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Abstract

An adaptive Taylor-Kalman filter with PSO tuning for tracking nonstationary signal
parameters in a noisy environment with primary focus on time-varying power signals
has been presented in this piece of work. In order to deal with the dynamic envelope of
the power signal, second-order Taylor expansion has been used such that the Taylor
coefficients are updated with the PSO-tuned Taylor-Kalman Filter algorithm. In addition
to this, for fast convergence, a self-adaptive particle swarm optimization technique has
been used for obtaining the optimal values of model and measurement error covariances
of the Kalman filter. The proposed algorithm is linear and therefore has less computa-
tional burden, which is easier to be implemented on a hardware platform like DSP
processor or FPGA. The proposed PSO-tuned Taylor-Kalman filter exhibits robust track-
ing capabilities even under changing signal dynamics, immune to critical noise condi-
tions, harmonic contaminations, and also reveals excellent convergence properties.

Keywords: nonstationary signals, power signal frequency and phasor estimation,
hybrid Kalman approach, PSO tuning

1. Introduction

Signal parameter estimation, which dates back to the late 19th century, describes the various

methods employed to track amplitude, phase, and frequency-like parameters of a signal. Among

all the signal parameters, frequency is the primary concern, as it is a nonlinear function in the

received data sequence, and once that is measured accurately, tracking of other parameters like

phase, amplitude, and damping factor of a signal can be relatively easier. Most real-world signals

are nonstationary in nature, i.e., they have a time-varying frequency behavior. Some of the

popular sources of nonstationary signals include speech, audio, sounds of mammals, machine

vibrations, electrical power networks, and a variety of biomedical signals like electromyogram

(EMG), electroencephalogram (EEG), phonocardiogram (PCG), and vibroarthrogram (VAG)).

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



These signals are rich in information and when analyzed properly provides with information

that could be used to improve many aspects of our lives. Hence, the information of interest of the

signal can be extracted, which includes the estimation of parameters like amplitude, phase,

frequency, and damping factor directly from the discrete measurement in the presence of noise

both in stationary and nonstationary environments. Precise and smooth operation of the power

generation and distribution system is very much required in the present day scenario. With the

increasing demand for power, the number and type of load are having deteriorating effects on

the power quality. Power quality is defined as the ability of the electrical grid to deliver clean and

stable power to the consumer. Between generation and supply, the power being delivered

encounters large number of transformers and several lengths of overhead lines and under-

ground cables. Phenomena like lightning strikes, system faults, load switching, and other such

intentional or unintentional events are the main cause of electromagnetic disturbances, which

results in voltage or current waveform distortions to propagate in the entire power system.

Recently, the increase in the number of power electronic loads in the system causes nonlinear

loading effect on the power system signal, leading to degradation of power quality.

Recently, harmonic estimation has become a challenging and critical issue for electrical engi-

neers. Estimating harmonics and other faults is important for maintaining power quality.

Research works carried out recently sheds light on various techniques for estimating har-

monics. FFT [1]-based techniques are the conventional ones, and they suffer from some pitfalls

such as aliasing and picket fence effects, which lead to inaccurate estimation results. There are

some other methods suffering from these three problems, and this is because of existing high

frequency components measured in the signal; however, truncation of the sequence of sampled

data, when only a fraction of the sequence of a cycle exists in the analyzed waveform, can

boost leakage problem of the DFT method. So, the need of new algorithms that process the

data, sample-by-sample and not in a window as in FFT and DFT, is of paramount importance.

Another very robust algorithm for the purpose of estimating sinusoidal signals with unknown

noise content is the Kalman filter (KF) [2, 3].

However, when cases related to system dynamics, like sudden changes in frequency, ampli-

tude and phase of a signal, arise, KF exhibits serious drawbacks. Study of several literature

shows that single methods employed for the purpose of signal estimation are not efficient on

their own, so hybrid methods based on the combination of different need to be formulated.

