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Abstract

The finite difference (FD) methods are widely used for approximating the partial deriva-
tives in the acoustic/elastic wave equation. Grid dispersion is one of the key numerical
problems and will directly influence the accuracy of the result because of the discretization
of the partial derivatives in the wave equation. Therefore, it is of great importance to
suppress the grid dispersion by optimizing the FD coefficient. Various optimized methods
are introduced in this chapter to determine the FD coefficient. Usually, the identical sta-
ggered grid finite difference operator is used for all of the first-order spatial derivatives in
the first-order wave equation. In this chapter, we introduce a new staggered grid FD
scheme which can improve the efficiency while still preserving high accuracy for the first-
order acoustic/elastic wave equation modeling. It uses different staggered grid FD opera-
tors for different spatial derivatives in the first-order wave equation. The staggered grid FD
coefficients of the new FD scheme can be obtained with a linear method. At last, numerical
experiments were done to demonstrate the effectiveness of the introduced method.

Keywords: finite difference scheme, optimized finite difference coefficient, staggered
grid, regularization, wave equation

1. Introduction

The propagation of seismic waves through the Earth’s subsurface is described by the wave

equation, one of the partial differential equations (PDEs), which describe many of the funda-

mental natural laws. When the subsurface earth structure is complex, it is difficult to obtain the

analytic results. The finite difference (FD) method is one of most widely used numerical

methods for wave equation modeling because of its high efficiency, smaller memory require-

ment, and easy implementation [1–7].

The first application of the FD method to wave equation modeling can be possibly traced back

to Alterman and Karal [1]. Alford et al. took the grid dispersion analysis for the second-order
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and fourth-order FD operators and stated that it is necessary to use high-order FD operators

[8]. Kelly et al. further illustrated the grid dispersion, absorbing boundary condition, and other

implementation aspects of the FD method [9].

Madariaga developed a staggered grid FD scheme to solve a rupture propagation problem

[10]. Virieux adapted this scheme to elastic SH waves and P-SV waves in a 2D Cartesian system

[2, 3]. Levander introduced a fourth-order staggered grid FD operator in the space domain to

improve accuracy [11].

Grid dispersion is one of the key numerical problems affecting practical usage when utilizing

the FD method. Since the traditional FD coefficient obtained in the space domain with the

Taylor expansion method is only accurate for a very limited wavenumber range [4], many

efforts are paid to reducing the grid dispersion with optimized FD coefficient. Yang et al.

proposed the nearly analytic discrete method for wave equation and later improved this

method [12, 13]. Chen proposed high-order time discretization method to reduce the disper-

sion caused by the temporal discretization [14, 15]. The Fourier FD was introduced by Song

and Fomel with the combination of fast Fourier transform and finite difference operators [16].

Chu and Stoffa improved the FD methods with a scaled binomial windowed FD scheme that

leads to more precise discrete operators [17]. Fomel et al. introduced low-rank approximation

of the wave propagator matrix to reduce the cost of wave extrapolation [18].

Generally, the FD coefficients of the spatial derivative are determined only in the spatial

domain. However, wave equations are solved in the temporal and spatial domains simulta-

neously. Finkelstein and Kastner propose a systematic design methodology for obtaining FD

coefficients to reduce dispersion, which allows the exact phase velocity or (and) group velocity

dispersion relationship to be satisfied at some designated frequencies in the temporal-spatial

domain [19, 20]. Etgen proposed minimizing the phase velocity error using the least squares

(LS) method [21]. Liu and Sen propose a new time-space domain method to determine the

higher order FD coefficients for 1D, 2D, and 3D wave equations [22], and then they use this

method to get the staggered grid FD coefficients [23]. Zhang and Yao proposed the use of the

simulated annealing algorithm and gave an error limitation for determining the FD coefficients

in the space or the time-space domain [24]. Liang et al. proposed utilizing the linear method to

determine the FD coefficient in the time-space domain [25]. Ren and Liu developed a novel

optimal time-space domain staggered grid FD scheme and used least squares method to get

the FD coefficients [26]. Wang et al. proposed the regularized optimization method to get the

staggered grid FD coefficient in the time-space domain [27]. Chen et al. used K space operator-

based high-order staggered grid FD method to improve accuracy [28]. Yong et al. proposed

using the optimized equivalent staggered grid FD method with three sets of FD coefficients to

improve the simulation accuracy [29]. Compared with the traditional high-order staggered

grid FD coefficient obtained by the Taylor expansion method, these methods greatly improved

the accuracy with the optimized FD coefficient.

