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Abstract

In this chapter, we review various applications of Kalman filtering for coherent optical
communication systems. First, we briefly discuss the principles of Kalman filter and its
variations including extended Kalman filter (EKF) and adaptive Kalman filter (AKF).
Later on, we illustrate the applicability of Kalman filters for joint tracking of several
optical transmission impairments, simultaneously, by formulating the state space model
(SSM) and detailing the principles. A detailed methodology is presented for the joint
tracking of linear and nonlinear phase noise along with amplitude noise using EKF.
Also, approaches to enhance the performance obtained by EKF by combining with other
existing digital signal processing (DSP) techniques are presented. Frequency and phase
offset estimation using a two stage linear Kalman filter (LKF)/EKF is also discussed. A
cascaded structure of LKF and EKF by splitting the SSM to jointly mitigate the effects of
polarization, phase and amplitude noise is also presented. The numerical analysis con-
cludes that the Kalman filter based approaches outperform the conventional methods
with better tracking capability and faster convergence besides offering more feasibility
for real-time implementations.

Keywords: optical communication systems, coherent optical transmission, digital
signal processing, nonlinear mitigation, phase noise, amplitude noise, QAM

1. Introduction

In order to meet the yearning demands of bandwidth and capacity due to ever increasing data

traffic, the contemporary research in the field of optical transmission, is focused on developing

400 Gbps and above, Ethernet transmission [1–5]. The achievable information rates using

optical fiber as communication channel have been rapidly increased over the past few decades.

Some of the technology breakthroughs behind this rapid increase in the transmission capacity,

can be listed as the invention and development of the erbium doped fiber amplifiers (EDFA),

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
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wavelength division multiplexing (WDM) systems, coherent detection, digital signal processing

(DSP) techniques and forward error correction (FEC) schemes ensuring reliable transmission.

The advent of coherent detection along with subsequent DSP made it possible to deploy spec-

trally efficient higher order modulation formats and multiplexing techniques [6, 7]. Moreover, it

has also made feasible to digitally equalize the optical fiber transmission impairments [8], which

are the main hurdle to increase the bandwidth-distance product. The transmission capacity can

be increased several times by employing complex modulation formats like m-ary quadrature

amplitude modulation (with m = 4, 16, 64 and so on), and multiplexing techniques like polariza-

tion division multiplexing (PDM) and WDM. However, they are more vulnerable to the optical

transmission impairments as well as to the carrier phase and frequency offset (FO). Hence,

effective DSP algorithms for combatting with the channel impairments were under active

research over the past decade [8–23]. Consequently, coherent optical receivers are well developed

and employ digital filters that allow for effective equalization of fiber linear impairments like

chromatic dispersion (CD) and polarization mode dispersion (PMD) in the electric domain [9].

Typically, CD can be compensated by either frequency or time domain filters using finite impulse

response (FIR) or infinite impulse response (IIR) design. Optical receivers exploiting polarization

diversity should also compensate for the random fluctuations of the polarization state caused by

the stochastic change of fiber birefringence. PMD compensation is widely performed using

constant modulus algorithm (CMA) [15] or multi modulus algorithm (MMA) [16]. Attributed to

these well-developed linear equalization techniques, fiber nonlinearity still remains a bottleneck

for increasing the capacity and transmission reach [24].

Although, multiple information bits being encoded in a single symbol significantly increase the

spectral efficiency, the signal becomes more sensitive to the amplified spontaneous emission

(ASE) noise that is added in the optical amplifiers along the transmission link. Therefore, a

reliable transmission over long distance demands the signal to be launched into the optical fiber

at higher power, to ensure a sufficiently high optical signal to noise ratio (OSNR) at the receiver.

However, the maximum transmittable launch power per fiber span is constrained by the Kerr

nonlinear effects, including self-phase modulation (SPM) and cross phase modulation (XPM) in

case of WDM systems, which results in signal degradation [25]. This degrading impact of Kerr

nonlinearity is much more severe in multi-channel systems with increasing number of chan-

nels [26]. Moreover, the nonlinear phase noise (NLPN) resulting from the signal and ASE noise

interactions at high launch powers, deteriorates the signal quality further. On the other hand,

signal transmission at low launch powers is limited by the ASE noise. Therefore, mitigation of

fiber nonlinearity is vital to enhance the capacity ensuring reliable transmission. Consequently,

several nonlinear mitigation techniques have been proposed in the recent era, of which, digital

backward propagation (DBP) [10], maximum likelihood sequence estimation (MLSE) based

nonlinearity mitigation [17], spectral inversion [18–20], phase conjugated twin waves [21, 22]

and perturbation based approaches [23] gained considerable attention. However, the real time

implementation of these algorithms is extremely challenging owing to either the high required

computational effort or the higher bandwidth consumption. Although computationally com-

plex, DBP has drawn significant attention owing to its capability of mitigating linear and

nonlinear impairments simultaneously, provided the channel characteristics are known and the
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step size is sufficiently small when solving the inverse nonlinear Schrodinger equation (NLSE).

Several strategies have been proposed in the literature to reduce the number of required DBP

steps and enhancing the performance either by including temporal correlations [27, 28] or

optimizing the parameters [29]. Nevertheless, the performance of DBP significantly deteriorates

in the presence of stochastic impairments like laser phase noise and NLPN [30–32]. Moreover, its

applicability is limited to single channel systems [33, 34].

Apart from fiber linear and nonlinear impairment compensation, digital carrier synchroniza-

tion has also become an essential component of the coherent receivers, for synchronizing the

phase and frequency offsets between the transmitter laser and the local oscillator (LO), elimi-

nating the necessity of a phase locked loop. Several carrier phase estimation (CPE) techniques

have been proposed for suppressing the laser phase noise [35–44]. CPE being a low complex

technique is also under wide investigation to compensate the nonlinear phase shift owing to

Kerr effect, besides laser phase noise [30, 44–47]. Investigations were also carried on the

combined performance of DBP and CPE, in order to reduce the number of DBP steps per span

and there by its complexity [31, 48]. It was reported in [30, 45], that the considered CPE

methods outperform the DBP technique implemented using asymmetric split step Fourier

method (SSFM) with one step per span and without any parameter optimization. However,

the accumulated ASE noise and the NLPN at high signal powers pose a challenging constraint

on the conventional CPE limiting its nonlinear mitigation capability. Moreover, a phase

unwrapping function [35] is typically required by CPE, which might increase the probability

of cycle slips [49] and error propagation. Furthermore, the commonly employed CPE tech-

niques have low tolerance towards the frequency offset (FO) between the transmitter laser and

the LO. Therefore, a separate FO estimation module is necessary [50].