The major contribution of this chapter is the accurate tracking of nonstationary power signal

parameters, i.e., phasor, frequency, and harmonics. The power signal is modeled using Taylor

series, and the coefficients of the Taylor series are updated using the Kalman Filter [4, 5], which

are again utilized to estimate the time varying amplitude, phase, and frequency of the test

signal. Moreover, a self-adaptive particle swarm optimization approach is deployed to choose

the optimum values of the Kalman filter parameters like model and measurement error

covariances, which in turn enables the filter to attain convergence in a faster rate.

2. Literature review

Work on harmonic and parameter estimation has been going since the introduction of AC

power generation. Over the course of time, several methods have been proposed to fulfill this
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particular requirement, but so far, the existing methodologies have exhibited significant draw-

backs. Here are some of the research works that have been performed in the last 5 years.

For the estimation of harmonics and interharmonics, a technique using simple techniques like

least mean square [4] and a two-stage ADALINE network has been studied [5]. The method

utilized here provided a better accuracy even when power frequency deviation and interhar-

monic components are present in the measured signal. As the conventional ADALINE is

unable to detect interharmonics, a two-stage ADALINE is used. The architecture is classified

in two parts—the front stage that extracts the frequency value and the back stage that com-

putes amplitude and phase. Here, the adaptive algorithm used in the filter is the RLS algo-

rithm. The method yielded more accurate results in protection and monitoring applications.

Sliding window tracking (SWT) [6] accurately tracks the frequency and amplitude of a signal

by processing only three (or more) recent data points. It works for a signal with any nonzero

moving average and noise. Teager-Kaiser algorithm (TKA) is a well-known four-point method

for online tracking of frequency and amplitude. TKA takes into assumption that the signal is

purely harmonic, so any moving average in the signal can totally destroy the accuracy of TKA,

whereas SWT uses a pair of windowed regular harmonics to estimate the frequency and

amplitude thus eliminating the effect of moving average. In order to start the online tracking

of frequency, SWT requires TKA to provide the first estimate of the frequency. The accuracies

of SWT and TKA are compared using Hilbert-Huang transform, which is used to extract

accurate time-varying frequencies and amplitudes by processing the whole data set without

assuming the signal to be harmonic. Tracking accuracy increases when window length is equal

to or greater than one quarter of the signal period. If the chosen window length is too long,

then the estimated frequency is an average over the window length. The method requires

constant frequency and amplitude to accurately track the parameters, and this shows that the

dynamic response of the method is very poor and the accuracy deteriorates, if there is no

change in the parameter values.

A real-time approach for the estimation of power system frequency based on Newton-type

algorithm and least squares method has been used in this paper [7]. The adopted optimization

technique has been based on a two-stage mathematical model. A Newton type algorithm has

been used to model the first stage for estimating the line to neutral voltage-phase angle and its

variation. The second stage has been modeled using LS minimization technique that extracts

the power system frequency by processing the information in the phase angles estimated using

NTA. The method also studies the modulating effect of time-varying frequency on the online

estimation of the phase angle.

Taylor series expansion and Fourier algorithm have been used for frequency estimation [8]. To

model the changing envelope of a power signal within an observation, a second-order Taylor

series has been used, and the parameters of the model have been estimated using Fourier

algorithm. Comparing with the traditional Fourier algorithm, this method introduces more

computational load.

A modified ADALINE structure has been used in the paper [9] for online tracking of har-

monics. Self-synchronized ADALINE network for power system harmonics estimation relies

on the Levenberg Gradient Descent method for updating the system parameters. A faster
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response and better noise immunity are provided by conventional methods. A high computa-

tional load is the only drawback that exists in the proposed approach.

Ensemble Kalman Filter has been used in the proposed method [10] for filtering and estimating

signal harmonics and interharmonics. To avoid the problem of singularity and for the compu-

tational feasibility of state covariance P, the state covariance P is replaced by a sample covari-

ance C for the computation of Kalman gain.

The proposed method [11] is adopted for real-time estimation of phasor and harmonics. The

technique reduces the turnaround time on two different off-the-shelf research and develop-

ment DSP platforms. The proposed method has been found to be superior to that of ADALINE

and RDFT techniques under the presence of noise sub-harmonics and frequency variations.

