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Abstract

Reliability is a key important criterion in every single system in the world, and it is not
different in engineering. Reliability in power systems or electric grids can be generally
defined as the availability time (capable of fully supplying the demand) of the system
compared to the amount of time it is unavailable (incapable of supplying the demand). For
systems with high uncertainties, such as renewable energy based power systems, achiev-
ing a high level of reliability is a formidable challenge due to the increased penetrations of
the intermittent renewable sources such as wind and solar. A careful and accurate plan-
ning is at the utmost importance to achieve high reliability in renewable energy based
systems. This chapter will assess wind-based power system’s reliability issues, and pro-
vide a case study that proposes a solution to enhance the reliability of the system.

Keywords: availability, energy storage, renewable energy, reliability, wind

1. Introduction

The world is moving forward in technology as power systems lean toward renewable energy

more and more each year. While the idea of using renewable energy has long been the focus of

numerous researches from all over the world, the implementation itself is more complicated

than said. Dealing with renewable energy proposes new challenges that must be carefully

addressed and solved. The uncertainty of renewable energy sources, such as wind speed (for

wind turbines) or solar radiation (for solar photovoltaic (PV) panels), and the fact that it is

unreliable from time to time due to said uncertainty, are two of the major issues that rough up

the transition from fossil based energy sources to renewable energy sources. The main objec-

tive of operational and planning strategies is to enable power systems to constantly and

continuously meet the consumers’ demand or the system load. The volatility of renewable

energy sources jeopardizes the power system’s ability to reliably meet this objective.

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Climate change concerns, and new state initiatives are some of the factors that contributed in

pushing and escalating the number of wind power based technology deployment during recent

years. The stochastic nature of wind power resources makes it difficult to perform a reliable

operation. While this issue has been frequently studied and numerous methods have been

developed, a flawless solution for every case has not yet been designed. One of the proposed

solutions is to use fast-responding units like gas generators as the operating reserves to keep up

with the demand [1, 2], although doing that reduces the system’s efficiency and increases its

operating costs [3]. Another possible solution is to install energy storage systems, which store

wind power during low-demand periods and release power during periods when the system

cannot provide sufficient power to meet the load [4]. This increases the flexibility of the power

system as the energy storage system counterbalances the unexpected wind power fluctuations to

more efficiently utilize the smoothened wind power for supplying the system demand.

In the upcoming future, energy storage systems are expected to be an essential part of electric

grids. However, its deployment depends heavily on its economic advantages when compared

to the more conventional operational practices. To come up with the most economically

beneficial plan, a cost–benefit analysis must be done for each possible technology, especially

in regulated utilities where the limited market opportunities diminish the potential economic

benefits of storage technologies over gas-fired generators [3]. To assure the effectiveness of an

energy storage system, we must approach the problem with an appropriate strategy [5, 6]. An

optimal storage sizing strategy furnishes the system with the capability to stabilize against

forecast uncertainty and integrate wind power more reliably [7–9], added with optimal sched-

uling, it also improves the system’s transmission capacity utilization.

For high wind penetrations, fast-response thermal units are used as reserve capacities to

provide the fast ramping capability required to deal with wind power fluctuations. Recent

developments in storage technologies have advanced its energy efficiency and enhanced its

capability in dealing with fast ramping. Additionally, storage systems bring forth several

benefits when compared to fast-response thermal units, such as efficiency enhancement of

renewable integration, reduced emission, and improved utilization of grid assets.

Several applications have been proposed for energy storage systems, which include but are not

limited to renewable capacity firming and reliability enhancement of renewable integration.

Each application requires a case-by-case optimal allocation strategy, which might result in

different solutions. Particularly, the matter of optimally sizing, siting, scheduling and operat-

ing storage systems to address the reliability issues of intermittent renewable integration is of

great importance. A solid, probabilistic optimization framework is needed to supplement grid

operability and reliability while at the same time reduces overall costs for systems with high

wind penetrations. The framework developed by the author in Ref. [10] is adopted for this

chapter and is provided in the next section. A case study is presented in this chapter to analyze

the reliability of renewable energy based systems and compare storage technologies and

conventional gas-fired alternatives for reliably integrating different wind penetrations. An

economic analysis is also provided to calculate costs and benefits associated with each tech-

nology to determine the most economical solution.
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2. Methodology

The following methodology is one possible solution example to model an intermittent renew-

able energy-based power system.