In the recent era, Kalman filtering has gained huge attention in the field of optical communi-

cation systems, owing to its potential capability to mitigate several optical transmission

impairments simultaneously. The Kalman filter was first developed by R. E. Kalman in 1960.

In [51], he presented a new approach to the linear filtering and prediction problems by

introducing the state space notation, where the random processes/signals to be estimated are

represented as the output of a linear dynamic system perturbed by uncorrelated noise. This

approach facilitates recursive computation of the optimal solution and highly reduces the

computational effort as compared to the conventional Wiener filter besides eliminating the

memory problems. The so called Kalman filter computes the optimal solution recursively in

the minimum mean square error (MMSE) sense. While the applicability of the Wiener filter is

limited to stationary processes, the Kalman filters can be also applied to the non-stationary

processes. An added advantage of the Kalman filter is its extended applicability also to the

nonlinear systems through an approximate linearization and the so called filter is known as

extended Kalman filter (EKF). This has attracted the Kalman filters for numerous real-time

applications in the fields of navigation, radar, mobile communications, speech signal

processing and so forth. Currently, EKF is under wide investigation in coherent optical com-

munication systems for tracking and mitigating linear and nonlinear phase noise, amplitude

noise, phase and frequency offsets as well as polarization de-multiplexing [12, 13, 31, 52–66].
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Moreover, enhancing the performance obtained from EKF by incorporating with other existing

techniques like DBP has also been studied in [31, 58, 59]. EKF requires only a few complex

multiplications to recover one data symbol. Besides the advantage from low complexity, it

further offers other benefits including faster convergence, joint tracking and compensation of

fiber impairments. Therefore, it is worth discussing and reviewing the applications of Kalman

filters for coherent optical communications in a nutshell.

This chapter is organized as follows: In Section 2, we discuss the principles of Kalman filter by

describing the state space notation and the recursive equations. We further present some

variations of the Kalman filter, namely, EKF and adaptive Kalman filter (AKF). Section 3

details the applications of EKF for coherent optical communications. We illustrate how to

employ Kalman filtering for the joint tracking of several optical transmission impairments by

formulating the state space model (SSM) and detailing the working principles. We also

describe our numerical model and present the results to justify the theoretical findings. Finally,

the chapter is concluded with a note on the key points, in Section 4.

2. The Kalman filter

A Kalman filter is an optimal recursive linear MMSE estimator that estimates the state of a

linear dynamic perturbed by noise. Since the true state of the system is not observable, instead

we obtain the measurements or observations that are corrupted by noise. Now, the goal of the

Kalman filter is to obtain an optimal estimate of the unknown state from the noisy observa-

tions recursively. The stochastic process under estimation is modeled by a state space model

(SSM) which facilitates the recursive nature of the Kalman filter. In the following, we present

the general framework of the Kalman filtering and also discuss briefly the principles of the

EKF and AKF.

2.1. Principles of Kalman filter

Consider a discrete-time, linear, time varying system in the state space notation, given by

Eqs. (1) and (2). Eq. (1) describes how the true state of the system evolves over time and is

known as the state or the process equation. Eq. (2) describes how the measurements are related

to the states and is known as measurement or observation equation. Here, k denotes the time

instant, xk and yk denote the state vector and the measurement vector, respectively. Fk denotes

the state transition matrix that relates the states at the time instances k and k – 1, in the absence

of process noise wk. Hk denotes the measurement matrix that relates the states to the measure-

ments in the absence of measurement noise nk. The process and measurement noise vectorswk

and nk are assumed to be zero mean white Gaussian noise processes with co-variance matrices

Qk and Rk, respectively. It is also assumed that the initial state x0 at time instant 0, is a Gaussian

random vector. Given the SSM and these assumptions, the objective of the Kalman filter is to

obtain a linear MMSE estimate of xk based on the observations {y1, y2,…yk}. The solution
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corresponds to the conditional mean [67] as given in Eq. (3). Here, E[�] denotes the expectation

operator.

xk ¼ Fkxk�1 þwk (1)

yk ¼ Hkxk þ nk (2)

x̂k ¼ E½xkjy1,y2,…, yk� (3)

The Kalman filter computes the optimal state recursively, following a predictor-corrector struc-

ture, where a prediction is computed prior to the availability of the observation at current time

instant k and updates the prediction when the observation at time instant k is available. Through-

out this Chapter, we follow the typical notation convention for the Kalman filter equations: any

variable with subscript k|k – 1 denotes prediction or apriori estimate, and any variable with

subscript k|k or simply, denotes the updated or aposteriori estimate. During the prediction step,

the Kalman filter makes the best guess about the system’s state based on its dynamics, prior to

the availability of the current observation. The state prediction denoted by x̂kjk�1 is given in

Eq. (4). The uncertainty associated with the prediction is given by the apriori error covariance

matrix Pk|k–1, as in Eq. (5). Under the given assumptions and initial conditions, the conditional

probability density function (pdf) p(xk|y1,y2,…,yk–1) is also Gaussian, where the apriori state

estimate x̂kjk�1 and the apriori error covariance Pk|k–1, reflects the mean and variance of the

distribution, as given in Eq. (6). Here, N denotes normal or Gaussian distribution.

x̂kjk�1 ¼ E½xkjy1, y2,…, yk�1� ¼ Fkx̂k�1jk�1 (4)

Pkjk�1 ¼ E½ðxk � x̂kjk�1Þðxk � x̂kjk�1Þ
H� ¼ FkPkF

H
k þQk (5)

pðxkjy1, y2,…, yk�1Þ � Nðx̂kjk�1,Pkjk�1 Þ (6)

During the update step, when the new observation at time k is available, the optimal estimate

is computed as a linear combination of the prediction and the new information available from

the current measurement weighted by an optimal weighting matrix known as Kalman gain.