The proposed technique has a computational efficiency that is higher than that of ADALINE

and RDFT techniques.

The proposed algorithm in [12] is simple, computational efficient and makes the correction of

the signal that enables to reach the mean square error. It provides a new kind of step adapta-

tion for LMS algorithm. Two LMS algorithms have been utilized by this method. The first one

has a fixed-step size, and the weight coefficient generated from the first algorithm is used to

update the step size of the second algorithm, which has initial step size of 0.001.

An adaptive linear network (ADALINE) [13–15] for harmonic and interharmonic estimation

(Martin) allows the computing of root mean square voltage and total harmonic distortion

indices. Classification and detection of sags, swells, outages, and harmonics-interharmonics

have been done using the indices computed before. Classification of spikes, notching, flicker,

and oscillatory transients has been achieved by using a feed forward neural network through

pattern recognition using horizontal and vertical histograms of a specific voltage waveform.

The method used in [16] uses noneven item interpolation FFT based on triangular self-

convolution window. Variances of frequency estimation are proportional to the energy of the

adopted window. By choosing suitable values of length of FFT, sampling frequency, and the

shape of the adopted window, the variances of frequency estimation have been determined.

3. PSO-tuned Taylor-Kalman filter

To improve the performance of Kalman Filter in this aspect, a hybrid adaptive filter has been

proposed in this thesis work that consists of the combination of Taylor series, Kalman Filter,

and self-adaptive PSO. Taylor series is used to model the changing envelope of the sinusoidal

signal. The sinusoidal signal is expressed in its trigonometric components, which in turn are

expanded by using Taylor series. The Taylor coefficients are stored in the state vector that is

further used to estimate the signal and its amplitude, frequency, and phase. In each iteration,

the state vector is updated in order to get a better estimate than the previous, and the process

continues until convergence is reached. There are two parameters on which the performance of

the KF depends—the model and measurement error covariances. In the traditional approach,

the values for these parameters are chosen by trial and error that makes the algorithm time
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consuming and prone to errors. Self-adaptive PSO is used here to select the optimal values of

the error covariances in order to achieve fast convergence.

3.1. Signal modeling using Taylor expansion

Let the discrete signal be represented as:

v ið Þ ¼ A ið Þ: cos iω ið Þ þ ϕ ið Þ
� �

þ κ ið Þ (1)

where A ið Þ,ω ið Þ, and ϕ ið Þ are “the amplitude”, “angular frequency,” and “phase” of the sinu-

soid, respectively. ω ið Þ ¼ 2πf ið Þ and f ið Þ is the fundamental frequency of the signal, while κ ið Þ

is an additive white noise with unknown variance σg
2 Now let us represent θ ið Þ ¼ 2πfidt þ

ϕ ið Þ: The rate of change of phase angle is equal to frequency. So the signal frequency can be

represented as [3]:

f ¼
1

2π

d

dt
θ ið Þð Þ ¼ f 0 þ

1

2π

d

dt
ϕ ið Þ
� �

(2)

Eq. (1) can be expressed according to trigonometric function as:

v ið Þ ¼ Q ið Þ cos 2πf ið Þð Þ � R ið Þ sin 2πf ið Þð Þ (3)

where Q ið Þ ¼ A ið Þ cosϕ ið ÞandR ið Þ ¼ A ið Þ sinϕ ið Þ.

The coefficient functions Q ið ÞandR ið Þ express the envelope of the time varying sinusoid and

can be expanded using Taylor series [17, 18] as shown:

Q ið Þ ffi m0 þm1iþm2i
2 þ… and R ið Þ ffi n0 þ n1iþ n2i

2 þ… (4)

where

m0 ¼ Q 0ð Þ, m1 ¼
dQ ið Þ
dt at k = 0; m2 ¼

d2Q ið Þ

dt2
and m3 ¼

d3Q ið Þ

dt3
at k = 0.

n0 ¼ R 0ð Þ, n1 ¼
dR ið Þ
dt at k = 0, n2 ¼

d2R ið Þ

dt2
and n3 ¼

d3R ið Þ

dt3
at k = 0.

