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Abstract

The discard of coal fly ash produced from the combustion of pulverized coal in a coal-fired 
boiler of thermal power plants has led to environmental concerns. Due to the interaction 
of fly ash particles with weathering and hydrological processes, the rainfall leaches out 
toxic elements in coal fly ash from the ash heaps. This situation has been pointed out as 
a potential contamination of soil, surface, and groundwater. In this chapter, the available 
fly ash treatment techniques to minimize future release of toxic trace elements (arsenic, 
boron, and selenium) have been documented, and the recent investigations dealing with 
leaching suppression effect of arsenic, boron, and selenium from coal fly ash have been 
reviewed. The leaching characteristics of arsenic, boron, and selenium are discussed, and 
a simple and low-cost leaching control method is presented in the context of treating the 
fly ash through chemical stabilization technique using additives containing high levels of 
calcium. Experimental results described in this chapter show the chemical stabilization 
technique utilizing Ca-containing additives is an effective technique for simultaneous 
suppressing of As, B, and Se leaching from coal fly ash.

Keywords: chemical stabilization technique, coal fly ash, leaching, calcium, arsenic, 
boron, selenium

1. Introduction

Coal fly ash from coal burning power generation is one of the major sources of environmental 
pollution due to the discharge of large amounts of fly ash into the environment. Coal fly ash 
has been utilized in different ways such as a substitute material for Portland cement, structural 
fills (usually for road construction), soil stabilization, and mineral filler in asphaltic concrete 
because of its physical (selfhardening) properties [1, 2], and in recent years, coal fly ash has 
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been utilized as a potential material to treat acid mine drainage (AMD) because of its chemical 
(high degree of alkalinity) properties to neutralize AMD [3–8]. However, most of the fly ash is 
disposed in landfills [1], this disposal involves the interaction of fly ash particles with weather-
ing and hydrological processes where rainfall leaches out toxic elements, anions, and cations 
from the ash heaps, which pose an environmental hazard through contamination of soil, sur-
face, and groundwater [9–11]. During combustion, the organic matter in coal is destroyed, 
and as a result, the concentrations of trace elements are increased relative to the source coal. 
Among the elements that can be leached from fly ash, Ag, As, B, Ba, Cd, Co, Cr, Cu, Hg, Ni, Pb, 
Se, Sb, Sn, and Zn are of the greatest concern [12, 13] as environmental hazard. The leaching of 
trace elements such as As, B, and Se from coal fly ash (CFA) is likely to occur as these elements 
tend to form hydrophilic oxides that are dissolved as oxyanion forms [10]. The beneficial reuse 
of fly ash as a potential material to treat acid mine drainage (AMD) has great potential in 
minimizing the amount of disposed fly ash [3–8]; however, since the coal fly ash itself contain 
leachable trace elements and the usage of fly ash in treating AMD could lead to trace element 
accumulation with negative consequences to the environment [14], it is particularly impor-
tant to be able to assess the leachability of coal fly ash (since the results can determine not 
only whether the ash is environmentally acceptable for use as the soil supplements, construc-
tion material, or neutralization material to treat AMD but to extend of isolation that might be 
required for disposal in landfill) and to treat the coal fly ash before the utilization to avoid the 
trace elements leaching into the environment.

To predict the possible effect of coal fly ash on the environment, it is particularly important 
to understand the factors that control the leaching behavior of trace elements in coal fly ash. 
Research studies on the leaching behavior of As, B, and Se in coal fly ash have been carried out 
with the promising results. The results demonstrated that the leaching behavior of arsenic, 
boron, and selenium from fly ash was affected by pH, solid-to-liquid ratio, leaching time, and 
ash type [15–19]. The leaching of As increased with increasing pH values in acidic fly ashes 
[19] and increased with decreasing pH values in alkaline fly ashes [20], while the leaching of 
B decreased with increasing pH values [18, 21] and the leaching of Se tends to decrease as pH 
was raised for an alkaline ash with high Ca composition [18]. The leaching of As, B, and Se 
from CFA generally increased with increases in the S/L ratio and leaching time, and adsorp-
tion/desorption played a major role in As and Se leaching from the CFA [22]. The leaching of 
As and Se from acidic ashes could be described by sorption of iron oxide, while the leaching 
from the alkaline ashes appeared to be controlled by sorption in the alkaline calcium phase 
[20, 23]. The presence of Ca in fly ash plays an important role in the leaching behavior of As, 
B, and Se, in which the leaching of As, B, and Se may involve the trapping of As, B, and Se 
species by the ettringite phase (3CaO·Al

2
O

3
·3CaSO

4
·32H

2
O), leading to a decrease in leaching 

under alkaline conditions [18, 19, 24–28]. Therefore, Ca content and the sorption process are 
known to play important roles in the release of As, B, and Se from CFA.