2.1. Wind, load, and equipment availability modeling

We use probability distribution functions (PDFs) to model the stochastic nature of load and

wind generation, which parameters are calculated using 10 years of historical hourly data for

load and wind speed [11]. The produced model will then be used to generate hourly samples

for the planning period. We use Fuzzy C-Means (FCM) clustering to capture a statistical

model that takes into account seasonal variations [12]. We grade each of the sample points

with a value within the range of [0, 1], then we minimize the weighted distance between any

sample point and a cluster center by using an iterative algorithm. The elbow method deter-

mines the total number of clusters [13]. By combining the FCM clustering and the elbow

method, we categorize our planning days into 40 clusters of 24-hour wind speed and load

samples. We utilize the maximum likelihood method to find the parameters of the PDFs for

the samples. Two sets of 24 individual PDFs will represent each of the clusters for a 24-hour

period.

2.1.1. Wind power modeling

The total power generated by a wind turbine can be calculated by the product of a simple

kinetic energy equation through a cross sectional area A as follows [14].

P ¼
1

2
rv3A ¼

1

2
rv3

πd2

4
(1)

where v is the wind speed in meters per second (m/s), r represents air density in kg/m3 and d is

the rotor diameter in meters.

The power output of a wind turbine depends heavily on the speed of the wind, and the wind

speed itself can be best characterized by using the Weibull PDF, which formula is the following

[11, 15]:

f v; c; kð Þ ¼
k

c

v

c

� �k�1
e�

v
cð Þ

k

(2)

where k is a shape vector, c is the scale vector, and v is a vector of the measured wind speed.

The average width of the wind speed distribution is determined by the shape vector k, while

the scale vector indicates where the majority of the distribution lies and how wide the

distribution-stretch is.

The wind power output can be calculated by using the power-speed curve [16]:
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GW ¼
0 v ≤ vi, v ≥ vo

v� vi
vr � vi

GW r
vi ≤ v ≤ vr

GW r
vr ≤ v ≤ vo

8

>

>

<

>

>

:

(3)

where GW is the output wind power, and vi, v0, vr, v represents cut-in speed, cut-out speed,

rated speed, and wind speed respectively.

2.1.2. Load modeling

The variation of the load is described by the Gaussian distribution [11]:

f l;μ; σ
� �

¼ 1
ffiffiffiffiffiffiffiffiffiffiffi

2πσ2
p exp � L� μ

� �2

2σ2

" #

(4)

where σ and μ represent the standard distribution, and mean of the Gaussian distribution

respectively, and L represents the load demand.

2.1.3. Equipment availability modeling

Forced outage rate (FOR) of an equipment is the unavailability of the equipment estimated for

a long-time period [17]. FOR models the availability of the equipment stochastically by the

binomial PDF as follows:

f q; n; pð Þ ¼
n

q

� �

pq 1� pð Þn�q (5)

where n is the number of units for each power plant and q = 0, 1, 2, …., n. The availability of

each unit p is:

p ¼ 1� FOR (6)

where FOR is basically the probability of the system’s unavailability. For systems with long

operating cycles, FOR can adequately estimate the unavailability probability of units that

operates under similar conditions. On the other hand, it is not an adequate estimator for

systems with short demand cycles. The most important period in the operation of a unit is the

start-up period, and a peaking unit (example of a system with short demand cycles) will have

less operating hours with more start-up and shut-down periods [17].

2.2. Energy storage modeling

The model of a storage system must be able to handle the energy balance between the sum of

the stored and generated energy and the load, where it stores excess energy gained from wind

generation and releases the energy to supply the peak demand. We can use compressed air

energy storage (CAES) to enhance the wind integration performance in a transmission
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network due to its beneficial features such as large power capacity, long lifetime, and low

operation costs [18]. The charging and discharging equations of the storage system are as

follows:

St ¼ 1� dsð ÞSt�1 þ η
cs
Lst ∀t∈T (7)

St ¼ 1� dsð ÞSt�1 � η
ds
Gst

∀t∈T (8)

where St represents the energy stored in the storage system at hour t, η
cs
and η

ds
represents the

charging and discharging efficiencies for the CAES, Lst represents the storage loading capacity

at hour t, and Gst represents the storage generating capacity at hour t, and ds represents the

self-discharge rate for CAES.