The update equations can be summarized in Eqs. (7)–(10). The innovation denoted by vk, can

be interpreted as the new information that is available in the observation yk relative to all the

past observations up to time instant k – 1. It is computed as the difference between the actual

and the predicted observation ŷkjk�1, and is given in Eq. (7). The Kalman gain, denoted by Kk,

determines the extent up to which the innovation should be taken into account in updating the

apriori state estimate and is computed according to Eq. (8). Here, H denotes the Hermitian

operator. The updated or aposteriori state estimate x̂kjk, and the aposteriori error covariance Pk|k,

are computed as given in Eqs. (9) and (10), respectively. The aposteriori pdf p(xk|y1,y2,…,yk)

is also Gaussian distributed with mean and variance given by the aposteriori state estimate x̂kjk
and the aposteriori error covariance Pk|k, respectively, as given in Eq. (11). Thus, the Kalman

filter propagates the first and second order moments of the state distribution recursively for

computing the optimal state estimate.
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vk ¼ yk � ŷkjk�1 (7)

Kk ¼ Pkjk�1 H
H
k ðHkPkjk�1H

H
k þ RkÞ

�1 (8)

x̂kjk ¼ x̂kjk�1 þ Kkvk (9)

Pkjk ¼ Pkjk�1 � Pkjk�1KkHk (10)

pðxkjy1, y2,…, ykÞ � Nðx̂kjk,Pkjk Þ (11)

2.2. Extended Kalman filtering

In Section 2.1, we addressed the problem of estimating the unknown state of a linear dynamic

system from noisy observations. Now, we consider the filtering problem for nonlinear system

dynamics (either the process or observation model or both being nonlinear). The Kalman filter

solution can be adopted for the nonlinear dynamic systems through an approximate lineariza-

tion procedure and the resulting filter is known as EKF. Consider a nonlinear dynamic system

described by the SSM given in Eqs. (12) and (13). Here, fk(�) and hk(�) denote the nonlinear state

transition function and the measurement function, respectively.

xk ¼ fkðxk�1Þ þwk (12)

yk ¼ hkðxkÞ þ nk (13)

The nonlinear system dynamics can be linearized through a first order Taylor approximation

at each time instant, around the most recent state estimate. This forms the basic idea of EKF.

Let, Ak and Bk be the Jacobian matrices of fk(�) and hk(�), respectively, and are computed

according to Eqs. (14) and (15). Under the given assumptions and, the initial conditions as

discussed in the earlier section, the EKF recursive equations can be summarized in Eqs. (16)–

(20).

Ak ¼
∂fkðxÞ

∂x
at x ¼ x̂k�1jk�1 (14)

Bk ¼
∂hkðxÞ

∂x
at x ¼ x̂kjk�1 (15)

x̂kjk�1 ¼ fkðx̂k�1jk�1 Þ (16)

Pkjk�1 ¼ AkPkA
H
k þQk (17)

vk ¼ yk � ŷkjk�1 ¼ yk � hkðx̂kjk�1 Þ (18)

Kk ¼ Pkjk�1 B
H
k ðBkPkjk�1B

H
k þ RkÞ

�1 (19)

x̂kjk ¼ x̂kjk�1 þ Kkvk (20)

Pkjk ¼ Pkjk�1 � Pkjk�1KkBk (21)

Kalman Filters - Theory for Advanced Applications210



2.3. Adaptive Kalman filtering

The Kalman filter computes the optimal solution, provided the process noise and measure-

ment noise covariances, Qk and Rk, respectively, are known apriori. However, in practice, a

precise knowledge about the noise statistics might not be available. The Kalman gain Kk takes

into account the noise covariances,Qk and Rk, to determine the extent of reliability between the

predicted state x̂kjk�1 and the innovation vk. Therefore, a poor knowledge of the noise statistics

might significantly degrade the filter performance and even leads to divergence. To overcome

these difficulties, an adaptive approach can be followed to adaptively estimate the noise

covariances from the noise samples, (for example, the innovation sequence) that are generated

during the Kalman recursions at each time instant. This leads to the adaptive Kalman filtering.

The different approaches for adaptive filtering are classified into four types: Bayesian, maxi-

mum likelihood, correlation and covariance matching methods [68]. Here, we discuss the

approach based on covariance matching [68, 69] for adaptive estimation of noise statistics.

The basic idea behind this approach lies on the fact that for an optimal filter, the theoretical

covariance of the innovation vk, denoted by Sk, given in Eq. (22) should be consistent with the

empirically estimated covariance given in Eq. (23). Here,m denotes the window size to provide

statistical smoothing.

Sk ¼ HkPkjk�1H
H
k þ Rk (22)

Eðvkv
H

k
Þ ¼

1

m

Xm�1

i¼0

vk�iv
H
k�i

(23)

HkPkjk�1H
H
k þ Rk ¼

1

m

Xm�1

i¼0

vk�iv
H
k�i (24)

Since the Kalman gain Kk depends on the ratio of the process and measurement noise covari-

ancesQk/Rk, rather than on their individual values, if either ofQk or Rk, is known, the other can

be adaptively estimated by satisfying the condition for covariance matching, given in Eq. (24).

When Qk is known, Rk can be directly estimated from Eq. (24). Alternatively, when Rk is given,

Qk can be estimated by a scaling procedure to improve the robustness of the filter. The basic

idea behind this scaling method is that if the estimated covariance of vk, on the right hand side

of Eq. (24), is much larger than the theoretical covariance, then Qk (please note that Pkjk�1 ¼

FkPkF
H
k
þQk) should be increased to bring the theoretical covariance closer to the estimated

one and vice-versa. Therefore,Qk can be adaptively updated in order to balance any deviations

between the theoretical and estimated innovation covariance by considering a scaling factor αk,

as given in Eq. (25). The estimate of Qk, denoted by Q̂k, is given in Eq. (26).

