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Abstract

Emulsion polymerization is a polymerization process with different applications on the 
industrial and academic scale. It involves application of emulsifier to emulsify hydro-
phobic polymers through aqueous phase by amphipathic emulsifier, then generation of 
free radicals with either a water or oil soluble initiators. It characterized by reduction of 
bimolecular termination of free radicals due to segregation of free radicals among the dis-
crete monomer-swollen polymer particles. The latex particles size ranged from 10 nm to 
1000 nm in a diameter and are generally spherical. A typical of particle consist of 1–10,000 
macromolecules, where macromolecule contains about 100–106 monomer units.

Keywords: emulsion polymerization, emulsified monomers, particle nucleation and 
polymerization mechanism

1. Introduction

Emulsion polymerization is a unique process involves emulsification of hydrophobic mono-

mers by oil-in water emulsifier, then reaction initiation with either a water soluble initiator 
(e.g. potassium persulfate (K

2
S

2
O

8
) or an oil-soluble initiator (e.g. 2,2-azobisisobutyronitrile 

(AIBN)) [1, 2] in the presence of stabilizer which may be ionic, nonionic or protective colloid 
to disperse hydrophobic monomer through aqueous solution [3, 4]. Typical polymerization 

monomers involve vinyl monomers of the structure (CH
2
=CH-). These emulsion polymers 

find a wide range of applications such as synthetic rubbers, thermoplastics, coatings, adhe-

sives, binders, rheological modifiers, plastic pigments [1]. Emulsion polymerization is a rather 

complex process because nucleation, growth and stabilization of polymer particles are con-

trolled by the free radical polymerization mechanisms in combination with various colloi-

dal phenomena [1]. Aside from other polymerization techniques, emulsion polymerization 
affords increasing molecular weight of the formed latexes through decreasing polymeriza-

tion rate by either decreasing initiator concentration or lowering reaction temperature [5, 6]. 

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Systems of emulsion polymerization involve (1) conventional emulsion polymerization, in 
which a hydrophobic monomer emulsified in water and polymerization initiated with a water-
soluble initiator [5]. (2) Inverse emulsion polymerization [7], where organic solvents of very 
low polarity as paraffin or xylene used as a polymerization media to emulsify hydrophilic 
monomers [5], then initiation proceed with the aid of hydrophobic initiator [5]. These two 

polymerization types known as oil-in-water (o/w) and water-in-oil (w/o) emulsions [5]. (3) Mini 

emulsion polymerization involves systems with monomer droplets in water with much smaller 

droplets than in emulsion polymerization and characterized by monomer droplet =50–1000 nm, 
surfactant concentration < critical micelle concentration (CMC), water insoluble co stabilizer 
as hexadecane to prevent Ostwald ripening, polymer particle size equal monomer droplet 
size = 50–1000 nm, and both water soluble and oil soluble initiator used [4, 8]. (4) Microemulsion 

polymerization with very much smaller monomer droplets, about 10–100 nm, and character-

ized by surfactant concentration > CMC, polymer particles = 10–50 nm, water-soluble initiator 
are commonly used [9, 10]. Miniemulsion, microemulsion and conventional emulsion polym-

erizations show quite different particle nucleation and growth mechanisms and kinetics [1]. 

Many articles discuss different types of emulsion polymerization found in literature [1, 11–16].

2. Components of heterogeneous emulsion polymerization

The main components of emulsion polymerization media involve monomer(s), dispersing 
medium, emulsifier, and water-soluble initiator [5, 17–19]. The dispersion medium is water 

in which hydrophobic monomers is emulsified by surface-active agents (surfactant). When 
surfactant concentration exceeds critical micelle concentration (CMC) it aggregate in the form 

of spherical micelles, so surface tension at the surface decrease, as a result hydrophobic mono-

mers enter in to the vicinity of micelle and reaction continue until all monomer droplets are 

exhausted and micelle containing monomers increase in size. Typical micelles have dimen-

sions of 2–10 nm, with each micelle containing 50–150 surfactant molecules [5]. Water-soluble 
initiators enter into the micelle where free radical propagation start. In general, monomer 
droplets are not effective in competing with micelles in capturing free radicals generated in 
the aqueous phase due to their relatively small surface area [1], so the micelle act as a meeting 
site of water-soluble initiators and hydrophobic vinyl monomers. As polymerization continue 

inside micelle, the micelle grow by monomer addition from monomer droplets outside and 
latex are formed. Schematic representation of emulsion polymerization shown in Figure 1. 