The state of charge of the storage system at any time t is within the minimum and maximum

storage capacity requirements:

Smin ≤St ≤Smax ∀t∈T (9)

where Smin and Smax are the minimum and maximum storage capacities.

The stored power must not exceed the maximum power rating at any given time as follows:

Ptj j ≤Pmax∀t∈T (10)

where Pt and Pmax are the storage power at time t and the maximum storage power respec-

tively.

The following is the ramping constraints for the storage:

GSt
� GSt�1

≤RUs ∀t∈T (11)

GSt�1
� GSt ≤RDs ∀t∈T (12)

where RUs and RDs are the ramp up and ramp down of the turbine for the storage system

respectively.

CAES has an expected lifetime of 30 years [19].

2.3. Economic modeling

The storage cost is the sum of the energy and power costs associated with each energy storage

technology. The storage cost is described by the following equation [20, 21]:

ICS ¼ CS:Smax þ CP:Pmax (13)

where ICS is the cost of investment for the storage system, CS is the energy cost for the storage

system, and CP is the power cost for the storage system.
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The energy cost for CAES is 53 $/kWh, which includes the combined reservoir and the balance

of plant costs. The power cost of CAES is around 425 $/kW [20], which includes turbine,

compressor, and other power related costs.

The operation expenses are the sum of operation and maintenance (O&M) and fuel costs,

which can be described by the following equation [22]:

OCSt ¼ HR:GSt :CNGt
þ COM:Pmax ∀t∈T (14)

where OCSt is the operation cost of the storage system, HR is the turbine heat rate for the

storage system, CNGt
is the cost of natural gas of the storage system, and COM represents the

cost of operation and maintenance for the storage.

CNGt
, COM, and HR are 4300 Btu/kWh, 5 $/MBtu and 2.5 $/kW-year [20, 22].

For a gas-fired conventional generator, the investment cost and heat rate are 695 $/kW and

8000 Btu/kWh respectively.

The total annual cost can be calculated by uniformly distributing the investment costs over the

lifetime as follows:

A ¼
d 1þ dð ÞN

1þ dð ÞNþ1 � 1
∙IC (15)

where A is the annual equivalent cost for the investment, d is the discount rate, N is the life

cycle of the investment, and IC is the investment cost.

We assume a discount rate of 10% and a lifetime of 30 years for the investment.

2.4. DC optimal power flow

We use optimal power flow (OPF) to find the steady state condition that at the same time

minimizes the total operation and reliability costs. The objective function of the deterministic

OPF is as follows:

Obj:Function ¼ Min
X

ng

i¼1

aiPgi, t
2 þ biPgi, t þ ci

� �

(

þ
X

nb

i¼1

IEARi � ILi, tg

¼ Min OCt þ ILCtð Þ ∀t∈T (16)

where IEARi is the interrupted energy assessment rate at each bus. ai, bi and ci are the coefficients

of the cost function for the ith generator, Pgi, t represents the power output of the i-th generator at

hour t, and ILC is the interrupted load cost.

The objective function above is subject to each of the following constraints:
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Power balance equation:

X

nb

i¼1

Pgi, t ¼

X

nb

i¼1

Pdi, t ∀t∈T (17)

where Pdi, t is the supplied load at bus i at hour t, and nb is the bus number.

Power generation and load limitations:

Pmin
gi, t

≤Pgi, t ≤P
max
gi, t

∀t∈T (18)

Pmin
gi, t

≤Pgi, t ≤P
max
gi, t

∀t∈T (19)

where Pmin
gi, t

and Pmax
gi, t

are the lower and upper generation limits for the i-th generator at hour t

respectively.

Interrupted load:

ILi, t ¼ PDi, t � Pdi, t ∀t∈T (20)

where PDi, t is the load demand at bus i at hour t.