Different treatments and stabilization processes of fly ash have been proposed by the scien-
tific community. The most common used techniques for removing toxic elements from fly 
ash and APC (air pollution control) residue are (1) extraction and separation, (2) chemical 
stabilization, (3) solidification, and (4) thermal treatment [29]. Several studies have chemi-
cally treated fly ash produced in power plants to immobilize the toxic trace elements before 
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disposal. These studies used chemicals such as calcium aluminates [30], phosphoric acid [31], 
NaOH [32], and chelating surfactants such as ED3A [33]. Arsenic trioxide contaminated soil 
was successfully treated with a ferrous sulfate solution to promote the formation of insoluble 
metal-bearing phases [34] and the coal fly ash treatment with ferrous sulfate shown to be an 
effective method for the sequestration of As, B, Cr, Mo, Se, and V associated with coal fly ash, 
where the mobility of As, B, Cr, Mo, Se, and V were substantially reduced [35]. Recently, the 
coal fly ash chemical treatment using other waste sources containing high level of calcium has 
been applied [27]. The advantage of this technique is that it can be used for reducing As, B, 
and Se leaching at low cost with the abundant chemical available, since it utilizes wastes from 
other industry. The aims of this chapter are to review what is known about the factors which 
control the leaching of As, B, and Se in fly ashes and the method to reduce As, B, and Se leach-
ing from fly ash. Experimental results of simultaneously leaching suppression of As, B, and Se 
were described in this chapter.

2. Coal fly ash and overview of leaching characteristics of arsenic, 
boron, and selenium from coal fly ash

2.1. Coal fly ash

Coal fly ash, a by-product of coal-fired power plants, produced from the combustion of pul-
verized coal in a coal-fired boiler of thermal power plants. The fly ash particles are removed 
from the flue gases using electrostatic precipitators, FGD systems, or bag houses and are 
collected and stored dry for recycling. Fly ash consists of fine particles, predominantly spheri-
cal in shape, either solid or hollow, ranging in diameter from <1 μm up to 150 μm formed 
from the mineral matter in coal, consisting of the noncombustible matter in coal plus a small 
amount of carbon that remains from incomplete combustion. Properties of fly ash vary sig-
nificantly with coal composition and plant-operating conditions. Fly ash contains the pri-
mary inorganic components of SiO

2
, Al

2
O

3
, Fe

2
O

3
, and CaO, less amount of MgO, Na

2
O, K

2
O, 

SO
3
, MnO, TiO

2
, and C and varying levels of trace elements [36–38]. Based on its chemical 

composition (ASTM C618), fly ash can be classified into two classes, C and F. Class C ash 
(high-calcium, ≥10% CaO) is normally produced from lignite or subbituminous coals and 
contains less SiO

2
 + Al

2
O

3
 + Fe

2
O

3
 (>50%) but more calcium hydroxide or lime and higher 

amount of alkalis (combined sodium and potassium). Class F ash (low-calcium, <10% CaO) 
is generally produced from burning anthracite or bituminous coal and contains at least 70% 
of SiO

2
 + Al

2
O

3
 + Fe

2
O

3
. [38–43]. The mineralogy of fly ash is greatly influenced by the par-

ent coal from which it was derived. Owing to the rapid cooling of burned coal in the power 
plant, fly ashes consist of amorphous glass (≤ 90%) and a small amount of crystalline material 
[44–49]. This predominant portion of the glass gives fly ash its pozzolanic properties (harden 
with water after activation with an alkaline substance such as lime) [50]. The major crystal-
line phases in fly ashes are quartz (SiO

2
), mullite (3Al

2
O

3
·2SiO

2
), magnetic spinel includes; 

magnetite (Fe
3
O

4
), and hematite (Fe

2
O

3
). Although the total percentage of magnetic matrix of 

the ash is small, particular attention should be given because of its reactivity and potential for 
carrying and releasing toxic elements. [47].
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Fly ash particle surfaces are often enriched in highly environmentally reactive trace elements 
(such as As, Se, Cd, Cr, Ni, Sb, Pb, Sn, Zn, and Mo [10, 51]) due to the largely emission of 
various trace elements in coal during coal combustion [52–55]. It has been reported that trace 
element concentrations in fly ash are sometimes 4–10 times higher than their original concen-
trations in coal samples due to the condensation of elements, which are volatilized during 
combustion, onto solid particles at different rates and in varying amounts as the combustion 
gases cool down [56–60]. As a result, these elements readily react when the fly ash particle 
is exposed to water and release into the environment [35, 59]. However, the release of the 
elements from fly ashes is controlled by precipitation or dissolution mainly and possibly by 
desorption. Understanding the factors that control the leaching behavior of trace elements is 
critical in predicting the potential impacts of fly ash on the environment. Since As, B, and Se 
have recently become a major problem in soil contamination in Japan, the leaching behavior 
of As, B, and Se has been growing in the recent investigations and described in the following 
sections.