αk ¼
traceð1

m

X
m�1

i¼0
vk�iv

H

k�i
� RkÞ

traceðHkPkjk�1H
H

k
Þ

(25)

Q̂k ¼ αkQ̂k�1 (26)
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In the case of EKF, the same procedure can be followed for adaptive estimation of noise

covariances, by replacing the measurement matrix with the Jacobian matrix.

3. Kalman filtering for coherent optical communications

3.1. Kalman filtering for carrier phase and amplitude noise estimation (CPANE)

Digital carrier phase estimation (CPE) has become an essential component of coherent optical

receivers to recover the carrier phase perturbed by laser phase noise arising from the transmit-

ter laser or LO [35–43]. Several CPE techniques have been developed in the literature based on

feedback [39, 40] or feed forward loops [35–37]. Depending on how the data phase is wiped

off, they can be further classified into decision directed (DD) [35, 40, 42, 46] or non-decision

directed (NDD) methods [39, 41, 43]. NDD methods like Viterbi-Viterbi [41] CPE has gained

high attention due to its ease of implementation. However, it employs m-th power scheme to

remove the data modulation and therefore, are only better suited for QPSK systems. However,

for higher QAM systems, DD-CPE methods exhibit better performance compared to NDD

CPE methods [35, 42].

Apart from tracking the carrier phase, CPE being a low complex technique, can also be

employed for compensating the nonlinear phase shift stemming from the Kerr nonlinear

effects [30, 44–47]. However, the nonlinear mitigation performance of CPE is limited in the

presence of ASE noise and at high launch powers. Moreover, a phase unwrapping function is

typically required for CPE that might increase the probability of cycle slips [35, 49]. Addressing

these problems, we have proposed a CPANE algorithm using EKF in [12, 53] for the joint

mitigation of linear and nonlinear phase noise as well as ASE induced phase and amplitude

distortions. Unlike CPE, EKF-CPANE estimates a complex quantity, and therefore, no argu-

ment function is required which eliminates the ambiguity associated with multiples of 2π and

consequent cycle slips.

Kalman filter based CPE has been introduced and numerically verified in [52]. From the

numerical results, it was reported that the Kalman based phase estimation combined with

DD equalizer in a feedback configuration outperforms the conventional CMA based

approach [52]. CPE based on EKF was demonstrated and verified experimentally for QPSK

and 16-QAM systems in [57]. In [55], EKF has been investigated for characterizing the laser

phase and amplitude noise. EKF based carrier synchronization has also been verified experi-

mentally, in combination with expectation maximization (EM). A carrier recovery scheme

based on block estimation process with Kalman filter has been demonstrated in [56]. This

approach was verified experimentally for 16 and 64-QAM signals. However, these Kalman

filter based approaches estimate an argument which involves sine and cosine functions, com-

putation of the Jacobian matrix and also require matrix multiplications and inversions, which

increases the computational complexity. The proposed method in [12, 53], estimates a complex

quantity accounting also for the phase and amplitude distortions arising from the ASE noise in

addition to the carrier phase. The variables in the SSM reduce to scalars and therefore, the

vectors and matrices are reduced to scalars which will ease the computational effort. In the

Kalman Filters - Theory for Advanced Applications212



following, we first describe the general principles of CPE. Later, we explain our proposed

CPANE algorithm illustrating its principles and implementation details using EKF.

3.1.1. Principles of CPE

Consider an m-ary QAM received signal on single polarization, which is sampled and com-

pensated for linear impairments. Assuming perfect linear equalization, the k-th input signal to

the CPE can be written as in Eq. (27). Here, rk denotes the k-th input signal to CPE, ak denotes

the transmitted symbol, and nk denotes the collective amplified spontaneous emission (ASE)

noise which is assumed to be white Gaussian process. θk denotes the phase noise arising from

the laser linewidth effects and fiber nonlinearity, which is typically modeled as a Wiener

process and is given in Eq. (28). Figure 1 (a) describes the input signal model to CPE. It can be

seen that after ak is rotated by phase noise θk, nk further adds additional phase noise n0k and

amplitude noise ~nk. The objective of CPE is to estimate the phase noise θk, and derotate the

received signal rk, in order to recover the transmitted symbol ak, as given in Eq. (29) and

Figure 1 (b). However, since the CPE targets at estimating an accurate θ̂k, the recovered

transmitted symbol âk, still suffers from the residual phase noise or amplitude noise or both.

For more details, please refer [12].

rk ¼ ake
jθk þ nk (27)

θk ¼ θk�1 þ wk (28)

âk ¼ rke
�jθ̂k (29)

3.1.2. Principles of CPANE

The effects of nk, as discussed in Section 3.1.1, can be taken into account by reformulating

Eq. (27) as given in Eq. (30) which forms the input signal to CPANE. Here, rk is modeled as the

transmitted symbol ak being rotated by a complex quantity ψk, that considers the effects of both

phase and amplitude noise in its real and imaginary parts, respectively, as given in Eq. (30).