Another way to improve the accuracy and efficiency of the FD methods is using new FD

stencil. Liu and Sen studied the rhombus stencil and found that it can reach high-order

accuracy along all directions [30]. Liu et al. formulated an explicit time evolution scheme with
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high temporal accuracy by using a new FD stencil for the second-order wave equation [31].

Tan and Huang propose a staggered grid FD stencil with added points in the diagonal direc-

tion for the first-order wave equation [32, 33]. Compared with the traditional staggered grid

FD stencil, these methods improved the efficiency by using a larger time step while still pre-

serving high accuracy.

2. Acoustic/elastic wave equations

The first-order velocity-stress acoustic wave equation can be described as

∂P

∂t
¼ �v2

∂vz
∂z

þ
∂vx
∂x

� �

, (1)

∂vx
∂t

¼ �
∂P

∂x
, (2)

∂vz
∂t

¼ �
∂P

∂z
: (3)

where P is the acoustic pressure fluctuation, v is the wave propagation speed, and vx and vz are

the particle velocities.

Substituting Eqs. (2) and (3) into Eq. (1), the second-order acoustic wave equation can be

written as

∂2p

∂x2
þ

∂2p

∂z2
¼

1

v2
∂2p

∂t2
(4)

The first-order elastic wave equations in 2D heterogeneous media are [3]

∂vx
∂t

¼
∂τxx

∂x
þ

∂τxz

∂z
, (5)

∂vz
∂t

¼
∂τxz

∂x
þ

∂τzz

∂z
, (6)

∂τxx

∂t
¼ α2 ∂vx

∂x
þ α2

� 2β2
� � ∂vz

∂z
, (7)

∂τzz

∂t
¼ α2 ∂vz

∂z
þ α2

� 2β2
� � ∂vx

∂x
, (8)

∂τxz

∂t
¼ β2

∂vx
∂z

þ
∂vz
∂x

� �

: (9)

where (vx, vz) is the velocity vector,(τxx, τzz, τxz) is the stress vector, and α and β are the P- and S

wave propagation speeds, respectively.
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Substituting Eqs. (7)–(9) into Eqs. (5)–(6), the second-order elastic wave equation can bewritten as

∂2vx

∂t2
¼ α2 ∂

2vx
∂x2

þ α2 � β2
� � ∂2vz

∂x∂z
þ β2

∂2vx
∂z2

, (10)

∂
2vz

∂t2
¼ α2 ∂

2vz
∂z2

þ α2 � β2
� � ∂

2vx
∂x∂z

þ β2
∂
2vz
∂x2

: (11)

3. Finite difference operators

The commonly used staggered grid FD scheme for the first-order acoustic wave equation is as

follows:

∂P

∂t
¼

�v2

h

X

M1

m¼1

cm vz0,m�1=2
� vz0,�mþ1=2

� �

þ
X

M1

m¼1

cm vxm�1=2,0 � vx�mþ1=2,0

� �

 !

, (12)

∂vx
∂t

¼
�1

h

X

M2

m¼1

cm P0
m�1=2,0 � P0

�mþ1=2,0

� �

, (13)

∂vz
∂t

¼
�1

h

X

M2

m¼1

cm P0
0,m�1=2 � P0

0,�mþ1=2

� �

, (14)

Qn
m, j ¼ Q xþmh; zþ jh; tþ nτð Þ; Q ¼ vx, vz, P (15)

where M1 and M2 are the length of the FD operators, cm is the staggered grid FD coefficients,

and h is the spatial grid interval.

The second-order FD operator is usually used for the first-order time derivative:

∂P

∂t
¼

1

Δt
P1
0,0 � P0

0,0

� �

: (16)

where Δt is the time step.

The commonly used staggered grid FD scheme for the first-order elastic wave equation is as

follows:

∂vx
∂t

¼
1

h

X

M1

m¼1

cm τxx
0
m�1=2,0

� τxx
0
�mþ1=2,0

h i

þ
1

h

X

M1

m¼1

cm τxz
0
0,m�1=2

� τxz
0
0,�mþ1=2

h i

(17)

∂vz
∂t

¼
1

h

X

M1

m¼1

cm τxz
0
m�1=2,0

� τxz
0
�mþ1=2,0

h i

þ
1

h

X

M1

m¼1

cm τzz
0
0,m�1=2

� τzz
0
0,�mþ1=2

h i

(18)

