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Abstract

Density measurements revealed anomalies of nonideality (maxima of excess density) at 
some compositions in binary blends of light and heavy crude oils from diverse origins. 
By IR absorption measurements, density anomalies were attributed to increased contents 
of suspended asphaltene colloidal-sized particles/aggregates in the blends. By compari-
son with a database of world’s native crude oils, it was concluded that density anoma-
lies may correspond to different equilibrium structural states of asphaltene colloids that 
occur at several specific asphaltene contents, apparently common for petroleum media 
of any origin.

Keywords: crude oil blends, nonideality, excess density, volumetric shrinkage, 
asphaltene aggregates, structural transformations

1. Introduction

A common approach frequently used in the petroleum industry for either transportation or 
refining purposes is blending of heavy crude oils with lighter ones [1–5]. Therefore, studying 

the effect of blending on the physical and chemical properties of produced petroleum fluids 
has become increasingly important. It was soon realized that blends of multicomponent crude 

oils are nonideal systems, for which ideal “mixing rules” developed for binary mixtures of 

pure chemical substances [6–8] are not applicable. For example, in ideal mixtures, both mass 

and volume are additive parameters and the total volume of the binary blend V
ideal

 is equal to 
the sum of the volumes of the components:
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Consequently, the density of the ideal binary blend:
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 are volume fractions of the components.

In binary blends of crude oils, deviations of the measured volume V
blend

and density ρ
blend

 from 

the above ideal mixing rules are usually characterized [9–14] by such interrelated dimension-

less quantities as “volumetric shrinkage”:

  S =   
 V  
ideal

   −  V  
blend

  
 _________ 

 V  
ideal

  
    (3)

and “excess density”:
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where, by definition:

   ρ  
ex

   = S /  (1 − S)   (5)

Empirical testing of crude oil blends by a number of major oil companies has produced 

vast amounts of volumetric shrinkage and excess density data [10]. An API Measurement 

Committee correlated the data collected over several decades and in 1996 released equations, 
published in the API Manual of Petroleum Measurement Standards [15], which served as the 

accepted industry standard for over 20 years. In particular, the standard equation for volu-

metric shrinkage (in % units):

  S = 2.69 ×  10   4  C   (100 − C)    0.819    (  1 ___ 
dL

   −   1 ___ 
dH

  )    
2.28

   (6)

where C is the concentration, in liquid volume % of the lighter oil in the blend (i.e., C = 100 φ); 

dL and dH are the densities (in kg/m3) of lighter and heavier oil, respectively.

The authors of Eq. (6) made no attempts to account for the presence of any specific molecular 
fractions in the blended oils. Consequently, for all blends, the S(C) dependencies are similar 

dome-shaped functions peaked at C ≈ 55%, while the densities of particular oils affect only 
the magnitude of this peak. In spite of its over-simplified nature, Eq. (6) is still frequently 
employed by various research groups for approximating experimental data [9, 14, 16, 17].

More recent tendencies in discussing the measured nonideal properties of crude oil blends 

are attempts to reveal specific molecular substances responsible for nonideality. The most 
discussed nonideal petroleum constituents in crude oil blends are asphaltenes [18–27]. In par-

ticular, it was suggested that volumetric shrinkage/excess density may result from an increase 

in the equilibrium content of asphaltene colloidal aggregates dispersed in the blend, which 
occur at some specific asphaltene contents [23–27].
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In this work, we describe a study of the nonideality phenomena in three blends of native 

crude oils of diverse origin by experimental density measurements. This study is supple-

mented by IR optical absorption experiments, which provide the direct proof of the crucial 

role of asphaltene aggregation.

2. Diversity of studied native crude oils: preparation of oil blends

To ensure that the observed nonideal effects are not specific for particular crude oils, in the 
described series of experiments, we employed blends of light and heavy native crude oils col-

lected from the well heads at several Russian oilfields geographically separated by thousands 
of kilometers (cf. Table 1).