ñ
k

Q

I

nk

θk

n
′

k

ak

ake
jθk

rk

(a)

ñ
k

Q

I

âk(CPE)

âk(CPANE)

θk

n
′

k ak

rk

(b)

Figure 1. (a) Input signal model to CPE (b) recovered symbols using CPE and CPANE [54].
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The objective of CPANE is to recover θk more accurately, by estimating the complex quantity

ψk. The recovered transmitted symbol âk is given in Eq. (32). Since ψk takes into account, both

the phase and amplitude distortions, âk can be recovered more accurately by employing

CPANE compared to CPE, as depicted in Figure 1 (b). Moreover, unlike CPE, CPANE elimi-

nates the necessity of phase unwrapping function.

rk ¼ ake
jψk (30)

ψk ¼ ðθk þ n0kÞ þ j~nk (31)

âk ¼ rke
�jψ̂

k (32)

3.1.3. EKF-CPANE for joint mitigation of phase and amplitude noise

As discussed earlier, CPANE algorithm can be employed for the joint mitigation of phase and

amplitude noise. However, it requires a reliable tracking of the complex quantity ψk, which can

be accomplished by an EKF. The required SSM for the EKF can be formulated using Eqs. (33)

and (34). Eq. (33) represents the state or process equation that describes the time evolution of

ψk. Eq. (34) represents the observation equation that describes the relation of the states ψk to the

observations rk. Eq. (34) is similar to Eq. (30), however, for consistency of the filter, the

measurement noise mk has been taken into account. Here, all the variables in the SSM are

scalar quantities. Comparing to the standard SSM for EKF described in Section 2.2, it can be

noted that the state transition is identity and the measurement matrix is the transmitted

symbol, ak, for simplicity, we call it measurement weight (MW), since it is a scalar. The EKF

recursive equations can be derived analogously by relating the SSM to the standard SSM of

EKF discussed in Section 2.2. Since the MW ak is required to compute the update equations,

which is not known apriori, EKF-CPANE is DD. The required decisions of ak, denoted by dk are

obtained by de-rotating rk with an average of the past updated estimates ψ̂k over a window

length of N, as given in Eq. (35). For more details on the prediction and update equations of

EKF-CPANE, please refer [12]. Figure 2 depicts the schematic of the EKF-CPANE algorithm,

illustrating that the prediction ψ̂kjk�1 is the delayed version of the past updated estimate and

the current updated state ψ̂kjk is the linear combination of the prediction ψ̂kjk�1 and the

innovation vk weighted by the Kalman gain Kk. The process of making the required decisions

for the update step has also been illustrated in Figure 2.

ψk ¼ ψk�1 þ wk (33)

rk ¼ ake
jψk þmk (34)

dk ¼ decisionðtkÞ where tk ¼ rke
�j 1N

X
N
ψ̂k�N (35)

3.1.4. Numerical analysis of EKF-CPANE

The performance of EKF-CPANE algorithm for mitigating the laser phase noise, fiber nonlinearity

besides the ASE induced phase and amplitude distortions has been verified through numerical
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simulations on single channel systems in [12, 53] and multi-channel systems in [54]. Here, we

briefly discuss the numerical model and present a few simulation results reproduced from [12], so

that the flow of the readers is not interrupted. The numerical model of polarization multiplexed

(PM) m-QAM coherent transmission system including a DSP module at the receiver, is depicted

in Figure 3. Here, we consider the PM-m-QAM transmitter with m = 16 and 64, operated at 28 and

18.667 GBaud, respectively. These signals are transmitted through a standard single mode fiber

(SSMF) link at different launch powers. The SSMF has the following parameters: attenuation

coefficient (α) = 0.2 dB/km, dispersion coefficient (D) = 16 ps/nm-km, and nonlinearity coefficient

(γ) = 1.2/W-km. The span length of SSMF is 80 km and a number of 12 and 6 spans have been

considered for 16 and 64 QAM, respectively, yielding a total transmission distance of 960 and

480 km. The span losses are compensated by an EDFAwith a gain of 16 dB and noise figure (NF) of

4 dB. For simplicity, PMD has been neglected in this study. At the receive end, we employ a dual

polarization coherent receiver which is followed by a DSP module. The laser linewidth of the LO

has been set to 100 kHz. After coherent detection, the signals are re-sampled to twice the symbol

rate and are followed by linear compensation. Then the signals are further down sampled to the

symbol rate and are further processed by the EKF-CPANE for mitigating linear and nonlinear

phase noise besides amplitude noise. The performance of EKF-CPANE is compared to
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Figure 3. Numerical model of PM-m-QAM coherent transmission system with DSP module [12].
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Figure 2. Block diagram of EKF-CPANE algorithm [54].
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feedforward DD-CPE [46], feedback DD phase locked loop (DD-PLL) [36] and a NDD universal

CPE (U-CPE) [39]. The noise covariances for EKF-CPANE, the tap length or step size for DD-CPE,

DD-PLL and U-CPE are set to optimize the performance.

The bit error rate (BER) performance of the considered algorithms is evaluated and a Q-factor

is computed as 20log10 erfcinv(2*BER). The Q-factor vs. launch power curves for 16-QAM and

64-QAM are depicted in Figure 4(a) and (b), respectively. It can be seen that EKF-CPANE

exhibits better performance compared to DD-CPE, DD-PLL and U-CPE in both linear and

nonlinear regimes. This performance enhancement is better visible compared to the DD-CPE

method. For PM-64-QAM, it can also be seen that the DD-CPE experiences cycle slips occur-

ring through the error propagation of wrong decisions which can be seen in Figure 4(b) at

launch powers ranging from �2 to 1 dBm [12]. Since the performance of DD algorithms

strongly depends on the pre-decisions made by the algorithm, we study the impact of ideal

error free decisions on their performance by replacing the pre-decisions dk with the true data

symbols ak. The algorithms with the ideal case are denoted by IEKF-CPANE, IDD-CPE and

IDD-PLL. It can be seen from Figure 4(a) and (b), that the IEKF-CPANE shows significant

performance enhancement and better tolerance towards linear and nonlinear phase noise as

well as amplitude noise, compared to IDD-CPE and IDD-PLL. Unlike EKF-CAPNE, no notable

improvement can be obtained for the DD-CPE and DD-PLL between their practical and ideal

cases. Although, the ideal case, where the true symbols ak are already known, is not possible in

practice, it should be noted that the performance of EKF-CPANE can be further improved by

reducing the number of decision errors, which will be further discussed in the next Section 3.2.