Now we can obtain the amplitude and phase angle of the described given sinusoid using

Eq. (3) and (4) as follows at k = 0:

ba ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0 þ n20

q
(5)

and

bϕ ¼ arctan n0=m0ð Þ (6)

where m0 ¼ A 0ð Þ: cosϕ 0ð Þ
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n0 ¼ A 0ð Þ: sinϕ 0ð Þ (7)

Similarly for estimating the frequency of the given sinusoid, consider Eq.(4) at k = 0, the first

derivative will be:

m1 ¼
d

dt
A 0ð Þ: cosϕ 0ð Þ
� �

(8)

n1 ¼
d

dt
A 0ð Þ: sinϕ 0ð Þ
� �

(9)

By substituting Eq. (7) in Eq. (8) and (9) and by neglecting

d

dt
A 0ð Þð Þ :

d

dt
ϕ 0ð Þ
� �

¼
m0n1 � n0m1

m0
2 þ n02

(10)

Now from Eq. (2) and Eq. (10), we get the formula for computing the frequency:

bf ¼ f 0: þ
1

2π

m0n1 � n0m1

m0
2 þ n02

� �
(11)

3.2. Updation of Taylor coefficients using the PSO-tuned Kalman filtering algorithm

Let us consider the following discrete signal:

Yi ¼ a: sin iωTS þ ϕ
� �

þ nk (12)

where a, Ts,ω, andϕ are the amplitude, sampling time, angular frequency, and phase of the

signal, respectively, and nk represents measurement noise with a covariance R.

We can represent the state space Eq. (10) of the discrete signal as:

χ
^�

ið Þ ¼ f iχi þ ηi (13)

χi 1ð Þ ¼ m0; χi 2ð Þ ¼ m1; χi 3ð Þ ¼ m2;χi 4ð Þ ¼ n0; χi 5ð Þ ¼ n1; χi 6ð Þ ¼ m2 (14)

And the state transition matrix is given by:

f i ¼

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

2

666666666664

3

777777777775

(15)
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The stochastic model of the signal is obtained as

χ 1 ið Þ

χ 2 ið Þ

χ 3 ið Þ

χ 4 ið Þ

χ 5 ið Þ

χ 6 ið Þ

2

666666666664

3

777777777775

¼

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

2

666666666664

3

777777777775

χ 1 ið Þ

χ 2 ið Þ

χ 3 ið Þ

χ 4 ið Þ

χ 5 ið Þ

χ 6 ið Þ

2

666666666664

3

777777777775

(16)

The measurement model of the signal expressed in Eq. (12) can be calculated as:

Si ¼ hiχi þ vi (17)

where the observation matrix can be calculated as:

Hi ¼
sin 2πf 0idt

� �
idt sin 2πf 0idt

� �

cos 2πf 0idt
� �

idt cos 2πf 0idt
� �

" #

(18)

The error signal can be obtained as

Ei ¼ S�Hibχ ið Þ (19)

Using Eq. (19) the updated state estimate can be obtained from the following equation

χ
^

ið Þ ¼ χ
^�

i� 1ð Þ þ K ið Þ Si �Hχ
^
ið Þ

	 

(20)

where the Kalman gain K(i) is given as:

K ið Þ ¼ bP i� 1ð ÞHi
T HbP i� 1ð ÞiH

T
i þ r

	 
�1
(21)

where bP ið Þ is the covariance matrix given by

bP ið Þ ¼ bP i� 1ð Þ � KiHi
bP i� 1ð Þ (22)

and

bP iþ 1ð Þ ¼ bP ið Þ þ q (23)

where q is the model noise covariance matrix given by
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q ¼

qa 0 0 0 0 0

0 qb 0 0 0 0

0 0 qc 0 0 0

0 0 0 qd 0 0

0 0 0 0 qe 0

0 0 0 0 0 qf

2

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

5

(24)

r is the measurement noise covariance which is fine tuned by using the error between the

desired and estimated signals for

r ið Þ ¼ λg rþ E ið Þð Þ^2ð Þ (25)

where λg is the forgetting factor in the range (0.9–1). Finally using the EKF time updated

equations the X ið Þ matrix is computed which determines the values of the Taylor series

coefficients m0, m1, n0, and n1.