Heavy oil Light oil

Blend #1

Region Samara Volgograd

Oilfield; well # Kalmayursk.; 238 Korobkovsk.; n/a

Location 53°12′10″N; 50°08′27″E 50°19′00″N; 44°48′00″E

Density, 20°C, kg/m3 963.9 820.3

Viscosity, 20°C, cSt 3732 4.6

Asphaltenes, wt% 15.48 0.064

Resins, wt% 35.91 16.00

Paraffins, wt% 1.53 9.00

Sulfur, wt% 2.5 0.3

Metals (V + Ni), wt% 0.175 n/a

Solids, wt% 0.587 0.06

Blend #2

Region Tatarstan Yugra

Oilfield; well # Aznakayevsk.; 24,534 Pogranichn.; 43P

Location 54°32′16″N; 52°47′54″E 63°11′57″N; 75°27′02″E

Density, 20°C, kg/m3 893.2 818.3

Viscosity, 20°C, cSt 39.3 2.94

Asphaltenes, wt% 4.19 0.14

Resins, wt% 20.57 3.82

Paraffins, wt% 0.89 2.59

Sulfur, wt% 2.28 0.28

Metals (V + Ni), wt% 0.076 0.018

Solids, wt% 0.07 0.006
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Samples of blends with various oil volume fractions ϕ (determined with an accuracy Δϕ ≤ 
0.01) were prepared in 100 ml dark glass vessels. Each prepared sample was intermixed man-

ually with a glass rod and was aged at room temperature over a standard period of 3 days 

for equilibration. Before density measurements, samples were again homogenized by stirring 
with a glass rod for 2 minutes.

3. Density measurements reveal multiple “excess density” peaking in 

crude oil blends of varying compositions

Densities of all samples of Blend #1 were determined using a standard 10 ml pycnometer. In 
the studied density range of 818–964 kg/m3 (cf. Table 1), an accuracy of density measurement 

was ≤1 kg/m3. For samples of Blend #2 and Blend #3 measurements were performed in an 
oscillating U-tube densitometer (model VIP-2M, produced by TERMEX, Tomsk, Russia) with 

an accuracy of ±0.3 kg/m3. All measurements were performed at 24 ± 0.5°C.

Experimental values of “excess density” ρ
ex

 were calculated according to Eq. (4) on the basis 
of the measured densities of the parent crude oils and of samples of oil blends with various 

compositions. These experimental values are shown in the graphs of Figure 1 by filled circles 
connected by straight-line segments. For comparison, continuous curves in Figure 1 illustrate 

the predictions of the standard API model in Eq. (6) converted to ρ
ex

 units by Eq. (5).

Immediately evident is a strong quantitative disagreement of model predictions with experimen-

tal data (note that in Figure 1, all model data are multiplied by the factor of 10). A fundamental  

Heavy oil Light oil

Blend #3

Region Komi Yugra

Oilfield; well # Usinsk.; n/a Potochn.; 401

Location 66°10′38″N; 57°21′14″E 61°15′15″N; 75°12′44″E

Density, 20°C, kg/m3 955.3 840.8

Viscosity, 20°C, cSt 962.7 7.37

Asphaltenes, wt% 10.87 0.46

Resins, wt% 9.45 2.34

Paraffins, wt% 5.45 5.21

Sulfur, wt% 1.09 0.56

Metals (V + Ni), wt% 0.0111 0.0137

Solids, wt% 0.46 0.04

Table 1. The diverse properties of native crude oils employed in the studied blends.
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qualitative difference of the model with experimental results appears even more significant. 
Namely, as noted in Introduction, the API model predicts a single maximum of ρ

ex
, roughly at 

equal contents of light and heavy oil in any blend. In contrast, experimental data in Figure 1 

reveal multiple peaks of the measured excess density for all studied blends with diverse proper-

ties of the parent light and heavy oils.

In accordance with previous publications [23–27], we suggest that the main mechanism 

behind the observed multiple extrema of ρ
ex

, not accounted for by the standard API model, 

is an increase in the equilibrium content of asphaltene colloidal aggregates dispersed in the 
blend, which occur at some specific asphaltene contents. A direct experimental verification of 
this assumption by IR absorption measurements is described in the following section.