Emulsion polymerization carried out through three main intervals as shown in Figure 2.

There is a separate monomer phase in intervals I. The particle number increases with time in 

interval I and particle nucleation occurs in interval I. At the end of this stage most of surfactants 

are exhausted (i.e. micelles are exhausted) [5]. About one of every 102–103 micelles can be 

successfully converted into latex particles [1]. Particle nucleation process is greatly affected by 
surfactant concentration, which in turn affect particle size and particle size distribution of latex 
[1]. The lower the surfactant concentration, the lower the nucleation period the narrow the par-

ticle size distribution. At interval II (Particle growth stage), the polymerization continue and 
polymer particles increase in size until monomer droplets exhausted. Monomer droplets act 

as reservoirs to supply the growing particles with monomer and surfactant species. At interval 
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III, the polymer size increase as latex particles become  monomer-starved and the concentration 
of monomer in the reaction loci continues to decrease toward the end of polymerization [1].

2.1. Initiators

Initiator act to generate free radicals by thermal decomposition, or redox reactions. The 
initiators may be; (1) water-soluble initiators like 2,2-Azobis(2-amidinopropane) dihy-

drochloride, K
2
S

2
O

8
, APS (Ammonium persulfate) and (H

2
O

2
) hydrogen peroxide. (2) 

Partially water-soluble peroxides like t-butyl hydroperoxide and succinic acid peroxide 

and azo compounds such as 4,4-azobis(4-cyanopentanoic acid) [14]. (3) Redox systems 

such as persulfate with ferrous ion, cumyl hydroperoxide or hydrogen peroxide with fer-

rous, sulfite, or bisulfite ion [5, 20]. Other initiators such as surface active initiators which 

“inisurfs,” for example; bis[2-(4′-sulfophenyl)alkyl]-2,2′-azodiisobutyrate ammonium salts 

Figure 1. Schematic representation of emulsion polymerization.

Figure 2. Emulsion polymerization intervals.
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and 2,2′-azobis(N-2′-methylpropanoyl-2-amino-alkyl-1-sulfonate). These initiators initiates 
emulsion polymerization without the need of stabilizers.

2.2. Surfactants

Act to decrease interfacial tension between monomer and aqueous phase, stabilize the latex 
and generate micelles in which monomers emulsified and nucleation reaction proceed. 
Surfactants increase particle number and decrease particle size, these surfactants may be (1) 
Anionic surfactants such as fatty acid soaps (sodium or potassium stearate, laurate, palmi-
tate), sulfates, and sulfonates (sodium lauryl sulfate and sodium dodecylbenzene sulfonate); 
(2) Nonionic surfactants such as poly (ethylene oxide), poly (vinyl alcohol) and hydroxyethyl 
cellulose; (3) Cationic surfactants such as dodecylammonium chloride and cetyltrimethylam-

monium bromide [5, 21]. For ionic surfactants, micelles formed only at temperatures above 
the Krafft point. For a nonionic surfactant, micelles formed only at temperatures below the 
cloud point. Emulsion polymerization carried out below the cloud temperature and above 

the Krafft temperature [5]. Polymerizable surfactants (surfactants with active double bond) 

such as sodium dodecyl allyl sulfosuccinate [13, 22–24] also used to produce latexes with 

chemically bound surface-active groups [5, 25–30, 31]. Polymerized surfactants (surfactants 
with active double bond) consist of amphipathic structure comprising hydrophobic tail and 

hydrophilic head group [32], in addition to polymerized vinyl groups [33] in their molecular 

structure, which acquire them unique physicochemical properties other than traditional sur-

factants moieties [34] such as;

A. They have surface activity like ordinary surfactants and polymerized vinyl group like 

vinyl monomers, so they have the ability to undergo polymerization reactions.

B. Due to their amphoteric structure and polymerization ability, they serve to synthesize 
inorganic/organic nanocomposite, and applied to emulsion polymerizations as polymer-

ized emulsifiers, to stabilize the formed latexes, to prepare novel water-soluble hydro-

phobically associating polymers with strong thickening properties [35] so, they greatly 
applied in the field of enhanced oil recovery [36].

C. Allow developing hybrid Nano sized reaction and templating media. Moreover surfmer 

serve as hydrophilic monomer to copolymerize with acrylamide derivatives (AM) form-

ing hydrophobically associating polyacrylamide (HAPAM), which acquire wide applica-

tion in improved oil recovery coats and paintings and drilling fluids [37].