3.3. Particle swarm optimization-based tuning of the Kalman filter

For fast convergence, optimum values of q and r are selected by applying a self-adaptive PSO

[19]. For this purpose, a cost function is formulated, which passed in the PSO algorithm to get

the optimum value for q and r. Here, the cost function is:

F ¼
1

L

X

L

i¼1

E2
i (26)

Particle swarm optimization is used to minimize the value of Eq. (26). Each particle is charac-

terized by two attributes:

i. pbest or Personal best: it holds the best value of position with respect to the previous

positions of the particular particle.

ii. gbest or Global best: it holds the best value of position in the entire search space.

The PSO algorithm either minimizes or maximizes the value of gbest. Let xij and V ij be the

position and velocity of the ith particle in the jth dimension at kth instance of time. The personal

best value can be determined from Eq. (27).

pbesti kþ 1ð Þ ¼
pbesti kð Þ, if F xi kþ 1ð Þð Þ > F pbesti kð Þ

� �

xi kþ 1ð Þ, if F xi kþ 1ð Þð Þ < F pbesti kð Þ
� �

(

(27)

where F indicates the cost function. The value of global best is obtained as:

gbest kð Þ ¼ min C::F pbest0 kð Þ
� �

;C::F pbest1 kð Þ
� �

;C::F pbest2 kð Þ
� �

; :…;C::F pbests kð Þ
� �

;
� �

(28)

For each particle, the updated velocity and position at time kþ 1ð Þ are given by
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V i kþ 1ð Þ ¼ K αvi kð Þ þ b1rnd1 pbesti kð Þ � xi kð Þ
� �

þ b2rnd2 gbesti kð Þ � xi kð Þ
� �� �

(29)

xi kþ 1ð Þ ¼ xi kð Þ þ V i kþ 1ð Þ (30)

where α is the inertia weight factor, b1 and b2 are the acceleration constants, rnd1 and rnd2 are

random numbers in the range [0, 1], K is a constriction factor given by:

K ¼
2

∣2� b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 � 4b∣
p , and b ¼ b1 þ b2; b > 4 (31)

The performance of the PSO algorithm is significantly affected by the three factors w, c1, and c2.

In this approach, a detection function defined as: φ kð Þ ¼ ∣ gbesti � xi kð Þ
� �

= pbesti � xi kð Þ
� �

∣. The

values of the three factors are adjusted dynamically using the following equations

α kð Þ ¼
αinitial � αfinal

1þ eφ kð Þ k� 1þln φ kð Þð Þð ÞLmaxð Þ=μð Þ
þ αfinal (32)

c1 kð Þ ¼ c1φ
�1 kð Þ (33)

c2 kð Þ ¼ c2φ kð Þ (34)

where winitial and wfinal lie in the range 0 < w < 2ð Þ, Lmax is the final evolutionary generation,

and k is the current evolutionary generation.

3.4. PSO-based Taylor-Kalman filter structure

The adaptive filter structure with the proposed adaptive algorithm is shown in the Figure 1.

This particular structure is modeled for only the fundamental component of the signal to be

estimated. For a signal with Nth order harmonics, the same structure can be extended to meet

the requirements. The signal is modeled using Taylor series up to the second order, so the filter

Figure 1. Filter structure of the proposed approach.
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has six weights for the six inputs that are used for the purpose of estimation. The performance

of the algorithm is judged on the basis of speed of convergence, which is verified from the

simulation results in Section 4.

4. Simulation and results

The performance of the proposed algorithm for power system signals has been shown with the

help of three computer simulated examples.