2.2. Overview of leaching characteristic of arsenic, selenium, and boron from coal 
fly ash

Several mechanisms have been observed to elucidate arsenic, boron, and selenium leaching 
behavior from fly ash. Generally, the leaching behavior of As, B, and Se was affected by pH, 
solid-to-liquid ratio, leaching time, and ash properties, in which these ash properties includ-
ing chemical composition, chemical/mineralogical speciation, the particle morphology, and 
the fraction of a species are available for leaching [16–19, 26, 28, 61].

Arsenic and Selenium releases from acidic fly ash increase with pH, whereas in alkaline fly 
ash, this trend is reversed and the leaching of As and Se from acidic fly ash could be described 
by sorption on iron oxide, while leaching from alkaline fly ash seems to be controlled by sorp-
tion on an alkaline Ca phase [20]. This finding is relevant with that from Zielinski et al., where 
in a highly acidic fly ash, the mode of occurrence of arsenic is associated with iron oxide, oxy-
hydroxide, or sulfate, while in a highly alkaline ash, arsenic is associated with a phase similar 
to calcium arsenate (detected using XAFS (X-ray absorption fine structure) spectroscopy) [62]. 
It is well known that Ca-rich ash tends to make the formation of insoluble Ca-arsenate [63], 
whereas low-lime fly ash provides less chance for this phase to precipitate. At pH > 11.5, the 
precipitation of ettringite (3CaO·Al

2
O

3
·3CaSO

4
·32H

2
O) contributes to the dramatic reduction 

of As in leaching solution, along with other oxyanionic species [10, 64]. It is also reported that 
the formation of ettringite (3CaO·Al

2
O

3
·3CaSO

4
·32H

2
O) contributes to the stabilization of sele-

nium in subbituminous coal ash [65, 66]. The adsorption of selenite in fly ash was also likely 
controlled by aluminum oxide [23, 51, 67].

Boron is the most mobile trace element in coal ash [21], since it is associated frequently with 
the smallest particles in the ash, where it can accumulate on the surfaces of particles and in 
water-soluble fraction which promote high leachability rates [51]. Although the leachability 
of B does not depend significantly upon pH at nearly neutral values (pH 6–8), the initial rate 
of leaching is increased by an increase in acidity and it decreases with further increase in pH, 
and the trend shows no substantial difference between acidic and alkaline ash [21]. On the 
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contrary, the boron leachability depends on its element concentration in coal fly ash [18], and 
the ligand exchange mechanisms are considered as a reason for the lower concentrations of 
B under mildly acidic conditions [68, 69], although much greater leaching rates are achieved 
when under strongly acidic conditions [69, 70]. Previous studies indicate the tendency for 
ettringite to incorporate B within its mineral lattice and lead to the decreasing of solubility/
dissolved concentrations of B at pH ≈ 11.5 [18, 71]. It has been also indicated that under alka-
line conditions, the co-precipitation of B with CaCO

3
 may significantly captured B in alkaline 

fly ash [18], to some extent, in acidic-natured fly ash, this process is unlikely to take place [19].

3. Arsenic, boron, and selenium: properties, contamination 
pathways, and their harmful effects

3.1. Arsenic

Arsenic is a semi metallic element with atomic number 33, atomic mass 74.92 g mol−1 and 
density 5.72 g cm−3 at 14°C [72]. It is an odorless, tasteless, and notoriously poisonous metal-
loid with various allotropic forms: black, yellow, and gray, in which the gray form is the most 
common, and it is used for industrial purposes. It is distributed throughout our environment, 
mainly in earth crust, air, water, soil, sediments, etc. Arsenic is emitted into the atmosphere 
by high-temperature processes such as coal-fired power generation plants, burning vegeta-
tion, and volcanism [73]. Some forms of arsenic are inorganic which do not contain carbon, 
and others are organic, which always contain carbon. The examples for organic arsenic com-
pounds are arsanilic acid (4-aminophenylarsonic acid, C