∂τxx

∂t
¼

α2

h

X

M2

m¼1

cm vx
0
m�1=2,0

� vx
0
�mþ1=2,0

h i

þ
α2 � 2β2

h

X

M2

m¼1

cm vz
0
0,m�1=2

� vz
0
0,�mþ1=2

h i

(19)

Computational and Experimental Studies of Acoustic Waves6



∂τzz
∂t

¼
α2 � 2β2

h

X

M2

m¼1

cm vx
0
m�1=2,0

� vx
0
�mþ1=2,0

h i

þ
α2

h

X

M2

m¼1

cm vz
0
0,m�1=2

� vz
0
0,�mþ1=2

h i

(20)

∂τxz
∂t

¼
β2

h

X

M2

m¼1

cm vz
0
m�1=2,0

� vz
0
�mþ1=2,0

h i

þ
β2

h

X

M2

m¼1

cm vx
0
0,m�1=2

� vx
0
0,�mþ1=2

h i

(21)

Qn
m, j ¼ Q xþmh; zþ jh; tþ nτð Þ; Q ¼ vx, vz, τxx, τzz, τxz (22)

where M1 and M2 are the length of the FD operators, cm is the staggered grid FD coefficient to

be determined, and h is the spatial grid interval.

4. Optimizing finite difference operators

4.1. Optimizing finite difference operators for the acoustic wave equation

Using the plane wave theory, let

Pj
m,n ¼ ei kx xþmhð Þþkz zþjhð Þ�ω tþnτð Þ½ �: (23)

The following dispersion relation can be obtained by substituting Eqs. (13)–(14) into Eq. (12)

[23, 26, 27]:

X

M

m¼1

cm sin m� 0:5ð Þkxhð Þ

" #2

þ
X

M

m¼1

cm sin m� 0:5ð Þkzhð Þ

" #2

≈
1

2r2
1� cos kvτð Þ½ �: (24)

where r = vΔt/h, M1 = M2 = M, and(kx, kz) = k(cosθ, sinθ). It can be observed from Eq. (24)

that the dispersion relation is complex and optimized methods are needed to address this

problem.

Let c be the vector form of the FD coefficients, and denote the left side of Eq. 24 by [27]:

F cð Þ ¼
X

2π

θ¼0

X

M

m¼1

cm sin m� 0:5ð Þkxhð Þ

" #2

þ
X

M

m¼1

cm sin m� 0:5ð Þkzhð Þ

" #2
8

<

:

9

=

;

(25)

and the right side of Eq. 24 by

d ¼
X

2π

θ¼0

1

2r2
1� cos kvτð Þ½ �: (26)

The aim is to minimize the dispersion error for a fixed range of wavenumbers:
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Φ cð Þ ¼
X

K
�

k¼0

F cð Þ � d½ �2 ! min (27)

The upper limit of the wavenumber range used for calculating the FD coefficients is based on

the source frequency, the space grid interval, and the wave propagation speed [25]:

Ratio ¼
K
�

Ktotal
¼

2πfmax=v

π=h
¼

fmax

v=2h
: (28)

The direct minimization of the objective function Φ for the FD coefficient may lead to unstable

results. Therefore, regularizing technique was applied to restore stability. The regularization

model is established as

Jα cð Þ ¼ Φ cð Þ þ
1

2
α Dck k2, (29)

where α > 0 is a user-defined regularization parameter and D is a scale operator. The new task

is the minimization of J(c), and then the regularized optimization staggered grid FD coefficient

can be obtained.

Another way to improve the efficiency and accuracy of the staggered grid FD methods is the

utilization of the new staggered grid FD scheme. Different with the previous staggered grid

FD scheme, the simplest centered second-order staggered grid FD operator can be used for the

spatial derivatives in Eqs. (2) and (3), for example,

∂P

∂t
¼

�v2

h

X

M

m¼1

cm vz0,m�1=2
� vz0,�mþ1=2

� �

þ
X

M

m¼1

cm vxm�1=2,0 � vx�mþ1=2,0

� �

 !

, (30)

∂vx
∂t

¼
� P0

1=2,0 � P0
�1=2,0

� �

h
, (31)

∂vz
∂t

¼
� P0

0,1=2 � P0
0,�1=2

� �

h
: (32)

The staggered grid FD scheme in Eqs. (30)–(32) can be seen as a new staggered grid FD scheme

for the first-order acoustic wave equation. The new staggered grid FD scheme is exactly the

same as the traditional staggered grid FD scheme except if the staggered grid FD operator

length is shorter for Eqs. (31) and (32). By carefully comparing Eqs. (12) and (14) with Eqs. (30)

and (32), we find that the new staggered grid FD scheme is more efficient and can save about

45% of simulation time whenM equals 7. It looks like the particle velocities vx and vz in Eqs. (31)

and (32) are inaccurate since only the second-order staggered grid FD operators are used.