Freedman et al., [38] reported about the first synthesis of vinyl monomers which serve as 
emulsifying agents [39]. Active vinyl groups comprise vinyl, allyls, acrylates, methacry-

lates, styryl and acrylamide [40]. Polymerized groups may be “H-type” where, i.e. located 
in the hydrophilic head group, or “T-type” where, i.e. located in the hydrophobic tail have a 
profound effect on surfactant self-assembly and properties [41]. All kinds of polymerizable 

traditional surfactants, including cationic [41], anionic [42] and nonionic [43] have been syn-

thesized to study the influence of the molecular structure on the properties and application. 
Anionic polymerizable surfactants seem to be the most promising for utilizing in coatings, 
adhesives and enhanced oil recovery.
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2.3. Dispersion medium

Water is the frequently used dispersion medium in emulsion polymerization as it is cheap 
and environmentally friendly. It represents the medium of transfer of monomer from drop-

lets to particles and as a solvent for emulsifier, initiator, and other ingredients.

2.4. Monomer

Emulsion polymerization require free radical polymerizable monomers. Generally, vinyl 
monomers are used in this type of polymerization such as acrylamide, acrylic acid, butadi-
ene, styrene, acrylonitrile, acrylate ester and methacrylate ester monomers, vinyl acetate, and 
vinyl chloride [1] and many other vinyl derivatives [25]. Depending on monomer solubility in 

aqueous phase, there is three categories of typical emulsion polymerization monomers which 
comprise (1) monomers of high solubility such as acrylonitrile, (2) monomers of medium 
solubility as methyl methacrylate and monomers insoluble in aqueous phase such as butadi-

ene and styrene [44].

2.5. Other constituents

Other components involve emulsion polymerization medium that is generally deionized 

water. Antifreeze additives which involve inorganic electrolytes, ethylene glycol, glycerol, 
methanol, and monoalkyl ethers of ethylene glycol to allow polymerization at temperatures 
below 0°C. Sequestering agents which used to solubilize the initiator system or to deactivate 

traces of hardness elements (Ca+2, Mg+2 ions) such as ethylene diamine tetra acetic acid or its 

alkali metal salts. Buffers used to stabilize the latex toward pH changes such as phosphate or 
citrate salts [5, 20]. Chain transfer agents like mercaptans.

3. Surfactant free emulsion polymerization

Used for manufacture of adhesives and water resistant polymers. By absence of surfactant, 
intensive coagulation of the particles greatly reduces the number of particles per unit volume 

of water so, particle nucleation and growth reduced [1]. Several literature had been reported 

about surfactant free emulsion polymerization, in this section a brief hint about these pub-

lications will be considered. Tauer et al. [45] studied the surfactant-free emulsion polymer-

ization of styrene initiated by KPS. Wang and Pan [46] studied the surfactant-free emulsion 

polymerization of styrene with the water soluble co-monomer as 4-vinylpyridine. Ni et al. 

[47] studied mechanism of particle nucleation through adding 8% ethyl acetate at low speed 

agitation (100–200 rpm) through polymerization of 4-vinyl pyridine and styrene. Ou et al. [48] 

investigated the effect of the hydrophilic co monomer (vinyl acetate or methyl methacrylate) 
on particle nucleation in the surfactant-free emulsion polymerization of styrene. Yan et al. [49] 

investigated the surfactant-free emulsion copolymerization of styrene, methyl methacrylate 
and acrylic acid initiated by ammonium persulfate. Other literature reported by Mahdavian 

and Abdollahi, Zhang et al., Shaffei et al., and Sahoo and Mohapatra [50–53].
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3.1. Emulsion polymerization mechanism

Emulsion polymerization is a free radical polymerization protocol occurs in three distinct 

steps; initiation, propagation, and termination.

3.1.1. Initiation

In which the initiator decomposed to free radicals either by (1) hemolytic fission (hemolysis) 
through thermal decomposition or radiation and by (2) chemical reaction through redox reac-

tions. Rate of initiator dissociation (R
d
) is the rate determining step and given by Eqs. (1)–(3);

  I   Kd   ⎯ →   2R•  (1)

  R
d
 = 2fK

d
 [I]   (2)

  R• + M   Ki   ⟶   RM•  (3)

Rate of initiation (R
i
) is given by Eq. (4);

  R
i
 = 2fK

i
 [I]   (4)

K
d
 rate constant for initiator dissociation

f Initiator efficiency

[I] Initiator concentration

K
i
 rate constant for initiation

3.1.2. Propagation

Involve continuous addition of monomer particles to active centers (RM•) to form polymer 

chains.