6
H

8
AsNO

3
), arsenobetaine (2-tri-

methylarsoniumylacetate, C
5
H

11
AsO

2
), methylarsonic acid (monomethylarsonate, CH

5
AsO

3
), 

etc. [74]. Inorganic arsenic compound exists in four oxidation states: −3 (arsenide), 0 (metallic 
arsenic), +3 (arsenite) and +5 (arsenate). The examples for arsenide compounds are alkali and 
alkaline earth metal arsenides (e.g., sodium arsenide Na

3
As), arsenides of group III elements 

(e.g., gallium arsenide GaAs) [75], etc. The most common forms of arsenite compounds are 
arsenic sulfide (As

2
S
3
), arsenic trichloride (AsCl

3
), potassium arsenite (AsO

2
·K), sodium arse-

nite (AsO
2
·Na), etc. [76]. The general form of arsenate is AsO

4

3− and exists in different forms 
such as arsenic acid (H

3
AsO

4
) at strong acidic condition, dihydrogen arsenate (H

2
AsO4−) at 

weak acidic condition, hydrogen arsenate (HAsO
4

2−) at weak basic condition, and arsenate 
ion (AsO43−) at strong basic condition. Examples of arsenate compounds are arsenic pentox-
ide (As

2
O

5
), calcium arsenate ((AsO

4
)
2
·3Ca), lead arsenate (HAsO

4
·Pb), potassium arsenate 

(H
2
AsO

4
·K), sodium arsenate (H

2
AsO

4
·Na), etc. [76]. Arsenate is thermodynamically stable at 

aerobic condition, while arsenite is stable at anaerobic conditions [77]. Generally, inorganic 
forms of arsenic are more toxic to the environment than organic forms, and among inorganic 
forms, arsenite is more toxic than arsenate due to higher cytotoxic, genotoxic, mobile, and 
soluble nature of arsenite [78].

Humans may be exposed to arsenic through the usage of arsenic containing water for drink-
ing purposes, food, cosmetics, cigarettes, etc. [79]. The sources of arsenic contamination in 
water medium can be classified as natural and anthropogenic sources. The natural sources of 
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arsenic contamination in water medium are due to the mobilization of arsenic in natural con-
dition which depends on its oxidation states, mobilization mechanism, and the parent min-
eral form [80]. The anthropogenic sources of arsenic contamination in water medium include 
the wastes generated from industries manufacturing wool and cotton, glass, ceramics, semi-
conductor, pesticide, etc. and from industries like rare earth industry, chemical industries, 
petroleum refining, etc. [81, 82].

The health effects on arsenic may come both from different forms of arsenic (inorganic and 
organic forms) and categorized based on the level of contamination. Among the effect of inor-
ganic arsenic exposure, disturbance of the stomach and digestive organs, diminished gen-
eration of red and white blood cells, skin changes, and lung irritation have been reported in 
many health cases. The take-up of significant amounts of inorganic arsenic has been proposed 
to increase the possibility of cancer development, particularly the possibility of skin cancer 
development, lung, liver, and lymphatic cancer. Barrenness and miscarriages with women, 
skin irritation, declined protection from diseases, heart disruptions, brain damage with both 
men and women, and DNA damage have been reported as the effects of a very high exposure 
to inorganic arsenic. The effects of organic arsenic are almost the same with inorganic arsenic, 
which can cause neither cancer nor DNA damage, but high doses exposure may cause nerve 
injury.

3.2. Boron

Boron is a nonmetallic element with atomic number 5, atomic mass 10.81 g mol −1, density 
2.3 g cm−3 at 20°C, and a poor electrical conductor at room temperature. It has several allo-
tropes in the form of amorphous boron, a dark powder, unreactive to oxygen, water, acids, 
and alkalis; crystalline boron, silvery to black, and extremely hard. It is found in nature in a 
low concentration in oceans, earth crust, rock, soil, and water [83] and mostly in the form of 
over 200 minerals with different amounts of calcium, sodium, or magnesium and available 
as calcium, sodium, and magnesium borates. Among them, the most popular are borax, tin-
cal, colemanite, ulexite, and kernite [84]. Boron has various oxidation states in compounds, 
but the most significant and common is +3. It appears in lower oxidation states +1, 0, or less 
than 0, but these states are found in compounds such as higher borates only [85, 86]. Boron 
enters the environment mainly through the weathering of rocks, boric acid volatilization from 
seawater, and volcanic and geothermal activity. Boron is released to the environment from 
anthropogenic sources e.g., via industrial air emissions, fertilizer and herbicide applications, 
and municipal and industrial wastes from industries manufacturing borosilicate glass, deter-
gents, semiconductor, cosmetics, flame retardants, fertilizers, and dyestuff production [87]. 
Two anthropogenic boron compounds, boron trichloride and boron trifluoride, are listed as 
toxics release inventory (TRI) chemicals.