Generation ramp up and ramp down:

Pgi, t � Pgi, t�1
≤RUi ∀t∈T (21)

Pgi, t�1
� Pgi, t ≤RDi ∀t∈T (22)

And the transmission line limitation:

X

nb

i¼1

Hr�i � Pgi, t � Pdi, t

� �

≤ f rr∈Ω&∀t∈T (23)

where Hr�i is the generalized distribution factor of line r with respect to bus i, f r is the

maximum transmission capacity for line r, and Ω is the set of transmission lines.

2.5. Probabilistic optimal power flow

A probabilistic OPF is a more appropriate approach when dealing with uncertainties of loads

and wind power fluctuations, which process includes running the deterministic power flow

continuously to account for the majority of possible system states. This chapter utilizes an

approximate method called Hong’s point estimate method (2 m + 1 scheme) to characterize

uncertainties, which uses the first few front most statistical moments of stochastic variables to

approximate the probability functions [23].
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K is the number of concentration points that we use to represent the statistical information of

the random input variable in our K�m scheme. A location xi,k and a weight wi,k(xi,k, wi,k)

represent the kth concentration of the random variable xi. In order to relate the input and

output variables to each other, we apply the non-linear function F x1; x2;…; xi;…; xmð Þ. The

location of the kth value of variable xi is determined by the following equation:

xi,k ¼ μxi
þ ξi,kσxi (24)

where μxi
is the mean for the input variable xi, ξi,k represents the standard location for the input

variable xi, and σxi is the standard deviation for the input xi. We assign a weighing factor wi,k to

the current random output variable of the kth concentration. To determine ξi,k and wi,k, for the

kth concentration of xi, we use the following equations [23]:

X

K

k¼1

wi,k ¼
1

m
(25)

X

K

k¼1

wi,k ξi,k
� �j

¼ λi, jj ¼ 1,…, 2K � 1 (26)

λi, j in the equation above represents the jth standard central moment for the random variable

xi, and its probability density function f xi can be described as:

λi, j ¼
Mj xið Þ

σxi
� �j

(27)

The jth central moment of the random variable xi is given by:

Mj xið Þ ¼

ð

∞

�∞

xi � μxi

� �j
f xidxi (28)

Once we obtain every concentration (xi,k, wi,k), we use the nonlinear function F to calculate the

vector of random output variables Z i; kð Þ for each point μx1
;μx2

;…; xi,k;…;μxm

� �

as follows:

Z i; kð Þ ¼ F μx1
;μx2

;…; xi,k;…;μxm

� �

(29)

By using the values from Z i; kð Þ, and the weighing factors, the jth moments of the random output

variables can be approximated by:

E Zj
	 


ffi
X

m

i¼1

X

K

k¼1

wi,k Z i; kð Þð Þj (30)

We can extract the desired statistical information of our random output variable using a

2 m + 1 scheme by solving (25) for K = 3 and ξi,3 ¼ 0. The standard locations and weight

produced by the equation are:
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ξi,k ¼
λi,3

2
þ �1ð Þ3�k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λi,4 �
3

4
λi,3

2

r

k ¼ 1, 2 ξi,3 ¼ 0 (31)

wi,k ¼
�1ð Þ3�k

ξi,k ξi,1 � ξi,2
� � k ¼ 1, 2 (32)

wi,3 ¼
1

m
�

1

λi,4 � λi,3
2

(33)

λi,3 and λi,4 are the skewness and kurtosis of xi.

The scheme above sets up ξi,3 ¼ 0, which results in xi,k ¼ μ
xi
in (25), and yields m of the 3 m

locations at the same point. By that done, it only requires one additional function evaluation

for this particular location to complete 1 iteration of our probabilistic OPF. We update the

corresponding weight to w0 as follows:

w0 ¼
X

m

i¼1

wi,3 ¼ 1�
X

m

i¼1

1

λi,4 � λi,3
2

(34)

The deterministic DC-OPF is executed 2 m + 1 times in order to take all the random variables

into account.

2.6. Reliability analysis

Reliability analysis provides an index to measure the degree of supply availability to meet the

system demand. In the times when generated and stored energy is insufficient to supply the

load, load is interrupted to maintain the power balance in the system. Load and generation

variations as well as equipment failures are among the system uncertainties that could con-

tribute to the load interruption in a power system. For wind turbines, the reliability model is a

combination of a two-state model and power output model defined by (3). This combination is

illustrated in Figure 1 to provide the reliability model for wind generators.