Rate of polymerization (R
p
) given by Eq. (5);

  R
p
 = −   d [M] 

 ____ 
dt

   = k
i
 [R•]  [M]  + k

p
 [M•]  [M]   (5)

Where [R•] is the free radicals concentration, [M] is the monomer concentration and [M•] is 

the total concentration of active monomers. Since consumed monomers in initiation stage is 

very small as compared to propagation, so the term “ k
i
 [R•]  [M]  ” can be neglected and rate of 

polymerization is determined by rate of propagation; Eq. (6).

  R
p
 = k

p
 [M•]  [M]   (6)
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3.1.3. Termination

Termination leads to loss of two growing polymer chains [3]. It occurs by either recombi-

nation or disproportionation. Recombination involves reaction of one polymer chain with 

another growing one and reactive sites are blocked according to the following equation.

  P
n
• +P

m
 •   Kt   ⟶   P

n
 + m  (7)

Disproportionation where one chain abstract a hydrogen proton from another leaving 

it with unsaturated end group according to the following equation. This termination 

mechanism result in two polymer chain fractions one is saturated and the other is unsatu-

rated [31].

  P
n
• +P

m
 •   Kt   ⟶   P

n
 + P

m
  (8)

Termination may occur by chain transfer reactions, which involves removal of atom and for-

mation of new radical which may initiate the reaction forming other segments or cannot ini-

tiate the reaction so, the propagation progress ceased [31]. Other literature reported about 

termination occur by addition of retarders or inhibitors like phenols and catechol’s to termi-

nate active sites [31, 54].

3.2. Kinetics of emulsion polymerization

Since rate of polymerization expressed by Eq. (9);

  R
p
 = k

p
 [M•]  [M]   (9)

Where   [M•]   expressed by Eq. 10;

   [M•]  =    N   '  n ___ 
NA

    (10)

N concentration of micelles plus particles

n the average number of radicals per micelle plus particle

N
A
 is the Avogadro number

  R
p
 =   

 N   '  nkp [M] 
 ________ 

NA
    (11)

The value of “n” determine rate of polymerization and depend on radical diffusion out of 
the polymer particles (desorption), the particle size, modes of termination, and the rates of 
initiation and termination relative to each other and to the other reaction parameters [5]. 

Depending on “n” value there are three cases that can be summarized as;
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3.2.1. Case 1: n = 0.5

Means that at any given moment half of the polymer particles contain one radical and are 

growing while the other half are dormant, and known as zero–one systems to indicate that a 
polymer particle contains either zero or one radical at any given moment [5].

3.2.2. Case 2: n < 0.5

In which radical desorption from particles and termination in the aqueous phase are low 

especially for small particle sizes and low initiation rates.

3.2.3. Case 3: n > 0.5

In which particle size is large or the termination rate constant is low while termination in the 

aqueous phase and the initiation rate is fast, as some polymer particles contain two or more 
radicals.

• Degree of polymerization (X
n
) is defined as the rate of growth of a polymer chain divided 

by the rate at which primary radicals enter the polymer particle and given by the following 

Eq. (12);

  X
n =   

rp
 __ 

ri
   =   

NKp [M] 
 _______ 

Ri
    (12)

This equation neglect any termination by chain transfer, if chain transfer occur the degree of 
polymerization given by Eq. (13).

  X
n
 =   

rp
 ____ 

r
i
∑ r

t

    (13)

where,  ∑ r
t
  is the sum of termination reactions by chain transfer.

• Number of polymer particles is dependent on the total surface area of surfactant present in 

the system and given by Eq. (14);

  N = K   (  Ri __ μ  )    
2/5

    (a
s
S)    3/5   (14)

a
s
 is the interfacial surface area occupied by a surfactant molecule

S is the total concentration of surfactant in the system (micelles, solution, monomer droplets)

μ is the rate of volume increase of polymer particle

The number of polymer particles can be increased by increasing the emulsifier concentration 
while maintaining a constant rate of radical generation.
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4. Conclusion

Emulsion polymerization has wide application on academic and industrial applications. 

This chapter discuss importance of heterogeneous emulsion polymerization and its constit-

uents; moreover, a comprehensive analysis of the kinetics of emulsion polymerization has 
been presented. Other emulsion polymerization characteristics like inverse emulsion, mini 
emulsion and micro emulsion discussed briefly.
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