4. IR absorption experiments confirm close relationship of excess density 
with the content of asphaltene colloidal aggregates in crude oil blends

Infrared optical absorption spectra were measured in the 650–4000 cm−1 range with 2 cm−1 

increment using a model FT-801 FTIR Spectrometer (Simex, Novosibirsk, Russia). For conve-

nience of presentation/discussion, the values of “transmittance” T output of the instrument 

(in %) were converted to the values of “absorption” (in %) calculated as (100 − T).

Figure 1. Filled circles connected by straight-line segments—experimental values of excess density in the studied crude 

oil blends. Continuous curves—excess densities (multiplied by 10) calculated according to the standard API model.
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Figure 2 show experimental IR absorption spectra for the parent light and heavy oil compo-

nents of Blend #3 (cf. Table 1). By literature analysis, we could not reliably distinguish in these 

complex spectra any characteristic peaks representative of asphaltene colloidal aggregates.

To solve this problem, we utilized a well-known method of changing the aggregation state 

of asphaltenes by dilution of crude oils with n-heptane [28–30]. At strong dilutions (e.g., at 

the ratio of 1/40 v/v, as in the standard ASTM D 6560 method [28]), asphaltenes precipitate, 

flocculate, and fall out of a solution as solid deposits. At small dilutions, the precipitated 
asphaltenes form a conglomeration of colloidal species suspended in solution, but no solid 

deposits may be formed even in course of lengthy experiments [29, 30]. In our studies, we 

diluted the parent heavy oil, employed as a component in Blend #3, with n-heptane at the 

ratio of 1/4 (v/v). The diluted oil was stored for 2 days in quiescent conditions to ensure 
gravitational spatial segregation of asphaltene colloidal particles (no solid deposits were 

registered even at the end of this period). Samples from the lower and the upper layers 

of diluted crude oil (enriched and deficient in asphaltene colloidal particles) were then 
extracted with syringe, and the respective IR absorption spectra were measured. Specific 
contribution of asphaltene colloids to IR absorption was revealed by calculating the dif-

ference between both spectra and smoothing the difference spectrum by 11-point sliding 
data window. In the difference spectrum, as illustrated at the upper part of Figure 3, the 

most prominent group of absorption peaks above a continuous background (dashed line) 

was registered in the range of 2800–3200 cm−1, with the main absorption peak of intensity 

I
A
 at 3041 cm−1. By literature analysis [31, 32], absorption at 3040–3050 cm−1 may be ascribed 

to excitation of the aromatic sp2
═C─H stretching vibrations. Note that in various previous 

experiments, this ═C─H absorption band was regarded as one of the principal structural 

parameters of asphaltenes [33–36]. Note also that in the IR spectra of the original crude oils 
and of their blends, the discussed peak at 3041 cm−1 has a very small intensity compared to 

the main absorption bands—cf. the lower part of Figure 3.

Figure 2. IR absorption spectra of the parent light and heavy oils, employed as components of Blend #3.
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On the basis of the above arguments, we concluded that changes in the content of colloidal-

sized asphaltenes in crude oil blends with varying compositions may be characterized by 

intensity increments of the 3041 cm−1 absorption peak ΔI
A
 (measured with respect to the I

A
 

value in the lighter crude oil). Figure 4 shows a good correspondence of ΔI
A
 variations in 

Blend #3 with the measured excess density variations from Figure 1. Hence, IR experiments 

confirm the above suggestion that peaking of ρ
ex

 is caused by the growth of the equilibrium 
contents of asphaltene colloidal aggregates suspended in crude oil blends. Moreover, as 

shown in the following section, maxima of excess density apparently occur at some specific 
asphaltene contents in all blends, independent of the origin of the blended crude oils.

Figure 3. Above: specific contribution to IR absorption by asphaltene colloids (cf. text). Below: the same part of absorption 
spectrum for the parent heavy crude oil.