3.2. EKF and DBP for fiber nonlinear mitigation

In Section 3.1, we have described how the EKF can be employed for the joint mitigation of

phase and amplitude noise. From the numerical results discussed in Section 3.1.4, it can be

concluded that the EKF-CAPNE algorithm shows promising results in mitigating the linear
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Figure 4. Q-factor vs. launch power curves for the considered algorithms (a) PM-16-QAM transmission over 960 km of

SSMF transmission (b) PM-64-QAM transmission over 480 km of SSMF transmission [12].
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and nonlinear phase noise as well as amplitude noise simultaneously besides less computa-

tional effort. Although, EKF-CPANE outperforms several other considered CPE methods, the

effectiveness of EKF-CPANE in mitigating fiber nonlinear effects can be further enhanced by

reducing the number of errors in the pre-decisions dk. We have proposed a weighted innova-

tion approach (WIA) in [12], where the innovation is computed as a weighted combination of

the two nearest likely decisions. Although a gain of ≈ 0.3 dB in the Q-factor can be obtained

compared to conventional EKF-CPANE, in the linear regime, no notable improvement can be

seen in the nonlinear regime. On the other hand, DBP has emerged to be an effective technique

in mitigating linear and nonlinear impairments simultaneously, provided the channel param-

eters are known a-priori and the step size is sufficiently small. However, DBP can compensate

only the deterministic impairments of self-phase modulation and its performance deteriorates

significantly in the presence of stochastic impairments like laser phase noise, ASE and NLPN.

Moreover, the required huge computational effort keeps it far away from real-time implemen-

tation. Nevertheless, by employing a few DBP steps prior to EKF-CPANE would yield an

enhanced tolerance towards nonlinearities since DBP is well capable of mitigating determinis-

tic impairments and EKF takes into account the stochastic nature of ASE noise and NLPN. By

partially compensating fiber nonlinear effects employing few DBP steps prior to EKF, would

result in improved pre-decisions and thereby facilitates the residual compensation of non-

linearities along with amplitude and phase noise effectively. These theoretical findings are

verified through numerical simulations on both single [31] and multichannel systems [58].

In [31], it was reported that the EKF-CPANE outperforms the asymmetric split step Fourier

method (ASSFM) based one step per span (OSPS) DBP with optimized nonlinear co-efficient γ

(ODBP), for single channel systems, for transmission on both SSFM and non-zero dispersion

shifted fiber (NZ-DSF). A detailed investigation has also been carried out on the combined

performance of DBP and EKF-CPANE with an analysis on the influence of the nonlinear

coefficient and the step size of DBP when employed prior to EKF-CPANE. The numerical

model employed in this study is similar to the one discussed in Section 3.1.4, with a few

changes in the parameters of NF being 5 dB and the linewidth of LO being 500 kHz. The

influence of DBP step size on the combined performance of DBP and EKF-CPANE for both

SSMF as well as NZ-DSF transmission is illustrated in Figure 5(a) [31]. Here, OCDBP denotes

the optimized DBP which has a nonlinear coefficient different from ODBP when employed

prior to EKF. A worth noting result is that at a launch power of 3 dBm and a transmission

distance of 960 km, a gain of 1 dB in the Q-factor can be obtained by employing 0.3 DBP steps

per span prior to EKF-CPANE, for both SSMF and NZ-DSF transmission. At the expense of

additional computational effort, the deployment of a few DBP steps prior to EKF-CPANE

further enhances its performance trading off to complexity.

For the case of multi-channel systems, also, a detailed analysis has been performed in [58], on

the combined performance of DBP and EKF for mitigation of inter and intra channel non-

linearities besides phase and amplitude noise. Here, the DBP is employed by considering the

temporal correlations between the neighboring signal samples and is termed as correlated DBP

(CDBP) [27, 28]. This approach will improve the accuracy in computing the nonlinear phase

shift and there by enhances the nonlinear mitigation performance. Since the optimization of

nonlinear coefficient plays a vital role on the performance of DBP, we proposed an amplitude
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dependent optimization (AO) [58] of the nonlinear coefficient, according to the discrete ampli-

tude levels present in the higher order modulation formats like 16-QAM. The combined

performance of AO-CDBP and EKF-CPANE for WDM systems with varying number of chan-

nels has been investigated in [58]. Analogous to the single channel systems, the combined

performance of AO-CDBP and EKF yields an improved performance also for the WDM case.

However, with increasing impact of the cross phase modulation (XPM) as the number of

channels increase, the gain obtained from their combined performance starts vanishing which

can be observed in Figure 5(b).

3.3. EKF for mitigation of nonlinearities in dispersion managed links

Since the advent of coherent detection and DSP for coherent optical receivers, CD can be

effectively compensated by digital equalization in the electric domain ad thereby, eliminating

the need for dispersion compensating fibers (DCF). However, nonlinear mitigation in the

dispersion managed (DM) links is also vital in order to upgrade existing links. Although, the

computational complexity of DBP is quite high, for DM links, the DBP algorithm can be

simplified by assuming that the nonlinear behavior repeats itself every span and therefore,

the total nonlinearity after N spans of transmission can be approximated to N times the

nonlinearity from a single span [70]. This is termed as distance folded DBP [70] and it reduces

the complexity by a factor of N assuming the step size of DBP is equal to the span length and

the span length is assumed to be constant. Assuming the dispersion is fully compensated in

each span, only the nonlinear term in the nonlinear Schrödinger equation (NLSE) can be solved

in the time domain avoiding the Fourier and inverse Fourier transformation (FFT/IFFT) pairs

which reduces the computational cost of DBP drastically. We call this approach single step

nonlinearity mitigation (SSNL). Similar to the unmanaged links as discussed in the earlier section
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of 3.2, we investigated the combined performance of SSNL and EKF-CPANE for mitigating the

fiber nonlinearity in DM links [59].

The numerical model of PM-16-QAM coherent transmission system over DM link [59] is

depicted in Figure 6. Here, a fully compensated periodical DM link with several spans has been

considered. Each span consists of 80 km of SSMF and 17 km of dispersion compensating fiber

(DCF). The SSMF has the following parameters: α = 0.2 dB/km, D = 17 dB/nm-km, γ = 1.2/W-km.