Human causes of boron contamination include releases to air from power plants, chemical 
plants, and manufacturing facilities. Contamination of water can come directly from indus-
trial wastewater and municipal sewage, as well as indirectly from air deposition and soil 
runoff. Borates in detergents, soaps, and personal care products can also contribute to the 
presence of boron in water. Boron can be found in surface water in the form of undissociated 
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orthoboric acid, partially dissociated borate anions in the form of polyborates, complexes of 
transition metals, and fluoroborate complexes, and it is also found in ground water, brackish 
water, or hot springs, especially at geothermal or tectonic areas [88].

Among the effect of long-term consuming of food and water with increased boron content, 
cardiovascular, coronary, nervous, reproductive systems, changes in blood composition, 
neurological effects, physical disorders, and intellectual development of children have been 
reported in many health problems. For pregnant women, abundance of boron can be notably 
harmful as it raises the risk of birth pathology. Testicular decay and degeneration have been 
detected as the effects of high daily doses of boron. Queasiness, retching, diarrhea, and lack of 
appropriate weight gain or weigh loss have been detected as the effects of consuming of food 
and water with doses greater than 500 mg/day [89].

3.3. Selenium

Selenium is a nonmetallic element with atomic number 34, atomic mass 78.96 g mol −1, 
and density 4.79 g cm−3 at 20°C. Selenium has a number of allotropes including a gray 
crystalline hexagonal selenium, a red crystalline form, an amorphous (which has a disor-
dered atomic structure) red powder, and a black vitreous (glass-like) form. Amorphous 
selenium is a photoconductor (a light-dependent semiconductor), and it has had a long 
history of use in light-based applications—it was used to make the first solar cell in 1883. 
Selenium is a rare component of the Earth’s crust that is mostly found as selenide associ-
ated with heavy metal sulfide ores, such as copper and lead sulfides [90]. Selenium spe-
cies can be grouped into the four major categories: (1) inorganic selenium, (2) volatile 
and methylated selenium, (3) protein and amino acid selenium, and (4) nonprotein amino 
acids and biochemical intermediates. Selenium compounds commonly exist in the oxi-
dation states −2, +2, +4, and +6. It is usually found as the oxyanions selenate (SO

4

2−) and 
selenite (SO

3

2−) in oxidized systems and as elemental selenium (Se[0]) and selenides (HSe-) 
in aerobic zones and unweathered mineral formations [91]. Though complexed selenium 
is of low toxicity, selenate (SeVI) and selenites (SeIV) are very toxic. These two forms of 
selenium are generally found in water and display bioaccumulation and bioavailability. 
Under acidic conditions, the extremely toxic and corrosive hydrogen selenide gas can be 
generated from selenium containing species.

Selenium contamination typically occurs in the aqueous stream and bioaccumulation of sel-
enates and selenites in waste water can threat all aquatic life downstream. Natural processes 
that redistribute selenium include volcanic activity, terrestrial weathering of rocks and soils, 
wildfires, and volatilization from plants and water bodies. The anthropogenic sources of sele-
nium to aquatic systems are including mining, fossil fuel combustion, oil refining, and dis-
charge of seleniferous drainage water from irrigated agriculture [92]; these sources will end 
up in groundwater or surface water through irrigation.

Humans may be exposed to selenium through food or water or contact with soil or air that 
contains high concentrations of selenium. The health effects of various forms of selenium can 
vary from brittle hair and deformed nails, to rashes, heat, swelling of the skin, and severe 
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pains. Exposure to selenium through air can cause dizziness, fatigue, and irritations of the 
mucous membranes. Among the effect of selenium overexposure, red staining of the nails, 
teeth, and hair have been reported in many health cases. Due to the fact that selenium is an 
eye and upper respiratory irritant and a sensitizer, selenious acid produced from the reaction 
of selenium dioxide with moisture may cause corrosive to the skin and eyes. Accumulation of 
fluid in the lungs, pneumonitis, bronchitis, bronchial asthma, shortness of breath, sore throat, 
chills, fever, headache, conjunctivitis, queasiness, retching, abdominal pain, diarrhea, and 
enlarged liver has been reported as the effects of overexposure of selenium fumes.