The interrupted load in the system is equivalent to the amount of energy that is not supplied

for each hour of the scheduling period, which can be described as:

ENSt ¼
X

nb

i¼1

ILi, t ∀t∈T (35)

where ENSt is the energy not supplied at hour t, and ILi, t is the interrupted load at bus i at hour t.

Figure 1. Reliability model for wind generator.
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The interrupted load is defined as a random output variable whose first moment is calculated

by (30), with j = 1. Expected energy not supplied (EENS) is then calculated for a one-year

planning duration to provide a probabilistic index for our reliability analysis.

EENS ¼
XC

c¼1

X

T

t¼1

X

nb

i¼1

E IL
c
i, t

� �

:nc (36)

where nc is the number of days within cluster c, C is the total number of clusters, c is the cluster

number, and E is the average function.

We use the energy index of reliability (EIR) to estimate the reliability of the system, which can

be calculated as follows:

EIR ¼ 1�
EENS

EE
(37)

EE represents the expected energy demand of the system during the planning interval and is

defined as:

EE ¼
XC

c¼1

X

T

t¼1

X

nb

i¼1

Pc
Di, t

:nc (38)

2.7. Genetic algorithm optimization

We use a Genetic Algorithm (GA)-based optimization to install the energy storage with its

optimal location and size. The GA begins by initially taking a set of randomly selected

solutions, and then ranking the solutions based on their fitness values. We then perform

recombination, crossover, selection, and mutation, to evolve the solution population. Once

the satisfaction criterion is satisfied, we put the process into a halt. We assign a large penalty

factor to the violated constraint to ensure satisfying constraints.

2.8. Proposed method

We model the storage system into our POPF as a load that stores excess, unconsumed energy

generated by the system during off-peak periods. The storage system is modeled as a generator

to release the stored energy to meet the peak load when sufficient transmission capacity is

available. The location and scheduling of the storage systems are then optimized using GA. The

optimized solution is the most cost efficient as it minimizes the total operation and interrupted-

load costs for the span of the planning period. In order to optimally enhance the grid operability

for wind integration, the storage technologies must possess an adequate capacity per the sys-

tem’s need. The fitness function that we use for the proposed method is the total weighted sum

of the system’s cost for each cluster over the planning period, as follows:

Fit:Function ¼ Min
X

C

c¼1

XT

t¼1
OCt þ ILCtð Þcnc (39)
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where OC is the operation cost of the system, ILC is the interrupted-load cost of the system,

and nc represents the number of days within the cluster.

The proposed GA-based POPF can be described in the following steps:

1. Input wind speed, loads, and FOR data

2. Initialize the first population.

A. For t = 1, until t = T:

3. Initialize the first input variable by setting i = 1 and E Zð Þ ¼ 0 & E Z2
� �

¼ 0

B. For i = 1, until i = m:

4. Select input random variable xi

5. Calculate ξi,k, wi,k, λi, j

6. Initialize k=1.

C. For k = 1, until k = 3:

7. Calculate xi,k

8a. If GW t
> Lt, model the storage as a variable load with the following constraints:

0 ≤ LSt ≤min Smax � 1� dsð ÞSt�1;Pmaxð Þ

8b. If GW t
< Lt, model the storage as a generator with the following constraints:

0 ≤GSt ≤min 1� dsð ÞSt�1 � Smin;Pmaxð Þ

9. Run Deterministic OPF using Z i; kð Þ ¼ F μx1
;μx2

;…; xi,k;…;μxm

� �

10. Calculate S for charging-discharging by using Eqs. (7 and 8)

11. Calculate OCt, ILCt, and EENSt

12. Update raw moments using the following equations:

E Zð Þ ¼ E Zð Þ þ wi,kZ i; kð Þ; E Z2
� �

¼ E Z2
� �

þ wi,k Z i; kð Þ½ �2

13. If k = 3, go to step 14, if not, go to step C with k ¼ kþ 1.

14. If i = m, go to step 15, if not, go to step B with i ¼ iþ 1.

15. If t = T, go to step 16, if not, go to step A with t ¼ tþ 1.

16. Evaluate the fitness function and constraints

17. Generate children by using crossover and mutation

18a. If termination criteria are not met, produce next generation by selection and combination

and go to step 2.

