the cleaned bagasse was placed in a 1 L round-bottom flask containing 
300 mL of acylating agents and 200 mL of acetic acid. The mixture was acidified by adding 
1 mL of H

2
SO

4
 and maintained under agitation for 24 h at 60°C. At the end of this period, 

the solution was filtered and the product was rinsed first with ethanol and then with water 
until the pH reached around pH 7.0. After this procedure, the sample was dried at 60°C for 
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24 h. The acylating agents used were acetic anhydride, maleic anhydride, phthalic anhy-

dride, and succinic anhydride, which produce the samples SB-Acet, SB-M, SB-P, and SB-S, 

respectively.

The procedure of SB silanization was based on previous report [44]. Basically, the SB is firstly 
washed with Milli-Q water at 60°C until no color was observed in the washed water, next the 
fibers are mixed with APS, using a 5/2 mass ratio of SBN/APS, and dispersed into 400 mL of 
acetone. The suspension was placed in a bottle with glass spheres and left on a roller-conveyor 
(TE500/1, Tecnal) for 24 h at 200 rpm. The excess of reagents were Soxhlet-extracted with 
acetone for 24 h. Subsequently, the fiber was dried in an oven at 60°C for 24 h, under a flow of 
air. The result sample was denominated as SB-APS.

2.1.3. Fibers characterization

Fourier transform infrared (FTIR) spectra were obtained in the range 400–4000 cm−1, using a 

Perkin-Elmer 1720 FTIR spectrometer. The samples were mixed with KBr (Merck, spectros-

copy grade) in an approximate ratio of 10/1. The resulting mixture was pressed into pellets 

and the spectra were acquired using 300 scans with resolution of 4 cm−1. Determination of C 
and N contents was carried out with a Thermo Fisher Scientific, Flash 2000 Analyzer.

2.1.4. Sorption experiments

Sorption test was performed using a synthetic used motor oil/water mixture with an oil con-

centration of 10.0 g L−1. The used motor oil sorption was determined by immersing 1.0 g of 

fiber in 100 mL of the solution of oil/water mixture. After 24 h, the sorbent was removed, 
and dried for 24 h at room temperature. The oil sorption was calculated using the following 

equation:

  Q =   
 m  

f
   −  m  

i
  
 _____  m  

i
      (1)

where Q is the oil sorption capacity (g/g), m
f
 is the total mass of dry sorbent (g) after sorption, 

and m
i
 is the mass of dry sorbent before sorption (g). The water sorption was determined by 

the same procedure but using only water.

The experiments of oil sorption were also carried out in solutions containing sodium dodecy-

lbenzenesulfonate in a proportion of 0.05–0.30% in the dispersion of used motor oil/water. 

The surfactant concentration was determined following the methodology established by the 

American Public Health Association (Water Environment Federation & APHA 2005).

2.2. Results and discussion

Table 4 summarizes the samples prepared in this study. Results from elemental analysis of 

nitrogen and carbon in each sample are also presented in Table 4. It is noticed that the highest 

content of nitrogen obtained for SB-APS in relation to SBN fiber, which is attributed to amino 
groups from APS.
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The modification introduced on the SBN was evaluated by FTIR and results are shown in 
Figures 3 and 4. For SBN spectra, four peaks are clearly observed between 3600 and 3307 cm−1 

characteristic of stretching vibration of hydroxyl groups, which are associated with lignocel-

lulose structure. Upon acylation with acetic anhydride, the intensity of ─O─H absorption 

band decrease because of hydroxyl groups reduction after reaction. In the same region of 

spectra, for SB-M only a diffuse band, centered at 3387 cm−1, is observed, and can be associated 

to hydrogen bonding in the hydroxyl groups. Similar profile is observed for SB-P and SB-S, 
in which, it is possible to identify two peaks less intense, at around 3600 and 3186 cm−1, also 

attributed to hydrogen bonding in the hydroxyl groups. These results confirm the modifica-

tion of surface, which decrease the free hydroxyl groups at fiber surface. Successful esterifica-

tion can be supported by three important absorption band around 1736, 1367, and 1242 cm−1, 

correspondent to the stretching vibration of carbonyl groups (C═O), C─H stretching, and 

C─O stretching characteristic of ester molecules. These bands can be clearly observed for 

SB-Acet, SB-S, and SB-M, however, with less intensity for SB-P, which can be associated with 

possible lower acylation obtained for this sample.