4. Fly ash treatment techniques

Treatment of fly ash before utilization is important to minimize leaching of contaminants 
and/or utilize in the best possible manner in which methodologies for detoxifying fly ash 
including reducing the concentrations of the contaminants (e.g., through washing), astriction 
the leaching of the contaminants by forming steady blocks or inertial compounds with addi-
tives or binders (e.g., by stabilization methods), or reducing the mobility of the contaminants 
(e.g., through S/S methods) [93]. Several researchers have produced numerous treatments 
and disposal solutions for fly ash over the recent decades, some of these are only tested in the 
laboratory, while others are available commercially. Based on the main principle of operation, 
the treatment techniques may be classified in four categories [29, 94]:

1. extraction and separation,

2. chemical stabilization,

3. solidification, and

4. thermal treatment.

4.1. Extraction and separation

Extraction and separation techniques have the main purpose to remove or recover specific 
components or fractions from fly ash which focus on removing heavy metals and to some 
extent salts from fly ash, mainly using water or acidic solutions. The processes of this treat-
ment technique are typically relatively simple, but the main disadvantage is the generation of 
process water with high content of metals and salts.

The main extracting agent used in this technique including water [95], acid [96], and micro-
organisms [97]. The electrodialysis process which involve ion exchange technique [98] and 
particle size fractionation process based on the settling velocities of fly ash particles in a water 
filled reactor [99] are also including in this extraction and separation techniques. For the com-
prehensive overview of the principles of these techniques, see Refs. [94, 100].
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4.2. Chemical stabilization

Chemical stabilization technique has the main purpose to bind and immobilize pollutants 
in the fly ash matrix which focus on binding heavy metals by alterations to the fly ashes 
geochemical properties [101, 102]. Generally, the processes of the chemical stabilization tech-
nique are simple and low cost, which significantly improve the leaching properties of the fly 
ash, such as water extraction, chemical reactions, and then, de-watering. The main disadvan-
tage is the generation of metal and salt containing process water.

Various chemical stabilization processes have been developed, and most of them involve the 
use of FeSO

4
 [35, 95, 103], FeSO

4
 + CaCO

3
 [35], CO

2
 [104, 105], CO

2
, and H

3
PO

4
 [106] Phosphate 

(PO
4

3−) [107], Sulfide (S2−) [108], Ca(OH)
2
, and paper sludge ashes [27], Ca(OH)

2
 and cement 

[109, 110], colloidal silica [111], and silica fume [112].

4.3. Solidification

Solidification technique is often discussed as stabilization processes (S/S: solidification and 
stabilization) in which solidification involves the transformation of a liquid or sludge into 
solids and may not lead to a chemical interaction of the constituent of concern with the solidi-
fying agent. This technique has the main purpose to physically and hydraulically encapsulate 
the fly ashes and reduces the mobility of the contaminants in fly ashes because of the reduced 
surface area and low permeability. On the other hand, the main goal of stabilization is to 
convert the contaminants into less soluble or less toxic forms, with or without solidification 
[113]. The main advantages of this technique come from the fact that this technology is simple, 
well established, and low cost, which significantly decrease the leaching of contaminants and 
improve the mechanical properties. The main disadvantages of this technique are related to 
significant increase in the mass disposed of, and the physical integrity of the product may 
deteriorate over time resulting in increased metals leaching.

The main solidifying agent used in this technique including water [114], cement [93], and 
cement [115]. For the comprehensive overview of the principles of these techniques, see Refs. 
[94, 100, 116].

4.4. Thermal treatment

Thermal treatment technique involves a heating of fly ashes and thereby changing the physi-
cal and chemical properties of fly ashes in which the stable and very dense product can be 
produced with sufficient leaching properties [117]. This method very efficient at destroying 
dioxins, furans, and other toxic organic compounds due to the high temperatures used [118]. 
In some cases, encapsulation of fly ash is also occurred [101]. The main disadvantages are the 
high cost due to the high-energy demands for the process and generation of flue gas contain-
ing volatile metals.
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Three major types of thermal treatment technique are sintering, vitrification, and melting.

1. Sintering processes involves heating to a level at which individual particles are bound 
together and the chemical species of interest can achieve a reconfiguration [119]. Tempera-
tures are around 900–1300°C, and a denser and less porous material is produced.

2. Vitrification processes involves melting of a mixture of fly ash and additives (glass precur-
sors (i.e., Si)) to fix the contaminants in the final matrix (alumina silicates). This mixture 
is typically heated to around 1300–2000°C and then cooled to form a single solid phase 
(an amorphous and homogenous glassy material). In this process, fly ash components are 
bound in the glassy materials thereby also encapsulating the fly ash.