18b. If termination criteria are met, calculate the statistical output information.
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3. Case study

We evaluate our proposed method by applying it on the IEEE 24-bus system with the goal of

solving for the optimal size and location for the storage units [10, 24]. In our simulations, we test

our method for different situations by inputting different wind penetrations. To take into account

Figure 2. IEEE 24-bus system.
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possible geological restrictions for CAES deployment in a real-world situation, we excluded

busses 2, 7, 8, 11, and 17 from candidate locations on purpose. A wind farm is also pre-

determinedly installed at bus 14 in each of the case studies. A diagram of the IEEE 24-bus system

is shown in Figure 2. Tables 1–3 provide more information regarding the flow limitations,

generators’ cost functions, and IEAR values of the IEEE 24-bus system in use for the case study.

We define wind penetration (WP) as the ratio between the wind capacity installation and the

system maximum load. We use real-world historical data obtained from the BPA for the system

load [25] and from Mesonet (Ames Station) for the wind speed [26], to create a more realistic

simulation environment. To calculate the cost of electric service reliability in the IEEE 24-bus

system that we are going to run our demo on, we use the values of IEAR for our load busses [27].

The cost of the storage system, storage cost (SC), is equal to the sum of the cost of investment (A),

and its cost of operation (OCs) for the planning period. We can then calculate the cost of conven-

tional generation (OC) by excluding the storage operation cost from the total operation cost.

The objective is to achieve the maximum possible reliability level. Our scenario’s goal is to

solve for the optimal placement and sizing for the storage system to meet the reliability

objective. Our control strategy is to use the available wind energy to supply the load first,

followed by utilizing the existing conventional generation capacity, and last, if necessary, to

discharge power from the storage system to satisfy the load. The result of the simulations

including the comparison with other conventional alternatives is shown in Table 4. Same

reliability level is considered for both technologies to make a fair economic comparison. Our

storage system, which enhances the reliability of wind integration, can be economically

From bus To bus Flow limit (MW) From bus To bus Flow limit (MW)

1 2 175 11 13 500

1 3 175 11 14 500

1 5 175 12 13 500

2 4 175 12 23 500

2 6 175 13 23 500

3 9 175 14 16 500

3 24 400 15 16 500

4 9 175 15 21 500

5 10 175 15 24 500

6 10 175 16 17 500

7 8 175 16 19 500

8 9 175 17 18 500

8 10 175 17 22 500

9 11 400 18 21 500

9 12 400 19 20 500

10 11 400 20 23 500

10 12 400 21 22 500

Table 1. Transmission flow limitations.
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evaluated by comparing the sum of its associated costs with the total cost for the conventional

alternative. The cost–benefit analysis from our simulation results shows the economic merits of

the CAES, which can be found in Table 4.

4. Conclusions

Our case study concludes that energy storage technologies are more economic and technically

sound options than fossil-fuelled generators to reliably and efficiently integrate intermittent

renewable energy such as wind. The merits of energy storage application for reliability

enhancement of renewable integration become even more highlighted when the emission costs

associated with fossil-fuelled generators are included in the evaluation. This provides the

subject of future studies.

Generator Cost function coefficients

ai $=MW
2
h

� �

bi $=MWhð Þ ci $ð Þ

G1 0.103 71.05 1313.6

G2 0.108 71.04 1168.1

G3 0.090 66.19 1078.8

G4 0.091 67.26 969.8

G5 0.078 71.60 958.2

G6 0.078 71.60 958.2

G7 0.100 73.90 471.6

G8 0.090 73.90 471.6

G9 0.098 69.70 445.4

G10 0.101 66.51 702.7

Table 2. Coefficients of the cost function for the generators.

BUS NO. 1 2 3 4 5 6 7 8

IEAR 6.20 4.89 5.30 5.62 6.11 5.50 5.41 5.40

BUS NO. 9 10 11 12 13 14 15 16

IEAR 2.30 4.14 — — 5.39 3.41 3.01 3.54

BUS NO. 17 18 19 20 21 22 23 24

IEAR — 3.75 2.29 3.64 — — — —

Table 3. IEAR ($/kWh) values at each bus in the IEEE bus-system.
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