Figure 4. Close relationship of excess density variations in crude oil Blend #3 with content of colloidal-sized asphaltenes, 
characterized by intensity increments ΔI

A
 of the IR absorption peak at 3041 cm−1.
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5. Density maxima in the studied crude oil blends and in the database 

of world’s native crude oils are observed at the same special asphaltene 

contents in petroleum media

Previously, we have analyzed distributions of density/specific gravity in a database of several 
hundreds world’s native crude oils from a diversity of geographical/geological locations [23]. 

Figure 5 shows the scatter plot of specific gravity (SG) versus Log of asphaltene content (C
A
) in 

this database (filled triangles). The analysis of these data revealed that (1) minimum values of SG 

are randomly distributed along some smooth curve and (2) distribution of maximum SG values 

is not random, and these tend to concentrate near certain asphaltene contents. To highlight these 

points, maximum and minimum values of SG in the scatter plot were evaluated in consecu-

tive equal intervals of ΔLog(C
A
) = 0.05 and the results were connected by continuous lines, as 

illustrated in Figure 5. It is clearly seen that anomalous peaking of specific gravity/density is 
observed in native crude oils with some particular asphaltene contents C

A
* listed in Table 2. 

In Ref. [23], these anomalies were attributed to different structural states (structural phases) of 
asphaltene colloids suspended in crude oils and the reliability of the values of respective asphal-

tene contents C
A
* was demonstrated by the analysis of databases from other publications [37–39].

Additional analysis of excess density measurements from Figure 1 in terms of asphaltene 

content has shown that in all blends peaking of ρ
ex

 apparently occurs at the same charac-

teristic asphaltene contents C
A
* revealed in native crude oils. The results of this analysis are 

illustrated in Figures 6–8. The experimental excess density values from Figure 1 are denoted 

by filled circles. Filled squares denote maximum values of specific gravity from a database of 
world’s native crude oils (Figure 5). A fairly good qualitative coincidence of both data sets is 
observed in all cases.

Figure 5. Data points: the scatter plot of specific gravity (density) in a database of world’s native crude oils from a 
diversity of geographical/geological locations. Continuous lines: analysis of maximum and minimum values of specific 
gravity in this database. Note specific gravity peaking at some characteristic asphaltene contents.

Recent Insights in Petroleum Science and Engineering144



No. 3a 3a 3b 4 5 6

C
A
*, g/L 1.88 2.66 7.50 26.6 66.8 149.6

Table 2. Characteristic asphaltene contents C
A
* (numbered as in Ref. [23]) at which maximum density anomalies are 

observed in native crude oils (cf. Figure 5).

Figure 6. Comparison of the experimental excess density data for Blend #1 (filled circles) with the maximum values of 
specific gravity from a database of world’s native crude oils (filled squares).

Figure 7. Comparison of the experimental excess density data for Blend #2 (filled circles) with the maximum values of 
specific gravity from a database of world’s native crude oils (filled squares).
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Summarizing, Figures 6–8 indicate that the observed multiple nonideal anomalies in the prop-

erties of equilibrated crude oil blends (multiple peaks of excess density/volumetric shrink-

age values) apparently result from step-like changes between several equilibrium structural 
phases of suspended asphaltene colloids, which are observed between several particular 

asphaltene contents, apparently common for petroleum media of any origin.

6. Plausible constitution of multiple structural phases of asphaltenes. 

Apparent resemblance of asphaltene transformations to those of block 

copolymers

In spite of intensive experimental and theoretical studies, association and aggregation mecha-

nisms of asphaltene colloids are still not well characterized and are subjects of ongoing debate 

[22–25, 29, 30]. In particular, for decades, the prevailing aggregation paradigm (now dismissed as 

erroneous) has been that at a “critical micelle concentration” (“CMC” ≈ 2–10 g/L) of asphaltenes in 
native petroleum, or in “good” solvents, such as toluene, there is a one-step transition from a struc-

tural phase of single asphaltene molecules to a structural phase colloidal asphaltene “micelles” 

of 4–6 molecules [40]. The development of more accurate experimental techniques provided 
substantial evidence of asphaltene aggregation at concentrations much lower than previously 

quoted “CMC.” Hence, the aggregation paradigm has been changed quantitatively, though not 
qualitatively. The most popular current model is that at a “critical nanoaggregate concentration” 
(“CNAC” ≈ 100–200 mg/L) of asphaltenes in native crude oils, or in “good” solvents, there is a 
one-step transition from a phase of individual asphaltene monomers to a phase of colloidal “nano-

aggregates” of 4–6 monomers (further clustering of primary aggregates is usually regarded as a 

dynamic random process and is not discussed in terms of a phase transformations) [41, 42].