3. Melting (or fusion) processes are very similar to vitrification processes; however, in this 
case, no additives (glass forming materials) are added. The final product consists of 
multiple metal phases [118] which can possibly be separated utilizing different melting 
temperature of individual metal phases. Therefore, the product obtained can be used 
as a construction material, for example, as a sub-base in road construction or for pave-
ments [120]. The temperatures involve in this melting processes are like vitrification 
processes.

5. Experimental results of simultaneous leaching suppression of As, 
B and Se from coal fly ash

Considering the leaching of arsenic, boron, and selenium from fly ash has recently become 
a major problem in soil contamination in Japan [27, 121], the current research focuses on the 
development of effective technologies for the improving leaching properties of fly ash. As 
described in section 4, several pre-treatment options have been proposed for minimizing the 
leaching of toxic trace elements, including addition of Ca(OH)

2
 to fly ash [109, 110]. Based on 

this method, the Laboratory of Environmental Engineering Systems of Gifu University-Japan, 
one of the founding members of the Next Generation Energy Research Center, developed 
its scientific research on “Experimental study on simultaneous leaching suppression of trace 
elements including As, B, and Se from coal fly ash” which analyzes the leaching properties 
and promotes the methods for control of the trace elements leachates from coal fly ash, utiliz-
ing the chemical stabilization technique by using Ca(OH)

2
, paper sludge ash, and filter cake, 

which are waste generated in the papermaking and lime industry processes [27].

In this study, a low calcium content fly ash sample named fly ash H (FAH) (2.05% of CaO, 
detected using X-ray fluorescence) with a high concentration of trace elements leaching (As 
48.66 μg/L, B 5.39 mg/L, Se 86.9 μg/L, detected using ICP-AES) that was collected from coal-
fired power plant in Japan was treated through chemical stabilization technique with the addi-
tion of additives (Ca(OH)

2
, three kinds of paper sludge ashes (PS Ash 3, 4, 5) and one kind of 

filter cake (FC)) under 5 and 10% Ca content in additives and subjected in a detailed character-
ization and leaching test regarding its chemical properties and its leaching behavior. Table 1 

lists the composition of inorganic elements in FAH and additives. Figure 1 depicts experimental 
process of chemical stabilization in this study. Fly ash sample and additives characterization 
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include the following measurements: pH, elemental composition, trace elements (As, B and Se) 
leaching and Ca ion concentrations (Table 1), thermogravimetric (TG) analysis, X-ray diffrac-
tion (XRD) analysis, and leachate analysis (pH, trace elements (As, B and Se) leaching and ions 
concentrations). This treatment technique, using additives addition, was examined in order to 
evaluate their effectiveness in the improvement of fly ash leaching properties. Additives may 
reduce the leachability of As, B and Se contained in ash by promoting the formation of ettr-
ingite or precipitation with calcium in ash, which are resistant to leaching. For the classifica-
tion of untreated and treated ash samples, the procedure of standard leaching tests for fly ash 
(Notification No. 13 by the Environmental Agency of Japan) was employed as the protocol for 
leaching tests in this study.

Figure 2 depicts the leaching concentration of As, B, and Se for fly ash H alone and fly 
ash H under five kinds of additives addition for 5% and 10% Ca content samples, and pH 
values of leachate. As indicated in Figure 2, the results showed that the leaching concen-
trations of As, B, and Se in FAH tremendously decreased below the soil environmental 
standard in Japan for both 5% and 10% Ca content in additives and further decreased with 
the increase of Ca content. Especially, the leaching concentration of As, B, and Se reduced 
to 91–100% with Ca(OH)

2
 addition. Among three kinds of paper sludge ashes (PS Ash  

Sample FAH (1s) 1 PS Ash 3 PS Ash 4 PS Ash 5 FC

Ash composition SiO
2

(%) 59.25 31.47 44.21 42.36 23.31

Al
2
O

3
25.63 12.40 22.23 19.80 13.87

TiO
2

1.99 0.38 2.56 2.11 0.06

Fe
2
O

3
7.49 5.13 2.63 5.56 2.33

CaO 2.05 46.31 18.77 19.51 59.18

MgO 0.79 3.28 3.42 3.30 0.96

Na
2
O 0.60 0.24 0.95 0.41 0.03

K
2
O 1.56 0.20 2.09 1.99 0.25

P
2
O

5
0.18 0.18 1.75 1.54 0.00

MnO — 0.03 0.05 0.06 0.04

V
2
O

5
0.03 0.01 0.02 0.02 0.02

SO
3

0.42 0.36 1.31 3.33 0.00

pH of the leachate 10.38 13.72 12.71 12.26 7.28

Leached Ca ion (mg/L) 121 1405 246.5 597 15.45

Leaching concentration As (μg/L) 48.66

B (mg/L) 5.39

Se (μg/L) 86.9

1Sample fly ash H, from the chamber 1 of electrostatic precipitator.