However, this is not true since the staggered grid FD coefficient in Eq. (30) is optimized with

Eqs. (31) and (32) in consideration. In the following, the huge advantage of the new staggered

Computational and Experimental Studies of Acoustic Waves8



grid FD scheme will be demonstrated because it can reduce the simulation time while still

preserving high accuracy compared with the traditional staggered grid FD scheme.

To get the staggered grid FD coefficient in Eq. (30), we substitute Eqs. (31) and (32) into Eq. (30),

using the plane wave theory. Then we get

eikz
h
2 � e�ikz

h
2

� �

X

M

m¼1

cm eikz m�1
2ð Þh � e�ikz m�1

2ð Þh
� �

þ eikx
h
2 � e�ikx

h
2

� �

X

M

m¼1

cm eikx m�1
2ð Þh � e�ikx m�1

2ð Þh
� �

¼
h2

v2
eiωτ þ e�iωτ � 2

Δt2

(33)

From Eq. (33), the following dispersion relation can be obtained in the frequency-wavenumber

domain (it is a special case of Eq. (24)):

�2 sin
kzh

2

X

M

m¼1

cm sin m� 0:5ð Þkzhð Þ � 2 sin
kxh

2

X

M

m¼1

cm sin m� 0:5ð Þkxhð Þ ¼ r�2 cos ωτð Þ � 1½ �: (34)

Using the basic trigonometric function

sinα sin β ¼
� cos αþ β

� �

� cos α� β
� �� 	

2
, (35)

we obtain Eq. (36) from Eq. (34):

X

M

m¼1

cm cos mkxhð Þ � cos m� 1ð Þkxhð Þ þ cos mkzhð Þ � cos m� 1ð Þkzhð Þ½ � ¼ r�2 cos ωτð Þ � 1½ �:

(36)

Similarly, the new dispersion relation for the 3D first-order acoustic wave equation in the

frequency-wavenumber domain is

X

M

m¼1

cm cos mkxhð Þ � cos m� 1ð Þkxhð Þ þ cos mkyh
� �

� cos m� 1ð Þkyh
� �

þ cos mkzhð Þ � cos m� 1ð Þkzhð Þ
� 	

¼ r�2 cos ωτð Þ � 1½ �

(37)

where kx; ky; kz
� �

¼ k sinθ cosφ; sinθ sinφ; cosθ
� �

:

Compared with the traditional dispersion relation in Eq. (24), the new dispersion relation in

Eqs. (36) and (37) is linear and much simpler.

We assume that there are M equally distributed wavenumber points satisfying the dispersion

relation within the wavenumber range specified by Eq. (28). Then, we establish the linear equation

from Eq. (37) for the 3D case [25]:

Optimized Finite Difference Methods for Seismic Acoustic Wave Modeling
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X

2π

φ¼0

X

2π

θ¼0

ahk1,x,1 þ ahk1,y,1 þ ahk1,z,1 … ahk1,x,M þ ahk1,y ,M þ ahk1,x,M

⋮ ⋮

ahkM,x,1 þ ahkM,y,1 þ ahkM,z,1 … ahkM,x,M þ ahkM,y,M þ ahkM,x,M

0

B

B

B

B

@

1

C

C

C

C

A

c1

⋮

cM

0

B

B

B

B

@

1

C

C

C

C

A

¼
1

r2

X

2π

φ¼0

X

2π

θ¼0

cos k1vτð Þ � 1

⋮

cos kMvτð Þ � 1

0

B

B

@

1

C

C

A

(38)

where ahkl,m ¼ cos mklhð Þ � cos m� 1ð Þklhð Þ, the ith component of kl(l = x, y, z) is represented as

ki, l, kx = k cosθ cosφ, ky = k cosθ sinφ, kz = k sinθ, and k(i) for each i = 1,2,…,M + 1 is equally

distributed between 0 and Ratio�π / h, where Ratio is determined by Eq. (28). In the following,

we will demonstrate that the new staggered grid FD scheme in Eqs. (30)–(32) has similar

accuracy compared with the computational intensive traditional staggered grid FD scheme in

Eqs. (12)–(14).