The parameters of DCF are given by: α = 0.5 dB/km, D = �80 dB/nm-km and γ = 5/W-km. In this

study, the input power to DCF was set to half of the input power to SSMF. Therefore, the gains of

EDFA1 and EDFA2 are adjusted accordingly, to compensate the span losses. The NF of both the

EDFAs are set to 4 dB. As described earlier, after coherent detection, the signals are further

processed by the SSNL and EKF-CPANE algorithms for mitigating fiber nonlinearities. It has

been reported in [59], that the combined performance of SSNL and EKF yields an improved

tolerance towards nonlinearities of up to 2 dB for a transmission distance of 1200 km and at a

BER of 2*10�2. Further, their combined performance increases the transmission reach by ≈ 250 km

at a launch power of 3 dBm and at a BER of 2*10�2 as depicted in Figure 7.
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3.4. Kalman filtering for polarization de-multiplexing

An effective way to double the transmission capacity is to employ PDM which allows the

transmission of two information signals simultaneously on the orthogonal polarization states

of the same optical carrier wave. However, due to fiber birefringence, the state of polarization

is not preserved during the propagation on the fiber that leads to crosstalk upon the receipt of

the signal. In coherent receivers, CMA [15] or MMA [16] is commonly employed in order to

align the polarization states and recover the transmitted signal fully. However, CMA or MMA

suffer from the drawbacks of low convergence speed and singularity problem [71]. Moreover,

a separate phase estimation scheme is required to track the laser phase noise. Since the Kalman

filter allows simultaneous tracking of several state variables provided a precise SSM, the

Kalman filter and its variations including radius directed linear Kalman filter (RD-LKF), EKF

and UKF are widely investigated for tracking the complex elements of the Jones matrix along

with the carrier phase [61–63].

3.4.1. RD-LKF, EKF and UKF for joint tracking polarization state and phase noise

An EKF has been proposed in [61] for joint tracking of the polarization and phase noise. It has

also been reported that the EKF shows faster convergence than the conventional approach

based on CMA and VV-CPE [61]. However, the variables in the state vector are restricted to

real values, which would lead to singularity problems or divergence of the filter [63], besides

increasing the dimensions of the vectors and matrices in the Kalman recursive equations. A

polarization state tracking scheme using Kalman filter, which is immune to phase/frequency

offset, has been introduced in [62], and is termed as RD-LKF. Although, it shows faster

convergence compared to CMA, this method needs significant modifications for applying to

higher order QAM. Moreover, it is not possible to track the carrier phase simultaneously with

the polarization state. The joint tracking of polarization state and carrier phase using EKF has

been experimentally verified in [57]. A reduced SSM using UKF has been introduced in [63],

which facilitates the joint tracking of polarization state and phase noise. Here, the variables of

the state vector are considered to be complex valued. This approach exhibits better perfor-

mance compared to EKF at high OSNRs at the expense of additional computational effort.

3.4.2. Adaptive cascaded Kalman filtering (A-CKF) for polarization de-multiplexing with simultaneous

tracking of phase and amplitude distortions

A cascaded Kalman filtering (CKF), a series of EKF and linear Kalman filtering (LKF) for joint

tracking of phase and amplitude distortions besides polarization state, has been proposed

in [13]. By splitting up the conventional SSM into linear and nonlinear SSM, the inaccuracies

in the linearization of the SSM as a whole can be reduced and thus CKF exhibits enhanced

performance besides no increased computational cost compared to the approaches like

UKF [63] and radius directed (RD) LKF [62]. Since the optimal performance of the Kalman

filter depends on the noise covariances, we proposed an adaptive CKF (A-CKF) [13] to adapt
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the process noise covariance recursively using the covariance matching method as described in

Section 2.3.

3.4.2.1. Principles of A-CKF

The transmitted and received signal in the presence of phase noise and polarization rotation

can be related as given in Eq. (36). Here, tk, rk and nk denote the transmitted and received signal

and ASE noise in dual polarization, respectively. Jk denotes the Jones matrix, θk denotes the

phase noise and α denotes the loss factor. Assuming negligible, the inverse of the Jones matrix

can be described as in Eq. (37) and the elements of the Jones matrix satisfy Jyy ¼ J�xx and

Jyx ¼ �J�xy [15]. From now on, for simplified notation, we omit the time variable k in this

section. The observation model in Eq. (36) can be rewritten in dual polarization as given in

Eq. (38). Here, the subscripts x and y denote the x and y polarizations, respectively. The

conventional approach to track the phase and the polarization effects using EKF, the state

vector consists of the parameters, a, b, c, and d. However, we reduce the dimensions of the

state vector and also the other matrices in the SSM by considering the complex elements in the

state vector given by SðkÞ ¼ ½JxxJxy φ�. Moreover, we also split up the nonlinear observation

model given in Eq. (38), into a nonlinear and linear observation model, where we employ an

EKF-CPANE for the joint tracking of phase and amplitude distortions and an LKF for tracking

of the complex elements in the Jones matrix. The process noise covariance has been adaptively

updated by employing the covariance matching method as described in Section 2. For more

details on the A-CKF algorithm, please refer to [13].

tk ¼ e�jθkðαJkÞ
�1
rk þ nk (36)

J�1 ¼
Jxx Jxy

Jyx Jyy

" #

¼
aþ jb cþ jd

�cþ jd a� jb

� �

(37)

tx

ty

� �

¼ e�jθkðαJkÞ
�1 rx

ry

� �

þ
nx

ny

� �

(38)

Numerical investigations on both back-to-back (BTB) and transmission scenarios, have been

carried out in [13], on the variations of the Kalman filter including EKF, UKF, CKF and A-CKF,

for tracking the polarization state and phase noise jointly and are compared to the conventional

MMA algorithm. Since the MMA can track only the polarization state, it is accompanied by a

DD-CPE algorithm for the phase noise mitigation. It can be concluded from [13] that the CKF

and A-CKF outperform the rest of the considered algorithms with a better tolerance towards

polarization rotations, phase and amplitude noise. This can be attributed to the decrement in the

inaccuracies through the linearization of the whole SSM in CKF/A-CKF, compared to EKF and

UKF. The benefit from the adaptive computation of process noise covariance compared to the

CKF can be observed at rotation angular frequencies of 400 Mrad/s and higher in the BTB case

and at higher launch powers of 5 dBm in the transmission case [13].
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3.5. Kalman filtering for joint compensation of phase and frequency offset

Apart from digital equalization, carrier synchronization is also vital to mitigate the phase and

frequency offsets between the transmitter laser and free running LO. Since the CPE methods

have low tolerance towards FO, which may go as high as �5 GHz, a separate FO estimation

(FOE) is required. Consequently, several FOE algorithms have been proposed in the literature

that are either based on the phase increments between adjacent symbols [72] or spectrum

based methods [73]. These methods are either not accurate for higher order QAM systems or

computationally complex.