Sample Treatment Elemental analysis

N% C%

SBN In nature 0.18 45.7

SB-200 24 h at 200°C 0.28 48.2

SB-Acet Modified with acetic anhydride Not detected 45.1

SB-M Modified with maleic anhydride 0.12 44.8

SB-P Modified with phthalic anhydride 0.14 46.1

SB-S Modified with succinic anhydride Not detected 43.1

SB-APS Modified with aminopropyltriethoxysilane 2.15 42.5

Table 4. SB-based sorbents produced in this study.

Figure 3. FTIR spectra of (a) SBN, (b) SB-Acet (c) SB-P, (d) SB-S, and (e) SB-M.
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For sample SB-APS, the FTIR is very similar to SBN (Figure 4). The characteristics of absorp-

tion bands of ─Si─O─Si─ at 700, 1030, 1145, and 1187 cm−1 overlapping with groups present 

in the biomass surface hinder its identification [47]. However, in the region of 3600–3000 cm−1, 

the APS modification leads to emerging of strong band, centered at 3398 cm−1, attributed to 
hydrogen bonding from hydroxyl groups. This behavior suggesting that hydrophilic groups 

(─NH
2
) from APS could be interacting with free hydroxyl groups.

The effect of SB modifications over oil and water sorption capacity can be observed in Figure 5. 

It is possibly observed that samples SB-APS, SBN, and SB-200 show higher affinity with water 
and also with used motor oil. This result suggests that the introduction of hydrophilic groups 

on SBN improve the used motor oil sorption. Guilharduci et al. [44] showed that used motor 

oil presents more affinity to hydrophilic surface than for crude oil. As previously discussed 
in the introduction, this behavior can be attributed to the chemical differences between used 
motor oil and new motor oil. Used motor oil can contain sludge, metal residues, and various 

Figure 5. Oil and water sorption capacity for SB samples.

Figure 4. FTIR spectra of (a) SBN and (b) SB-APS.
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other contaminants. Therefore, the presence of polar amino end groups (NH
2
) from silane 

structure favors the interaction with the constituents of the used motor oil. In contrast, the 

acylation of SBN was not effective to improve affinity with the constituents of used motor oil 
resulting in decreased adsorption capacity.

In spite of the higher oil sorption obtained for SB-APS (0.71 g g−1) in relation to SBN (0.60 g g−1), 

the difference was about 15%, which is relatively small. It is important to take in account that the 
fiber modification with silane groups is a costly and complex process. Considering the abun-

dance, low cost and efficiency of SBN, this material presented the best cost benefit for use as 
sorbent of wastewater of used motor oil.

Previous studies showed that the surfactants in used motor oil wastewater can affect its sorp-

tion by natural fibers [44]. Surfactants are widely used in various industrial processes for oil 

recovery, because of their physicochemical characteristics for emulsification, dispersion, and 
solubilization [48]. They have the ability to reduce the oil-water interfacial tension, increase the 

capillarity, and change the wettability of the adsorbent surface. Then, in order to evaluate the 
impact of surfactants on the SBN sorption capacity, batch experiments were carried out using an 

anionic surfactant, sodium dodecylbenzenesulfonate, in a dispersion of oil (1.0 g)/water (0.1 L). 

The results are summarized in Figure 6(a, b).

Figure 6. (a) The effect of anionic surfactant in the oil sorption and (b) surfactant sorption in dispersion with and without oil.
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The used motor oil sorption shows slight increase (13%) in low concentration of surfac-

tant, and afterward, the sorption decreases almost 42%. When the surfactant concentration 

increases, the hydrophobicity of fiber in aqueous solution decreased as a result of lower 
interfacial energy between water and fibers. In parallel, the oil-water interface is improved 
although micelles or microemulsions formation, which probably affects the oil sorption by 
SBN and improve surfactant interaction with the fiber. In this condition, the surfactant sorp-

tion is likely increased by SBN surface. This suggestion can be evaluated by the analyses of 

surfactant sorption in the water dispersion with and without oil. The results of these experi-

ments are depicted in Figure 6(b). Based on this result, it is noticed that surfactant sorp-

tion not only increases when its concentration increases but also is enhanced in the oil/water 

dispersion.

3. Conclusion

In this chapter, the great potential of SB in the natural and chemically modified form is shown 
to be applied as sorbent material for oil removal from aqueous medium. The performance of 

SBN to remove used motor oil from wastewater was around 0.6 g g−1. This value increases 

around 13% in the presence of surfactant at 0.05–0.15% in water/oil dispersion. SB also 

showed efficient sorption of anionic surfactant in water dispersion with or without oil. The 
results support the use of SB as a natural sorbent as a substitute for commercial synthetic oil 

sorbents in the treatment of wastewater of used motor oil.
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