Figure 8. Comparison of the experimental excess density data for Blend #3 (filled circles) with the maximum values of 
specific gravity from a database of world’s native crude oils (filled squares).
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• The dismissed paradigm [40]:

  MOLECULE    CMC   ⎯ →   COLLOIDAL MICELLE  

• The current paradigm [41, 42]:

  MONOMER    CNAC   ⎯ →   COLLOIDAL NANOAGGREGATE  

Apparently, due to their simplicity, the above one-step (two-phase) paradigms have been and 

still are the ones, almost exclusively employed for description of asphaltene aggregation phe-

nomena and for interpretation of experimental data. Regardless of the difference in suggested 
molecular mechanisms, the above paradigm closely resembles the idealized model of one-step 

aggregation (“micellization”) with just two indigenous solute phases developed for solutions of 

primitive amphiphilic surfactants like sodium dodecyl sulfate (SDS) [43]. It is now well known 

that much more common in nature are complex self-organizing amphiphilic species, e.g., block 

copolymers, which possess a wide array of indigenous colloidal phases in solutions [44].

However, all evidence for the close resemblance of petroleum asphaltenes to block copoly-

mers, both in their molecular structure and in their propensity for self-assembly into wide 

array of nano-sized and micro-sized structures, still remains virtually unnoticed. In fact, the 

existence of several aggregation stages below and above CNAC has been repeatedly demon-

strated by various experiments (cf. a review in Ref. [45]). It appears that the corresponding 

characteristic concentrations C
A
* only marginally depend on the geographical/geological ori-

gin of asphaltenes or on the type of solvents/crude oils.

Historically, asphaltenes are defined not as members of some particular family of chemi-
cal species, but as a fraction of petroleum, which is soluble in toluene (“good solvent”), and 

resemblance of asphaltene molecular architecture to that of block copolymers for the first time 
was suggested in 1994 by I.A. Wiehe [46], whereas in 2002, W. Loh noticed a parallel between 

some aggregation processes for block copolymers and asphaltenes [47]. Various molecular 

models of asphaltenes have been developed [22, 29, 30, 41]; all these models agree that asphal-

tene molecules contain the following principal “building blocks” [46]: (1) rigid flat condensed 
systems of aromatic rings with an affinity for “good solvents” and (2) flexible linear alkyl 
side chains, which may contain some heteroatoms, and have an affinity for “nonsolvents.” 
In the “continental-type” models, aromatic regions are large, whereas in “archipelago-type” 

models, aromatic blocks are much smaller. Aggregation of such “multiblock” molecules may 

proceed via π-π stacking and H-π bonding, involving aromatic blocks, as well as via polar 
and hydrogen-bonding interactions between side-chain blocks. By virtue of these noncova-

lent interactions, asphaltenes in solutions as well as in native petroleum apparently exhibit 

multiple structural phases—a well-known property of block copolymers [44].

Recently, it was experimentally proven [48–52] that basic asphaltene molecules (unimers, 

monomers) typically include very small, 1–3 ring, aromatic systems, in contrast to the popular 

notions about the predominance of large multiring fused systems [41, 42]. These basic molecules 

become predominant equilibrium species only after dissolution of solid asphaltenes in “good” 
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solvents (benzene, toluene, etc.) to asphaltene concentrations C ≤ 0.5–0.6 mg/L. Aggregation 
of basic asphaltene molecules commences at C = 0.6–0.7 mg/L, much smaller than the above-

discussed CNAC, and the predominant equilibrium species become polydisperse “primary” 
asphaltene aggregates, which may contain up to 10–12 basic molecules associated mainly in 

a head-to-tail manner by noncovalent interactions. On the basis of these experimental results, 

it concluded that the adequate structural description of primary asphaltene aggregates may 
be that suggested in Ref. [53]. The authors of this publication described that such aggregates 

as supramolecular assemblies of molecules, combining cooperative binding by Brønsted 

acid-base interactions, hydrogen bonding, metal coordination complexes, and interactions 

between cycloalkyl and alkyl groups to form hydrophobic pockets, in addition to aromatic 