The 2D dispersion error δ of the new staggered grid FD scheme is defined as

δ ¼
vFD
v

¼
1

rkh
arccos 1þ r2q2

� �

: (39)

where

q2 ¼
X

M

m¼1

cm cos mkxhð Þ � cos m� 1ð Þkxhð Þ þ cos mkzhð Þ � cos m� 1ð Þkzhð Þ½ � (40)

The difference between the FD propagation time and the exact propagation time through one

grid is defined as [23]

ε ¼
h

vFD
�
h

v
¼

h

v

v

vFD
� 1

� �

¼
h

v

1

δ
� 1

� �

(41)

Figures 1 and 2 show the dispersion error curves of the traditional and the new staggered grid

FD schemes for the homogeneous acoustic model in 2D. All the FD coefficients are determined

in the time-space domain with M = 7. From Figures 1 and 2, we get the conclusion that the new

staggered grid FD scheme can also preserve the dispersion relation in a pretty wider range

compared with the traditional staggered grid FD methods. For example, with r = 0.0075 in the

2D case, both of them can preserve the dispersion error under 10�5 within 80% of kh range.

However, the new staggered grid FD scheme saves wave equation simulation time because

Eqs. (31) and (32) are much simpler than Eqs. (13) and (14).

Let the left part of Eq. (36) as.

g ¼
X

M

m¼1

cm cos mkxhð Þ � cos m� 1ð Þkxhð Þ þ cos mkzhð Þ � cos m� 1ð Þkzhð Þ½ �: (42)

Computational and Experimental Studies of Acoustic Waves10



From dispersion relation Eq. (36), it is obvious that.

g < 0; r2g ≥ � 2: (43)

Then, the stability condition of the new staggered grid FD scheme is (from Eq. (36) with kh =π).

Figure 1. Dispersion error curves of the traditional staggered grid FD schemes. (a) r = 0.075 and (b) r = 0.225.

Figure 2. Dispersion error curves of the new staggered grid FD schemes. (a) r = 0.075 and (b) r = 0.225.

Optimized Finite Difference Methods for Seismic Acoustic Wave Modeling
http://dx.doi.org/10.5772/intechopen.71647

11



r ≤
ffiffiffiffiffiffiffiffi

�2=g

q

≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2=
P

M

m¼1

4cm �1ð Þm

s

¼ 1
ffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffi

X

M

m¼1

cm

v

u

u

t

�1

: (44)

Figure 3 shows the stability condition of the traditional and the new staggered grid FD scheme

in 2D. We can see that the stability condition becomes stricter with the increase of the FD

operator length. It also shows that the new staggered grid FD scheme’s stability condition is a

little bit better than the previous staggered grid FD scheme. For example, the stability condi-

tions are r < 0.54 and r < 0.57, respectively, for the traditional and the new staggered grid FD

scheme with M = 7.

4.2. Optimizing finite difference operators for the elastic wave equation

Eqs. (10) and (11) can be written as [11].

α2Dxx þ β2Dzz �Dtt α2 � β2
� �

Dxz

α2 � β2
� �

Dxz α2Dzz þ β2Dxx �Dtt

 !

vx

vz

� �

¼ 0: (45)

The two roots give the following dispersion relation [11]:

Dtt ¼
1

2
α2 þ β2
� �

Dxx þDzzð Þ � 1

2
α2 � β2
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Dxx þDzzð Þ2 � 4 DxxDzz �DxzDxzð Þ
q

: (46)

Suppose DXXDzz = DXZDXZ, then two equations can be obtained from Eq. (46):

(a)                                (b) 
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0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r

S
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Figure 3. Stability condition in 2D. (a) The traditional staggered grid FD scheme and (b) the new staggered grid FD

scheme.
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α2Dxx þ α2Dzz �Dtt ¼ 0: (47)

β2Dxx þ β2Dzz �Dtt ¼ 0: (48)

Usually, Eq. (48) is used to determine the FD coefficient. For the first-order staggered grid FD

scheme, the following dispersion relation can be obtained from Eq. (48):

X

M

m¼1

cm sin m� 0:5ð Þkxhð Þ

" #2

þ
X

M

m¼1

cm sin m� 0:5ð Þkzhð Þ

" #2

≈
1

2r2
1� cos kvτð Þ½ �: (49)

where r = βΔt/h, M1 = M2 = M, and (kx, kz) = k(cosθ, sinθ). It can be observed from Eq. (49) that

the dispersion relation is nonlinear and regularized optimized methods can address this

problem similarly.