3.5.1. LKF and EKF for FO estimation

A novel FOE algorithm using Kalman filtering have been proposed and numerically verified

in [60]. The simulation results in [60] concludes that the Kalman filter can achieve faster

convergence and outperforms the conventional FO estimation at low OSNR. In [64], FOE

schemes based on blind and training data, using LKF and EKF have been proposed for QPSK

systems. These Kalman based FOE algorithms are evaluated both numerically and experimen-

tally, and are compared to FFT based FOE methods. The investigations in [64] report that the

training data based Kalman FOE methods show better accuracy in estimating the FO in case of

fewer symbols and high OSNR, compared to FFT based methods. However, a separate phase

estimation has to be carried out after FO compensation.

3.5.2. Two stage EKF for joint compensation of FO, phase and amplitude noise

The Kalman based FOE algorithms proposed in [60, 64] can compensate only for the FO and

therefore, the carrier phase has to be recovered separately after FO compensation. In [65], a

two stage EKF method based on training data has been proposed for joint tracking of FO,

phase and amplitude noise. In the first stage, a coarse estimate of FO is obtained using a set of

training data symbols following the training data scheme proposed in [64]. In the second stage,

CPANE algorithm has been employed to jointly compensate for the residual FO, phase and

amplitude noise.

3.5.2.1. Principles of two stage EKF

After linear equalization, the received signal on single polarization, with frequency and phase

offset can be represented as given in Eq. (39). Here, rk and ak denote the received and transmit-

ted symbol, respectively, at the time instant. w denotes the FO between the transmitter laser

and the LO. Ts denotes the symbol duration. Øk and nk denote the phase noise and ASE noise,

respectively. In order to obtain the measurement for FO, the first step is to wipe off the data

phase which is performed by employing training data. Then the phase difference between the

adjacent symbols [64] is computed, which gives the measurement of FO denoted by mk, in

Eq. (40). Here, vk is given by Øk – Øk–1, and follows a Gaussian distribution. By considering the

observation model given in Eq. (40) for EKF, a coarse FO estimation is performed in the first

stage using a set of training data sequence. The input signal r̂k to the second stage after coarse
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FO estimation is given in Eq. (41). Here, the CPANE algorithm is employed to compensate the

residual FO, phase noise and ASE induced phase and amplitude distortions. Figure 8 illus-

trates the basic structure of this two stage EKF [65]. A similar two stage model using LKF has

also been evaluated in [65] and compared to EKF.

rk ¼ ake
jðwkTsþ ∅kÞ þ nk (39)

mk ¼ ejðwþvkÞ þ ϑk (40)

r̂k ¼ ake
jðΔwkþ ∅kÞ þ nk (41)

The BER vs OSNR curves for LKF and EKF after the 2nd stage, using 200 and 500 training data

symbols, for a FO of 1 GHz, are depicted in Figure 9 [65]. It can be concluded from [65], that both
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Training

data

Figure 8. Block diagram of two stage EKF for the joint compensation of FO, phase and amplitude noise [65].
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Figure 9. BER vs. OSNR curves for LKF and EKF after residual FO compensation for a FO of 1 GHz [65].
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LKF and EKF show faster convergence irrespective of the number of training data symbols

utilized in the first stage. However, since the EKF estimates a complex quantity, it facilitates in

compensating also for the amplitude noise and therefore, outperforms LKF. Moreover, as

discussed earlier, EKF does not require any angle operations unlike LKF, and thereby the

additional few computations required by the EKF compared to LKF can be sought to be com-

pensated with the additional benefit of better tracking capability.

This two stage EKFmodel has been extended in [66] to compensate also for the fiber nonlinearity

in addition to FO, phase and amplitude noise. The first stage is similar and compensates FO

coarsely, as discussed earlier. In the second stage, the total phase noise to be estimated comprises

of both laser phase noise and fiber nonlinearities. The EKF-CPANE algorithm is employed for

tracking the residual FO and the total phase noise in addition to amplitude noise. From the

numerical analysis, it was reported in [66] that compared to LKF, the maximum possible trans-

mission reach can be increased by an additional 500 km using EKF, at a BER of 2.4*10�2.

4. Conclusions

We have discussed in detail on how to exploit the potential of Kalman filters for the joint

mitigation of several fiber optical transmission impairments in coherent optical transmission

systems. Various Kalman based approaches for tracking carrier phase and frequency offset,

polarization state have been reviewed. The CPANE algorithm and its implementation details

using EKF for joint mitigation of linear and nonlinear phase noise as well as amplitude noise

have been illustrated in detail. It is also verified that the combination of DBP and EKF

enhances the nonlinear mitigation performance, at the expense of few DBP steps. A cascaded

structure using LKF and EKF is illustrated for tracking the polarization state and carrier phase

besides amplitude noise, simultaneously. A two stage EKF model for simultaneous tracking of

FO, phase and amplitude noise is also discussed. From the discussed numerical verifications, it

can be concluded that the Kalman filter based approaches for tracking the optical transmission

impairments outperforms the conventional methods in coherent optical communication sys-

tems, with faster convergence, better tracking ability and more tolerance towards the optical

transmission impairments. Since the Kalman filter is an optimal recursive MMSE estimator,

with its attractive properties of hardware efficient implementation feasibility, less computa-

tional effort as well as memory requirements, it seems to be an essential component of future

coherent optical receivers.
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