π-π stacking. They suggested a range of aggregate architectures, which almost certainly 
occur simultaneously, including porous networks and host-guest complexes. The latter may 
include organic clathrates, in which occluded guest molecules stabilize the assembly of a cage, 

as methane does in gas hydrates [53]. With increasing asphaltene concentration (still below 

CNAC), several structural phases of soft, voluminous, primary aggregates are observed in 
solutions, which may be accompanied by a release of some occluded “guests” [51]. Finally, 

at C ≈ 100–130 mg/L, primary aggregates shrink and may be described as “solid-like” asphal-
tene colloidal nanoparticles [52]. Interpretations of some structural asphaltene phases above 

CNAC by various authors were reviewed in Refs [23–25, 45, 54].

Plausible types of some of the multiple structural transformations of asphaltenes are sche-

matically illustrated in Figure 9.

In Figure 9, characteristic asphaltene contents C
A
* are numbered as in Ref. [23] (cf. also Table 2):

1. At asphaltene contents of 0.6–0.7 mg/L, apparently there is a transition from a solution of 

small asphaltene basic molecules to a solution of voluminous primary aggregates.

2. At concentrations of 100–130 mg/L, soft primary aggregates are transformed to solid-like 

“nanocolloids” with individual nanoparticles 2–4 nm in diameter.

Figure 9. Plausible structural phase transformations of asphaltenes at some characteristic asphaltene contents, numbered 

as in Ref. [23].
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3. This group of two close characteristic concentrations (3a,b) in the range of 1.7–8 g/L (cf. 

Table 2) may reflect the appearance of elongated colloidal clusters of solid-like nanoparti-
cles, 15–20 nm in length.

4. At concentrations of 25–30 g/L, elongated clusters presumably form fractal aggregates 

≥100 nm in size.

5. At 55–70 g/L, there start to appear micron-sized asphaltene flocs still suspended in the 
liquid media.

To conclude this section, it should be emphasized that revealing multiple asphaltene struc-

tural phases in solutions and in native petroleum was largely facilitated by a seemingly trivial 

but a crucial improvement in analysis of experimental data. Namely, previously overlooked 
details of analyzed correlations become perceptually well separated only at data plots with 

log concentration scales, common in surfactant chemistry, while in conventional petroleum 

studies, linear-scale plots are still employed [29, 30, 41].

7. Conclusion

In contrast to the predictions of the standard API model, the described density measure-

ments revealed multiple anomalies of excess density at several compositions in all studied 

blends of light and heavy crude oils from diverse origins. It was suggested that density 

anomalies are caused by increased contents of suspended asphaltene colloidal-sized par-

ticles/aggregates in the blends. In IR absorption experiments, the most intense absorption 

peak representative of asphaltene colloids appeared to be that at 3041 cm−1, by literature 

analysis, ascribed to excitation of the aromatic sp2
═C─H stretching vibrations. Intensity 

variations of this peak correlated with variations of excess density, supporting the conclu-

sion of the governing role of asphaltene colloids in the observed density anomalies. By com-

parison with an extended database of world’s native crude oils, it was further concluded 

that different density anomalies may correspond to different equilibrium structural states 
of asphaltene colloids, which occur at several specific asphaltene contents, apparently com-

mon for petroleum media of any origin.

It is hoped that the insight gained into the nonideal behavior of the densities of crude oils, 

upon mixing and the explanations proposed, will assist in a better scientific understanding 
of the mechanism of the changes that may occur in mixtures. This should help oil producers 

and refiners in a better utilization of the existing oil resources, i.e., crude oils and petroleum 
products.
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