Table 1. Composition of inorganic elements in fly ash and additives.
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3, 4, 5) addition, As and B leaching concentrations reduced to 89–96% and 83–92%, respec-
tively, with PS Ash 3 addition; and Se leaching concentration reduced to 87–96% with PS 
Ash 5 addition. While As and B leaching concentration did not influenced by filter cake 
(FC) addition (owing to the composition of FC is calcium carbonate based, which is not 
a water-soluble calcium compound (Figure 3)), but Se leaching concentration reduced to 
58–78% (owing to the presence of Al

2
O

3
 and Fe

2
O

3
 in FC contributing for selenium to being 

hard to leach). Figure 3 depicts XRD patterns of several calcium compounds and addi-
tives. According to the leaching mechanism of selenium, Al

2
O

3
 and Fe

2
O

3
 may provide 

additional surface area for positively charged ions to be attached through the sorption 
reaction process, which made contributions to lower concentration of Se in aqueous solu-
tions (FAH-FC mixture leachates) [122–124]. It is also indicated in Figure 2 that pH values 
of chemical treated products range from 9.23 to 12.98. It could be seen that the pH of mix-
ture leachates increased with the addition of all additives excepting FC. Especially, pH 
values of FAH-Ca(OH)

2
 and FAH-Ps Ash 3 mixture leachates increased to approximately 

12.98 and 11.94, respectively. This exhibited that relatively high CaO content included in 
PS Ash 3 and Ca(OH)

2
 itself being a water-soluble calcium compound could promote the 

pH values of leachates. However, FC which contained the highest CaO content did not 
have any influence on the pH values of mixture leachates, this was likely to be caused as 
calcium compound included in FC is composed of CaCO

3
 being an insoluble substance in 

water (Figure 3). Figure 2 demonstrated that the minimum solubility of As, B, and Se was 
obtained when the pH of mixture leachates became 11.5 or higher. Obviously, higher pH 

Bowl

Coal Fly Ash

Ca(OH)2 or
Ps Ash 3 or
Ps Ash 4 or
PS Ash 5 or
Filter Cake 

Scrape

Knead 1 minute

Knead 2 minutes

Air dry

Leaching test

Store (7 days in a sealed plastic bag)

Water

(Environmental Agency of Japan Notification No. 13)

Figure 1. The experimental scheme of chemical stabilization process.
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Figure 2. Trace element leaching concentration for fly ash H alone, and fly ash H under five kinds of additives addition 
for 5% and 10% Ca content samples: (a) arsenic; (b) boron; and (c) selenium.
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of mixture leachates in this study was favorable to lowering leaching concentrations of  
As, B, and Se and the mobility of As, B, and Se indeed decreased in Figure 2, implying that 
the efficiency of method in this study was susceptible to pH value of leachate. The results 
revealed that all additives (other than filter cake) showed a simultaneous leaching suppres-
sion effect of As, B, and Se from coal fly ash.

6. Conclusion

Treatment of trace elements (arsenic, boron, and selenium) contained in coal fly ash is a neces-
sity to minimize leaching of trace elements and utilized in the best possible manner. Chemical 
stabilization of trace elements (arsenic, boron, and selenium) contained in coal fly ash offers 
a simple and low-cost environmentally friendly technique that if properly and thoroughly 
carried can bring our environment into a better place for both human and animal well-being 
due to its enormous advantages over other treatment methods. According to fly ash treatment 
through the addition of Ca-containing-additives experimental results, the leaching concen-
tration of As, B, and Se can greatly be reduced simultaneously until 89–96%, 83–92%, and 
87–96%, respectively. Paper sludge ash 3 as a waste generated in the papermaking process 
has been found as an effective and best additive (suppressing material) to reduce the leaching 
concentration of As, B, and Se from coal fly ash. Therefore, the chemical stabilization tech-
nique utilizing Ca-containing-additives is an effective technique for simultaneous suppress-
ing As, B, and Se leaching from coal fly ash.

Figure 3. XRD Patterns of several calcium compounds and additives.
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