4.1. Tracking of a nonstationary signal with simultaneous change in amplitude, phase,

and frequency

A nonstationary test signal as shown in Eq. (35) is generated in MATLAB. The simulation

is done over 1000 samples of the signal. To make the signal nonstationary, a double step is

introduced in the signal by changing the value of amplitude from 500 to 700 samples. This

is done to simulate voltage surge occurrences in real time, where the amplitude increases from

that of its desired value for some period of time. Similar disturbances also change the values of

frequency and phase which is also simulated to test the tracking accuracy of the proposed

algorithm. The results in Figures 2–5 reveal that the accuracy of the proposed algorithm is very

high and tracking is achieved within one cycle of the signal.
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Figure 3. Estimated frequency under 30 dB noise.
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y ið Þ ¼ a ið Þ sin iω tð Þdtþ ϕ ið Þ
� �

þ n ið Þ (35)

where,

a ið Þ ¼

0:8 p:u, i < 500 samples

1 p:u, 500 < i < 700 samples

0:8 p:u, i > 700 samples

8

>

<

>

:

is the signal amplitude.

f ið Þ ¼
50 Hz, i < 500 samples

51 Hz, i > 500 samples



The sampling frequency f s ¼ 2kHz ϕ ið Þ ¼
0:5rad

0:45rad

 �

n ið Þ is the noise sequence with power level 30 dB. This signal fed into the algorithm and

simulated in MATLAB 2013a environment.

400 500 600 700 800
-1

0

1

Samples

S
ig

n
a

l

Desired Signal

Estimated Signal

Figure 5. Estimated signal under 30 dB noise.
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Table 1 contains the estimated values of the amplitude, frequency, and phase of the signal

under different noise conditions. In this simulation, three different noise conditions have been

considered. The simulation is carried out in a dynamic noise range from high noise (20 dB) to

low noise (40 dB) conditions to test the performance of the proposed algorithm under noise.

The analysis of the performance under noisy conditions shows that the proposed algorithm is

able to track the desired signal very closely even under heavy noise conditions.

4.2. Performance of the proposed algorithm in harmonic estimation

In this case, the ability of the proposed algorithm is tested with respect to the tracking of

harmonics. The number of harmonic components present in the system is not constant, and it

can vary from few to a large number. It is not possible for any method to track infinite number

of harmonics but can handle a substantial quantity. In the real-time scenario, harmonics occur

as odd multiples of the fundamental frequency, so the simulation is carried out with a system

generated signal containing harmonics up to the 19th order.

y ið Þ ¼ a1 ið Þ sin iω ið Þdtþ ϕ1 ið Þ
� �

þ 0:8 ið Þ sin i3ω ið Þdtþ 0:4ð Þ

þ0:6 ið Þ sin i5ω ið Þdtþ 0:3ð Þ þ 0:5 ið Þ sin i7ω ið Þdtþ 0:25ð Þ

þ0:4 ið Þ sin i11ω ið Þdtþ 0:2ð Þ þ 0:2 ið Þ sin i19ω ið Þdtþ 0:1ð Þ

(36)

The signal parameters are taken as:

a ið Þ ¼ 0:1 sin 2πidtð Þ þ 0:05 sin 10πidtð Þ

a1 ið Þ ¼ 1þ a ið Þ

f ið Þ ¼ 50Hz

f s ið Þ ¼ 4kHz

ϕ1 ¼ 0:5� 0:2 sin 2π 5 idtdþ 0:3ð Þ

The amplitude, frequency, and phase are estimated, and results are shown in Figures 6–11.

Parameter Samples Actual value Estimated value

LMS EKF Proposed method

20 dB 30 dB 40 dB 20 dB 30 dB 40 dB 20 dB 30 dB 40 dB

Amplitude 0–500 0.8 0.7 0.772 0.727 0.76 0.76 0.777 0.795 0.798 0.799

500–700 1 0.885 0.946 0.919 0.89 0.88 0.93 0.896 0.942 0.997

700–1000 0.8 0.7 0.772 0.727 0.78 0.79 0.787 0.789 0.794 0.797

Frequency 0–500 50 50.05 50.02 50.02 50.03 50.02 50.03 50.00 50.01 50.00

500–1000 51 50.38 50.55 50.63 50.43 50.76 51.02 50.94 50.99 51

Phase 0–500 0.5 0.53 0.513 0.521 0.53 0.53 0.53 0.511 0.513 0.533

500–1000 0.45 0.465 0.445 0.47 0.43 0.48 0.47 0.44 0.45 0.45

Table 1. Estimated values of amplitude, frequency, and phase under different noise conditions.
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Table 2 shows the comparison of the absolute errors in amplitude, frequency, and phase

estimation for different harmonic components for EKF, LMS, RLS, and the proposed method.

The values show that the higher order (>5th order) components exhibit higher error values for
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Figure 6. Estimated fundamental amplitude for case 4.2.
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Figure 7. Estimated third amplitude for case 4.2.
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Figure 8. Estimated fifth amplitude for case 4.2.
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Figure 9. Estimated seventh amplitude for case 4.2.
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all the methods, but the comparison shows that among all the methods compared, the pro-

posed method has the least values of error. This comparison sheds light on the superiority of

the proposed method over the other methods.
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Figure 10. Estimated frequency of fundamental for case 4.2.

0 50 100 150 200 250 300

-2

0

2

S
ig

n
a

l

Desired Signal

Estimated Signal

Samples

Figure 11. Estimated signal for case 4.2.

Parameter Component Absolute error

EKF LMS RLS Proposed

Amplitude (harmonic order) A1 0.01 0.03 0.023 0.007

A3 0.013 0.032 0.04 0.003

A5 0.02 0.047 0.056 0.009

A7 0.04 0.058 0.0856 0.017

A11 0.025 0.0623 0.021 0.017

A19 0.03 0.0875 0.075 0.025

Frequency Fundamental 0.065 0.045 0.0201 0.058

Phase Φ1 0.0029 0.0087 0.0047 0.0023

Φ3 0.006 0.04 0.032 0.0005

Φ5 0.024 0.045 0.054 0.007

Φ7 0.005 0.076 0.072 0.002

Φ11 0.03 0.085 0.088 0.0019

Φ19 0.067 0.083 0.0765 0.04

Table 2. Comparison of absolute errors.
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4.3. Estimation of a power signal in the presence of DC component

When a fault occurs it not only distorts the signal by changing the voltage and current waveforms

but some DC component that decays over time also gets added to the signal. DC components are

nonperiodic in nature and this simulation shows that the proposed algorithm efficiently tracks

nonperiodic components in the signal which is clearly evident from Figures 12–15. A nonsta-

tionary test signal with a decaying DC component as shown in Eq.(37) is considered:

y ið Þ ¼ a ið Þ sin iω tð Þdtþ ϕ ið Þ
� �

þ n ið Þ (37)

where,

a ið Þ ¼ A exp �i=300ð Þ p:u:

A ¼ 1p:u:

is the signal amplitude. f ið Þ ¼ 50Hz

The sampling frequency f s ¼ 2kHz and ϕ ið Þ ¼ 0:52 rad n ið Þ is the 30 dB noise.
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Figure 12. Estimated amplitude for signal with decaying DC component.
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5. Conclusion

The traditional Kalman filter has been extended to Taylor-Kalman filter which resulted in

filters that are able to have flat magnitude and phase responses. These filters exhibit excellent

tracking abilities and accurately estimate the amplitude, frequency and phase of a time varying

power signal without any distortion. The further combination of the Taylor-Kalman filter with

self-adaptive PSO makes the performance of the proposed method superior to the traditional

approach. The methods can be individually used for the purpose of signal and parameter

estimation, but individually, they suffer from some drawbacks. By combining the three

methods into one hybrid method, the pitfalls of each are compensated by the other and hence

much better results are obtained.

Further, the hardware implementation of the proposed method can be attempted for real-time

applications [20–23]. The hardware implementation of the proposed method can be embedded

within an integrated circuit that will result in a system on chip that can be installed at power

distribution centers, from where power gets distributed to the consumers, thus equipping

them with a tool for detecting anomalies in power quality before power is dispatched to the

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

E
st

im
a
te

d
 p

h
a
se

 (
r
a
d

) Phase

Estimated Phase

Samples

Figure 14. Estimated phase for signal with decaying DC component.
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Kalman Filters - Theory for Advanced Applications114



utility network. The objective of developing such a technology is to create a compact and

versatile tool. It is a small contribution toward the development of smart grid technology.
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