Different with previous staggered grid FD scheme for the first-order elastic wave equation, the

simplest centered second-order staggered grid FD operator can be used for the spatial deriva-

tives in Eqs. (7)–(9):

∂vx

∂t
¼

1

h

X

M1

m¼1

cm τxx
0
m�1=2,0

� τxx
0
�mþ1=2,0

h i

þ
1

h

X

M1

m¼1

cm τxz
0
0,m�1=2

� τxz
0
0,�mþ1=2

h i

(50)

∂vz

∂t
¼

1

h

X

M1

m¼1

cm τxz
0
m�1=2,0

� τxz
0
�mþ1=2,0

h i

þ
1

h

X

M1

m¼1

cm τzz
0
0,m�1=2

� τzz
0
0,�mþ1=2

h i

(51)

∂τxx
∂t

¼
α2

h
vx

0
1=2,0

� vx
0
�1=2,0

h i

þ
α2 � 2β2

h
vz

0
0,1=2

� vz
0
0,�1=2

h i

(52)

∂τxx
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¼
α2 � 2β2

h
vx

0
1=2,0

� vx
0
�1=2,0

h i

þ
α2

h
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0
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0
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(53)

∂τxz
∂t

¼
β2

h
vz

0
1=2,0

� vz
0
�1=2,0

h i

þ
β2

h
vx

0
0,1=2

� vx
0
0,�1=2

h i

(54)

The staggered grid FD scheme in Eqs. (52)–(54) is more efficient than the staggered grid FD

scheme in Eqs. (19)–(21). It will be demonstrated later that the staggered grid FD scheme in

Eqs. (52)–(54) is accurate for the stress vector (τxx, τzz, τxz) even when only second-order

staggered grid FD operator is used.

Then, the new dispersion relation can be obtained from Eq. (49) in the frequency-wavenumber

domain:

X

M1

m¼1

cm cos mkxhð Þ � cos m� 1ð Þkxhð Þ þ cos mkzhð Þ � cos m� 1ð Þkzhð Þ½ � ¼ r�2 cos ωτð Þ � 1½ �:

(55)

The staggered grid FD coefficient can be obtained similarly using the linear method.
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5. Experiments

5.1. Acoustic wave equation

5.1.1. Numerical modeling in the layered velocity model

We first consider a layered velocity model. The velocity is 1500 m/s for the first layer and

2500 m/s for the second layer as shown in Figure 4. The sponge boundary code in CREWES

Toolbox is used to reduce artificial reflection waves [34]. A Ricker wavelet with the main

frequency as 14.3 Hz was used as the seismic source. The seismic source position is denoted

as a asterisk, and the receivers A and B are denoted as a circle and a diamond from top to

bottom, respectively. The space grid interval is 20m, the FD operator lengthM is 7 and the time

step is 1.5 ms. The staggered grid FD coefficients used in Figure 4 are shown in Table 1.

The seismograms recorded at positions A and B by different methods are presented in Figure 5.

Figure 5(a) is obtained with the traditional staggered grid FD scheme with the FD coefficient

obtained in the space domain by Taylor expansion method [17]. The grid dispersion is obvious.

Figure 5(b) is obtained with the traditional staggered grid FD scheme with the coefficient

obtained in the space domain by the least squares method [35]. The staggered grid FD
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Figure 4. Velocity model.
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c1 c2 c3 c4 c5 c6 c7

1.22861 �0.102384 0.0204768 �0.00417893 0.000689454 �0.0000769225 0.00000423651

1.25438 �0.1235307 0.03467231 �0.01192915 0.00405709 �0.001191005 0.0002263204

v = 1500 m/s 1.57866 �0.296598 0.0949307 �0.0344762 0.0120067 �0.00344529 0.000605554

Table 1. Staggered grid FD coefficient used to obtain the seismograms in Figure 4 with the space grid interval equals

20m, and the time step equals 1.5ms. In the first row is the traditional staggered grid FD coefficient obtained fromTable 3 of

Chu and Stoffa [17]; in the second row is the least squares staggered grid FD coefficient obtained from Table 3 of Liu [35];

and in the last rows are the staggered grid FD coefficients used for Eq. (30). Eqs. (31) and (32) use the simplest second-order

staggered grid FD operator.
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Figure 5. Seismograms recorded by different simulation methods. (a) The traditional staggered grid FD scheme with FD

coefficients determined in the space domain by Taylor expansion method, (b) the traditional staggered grid FD scheme

with FD coefficients determined in the space domain by least squares method, (c) the new staggered grid FD scheme with

FD coefficients determined in the time-space domain by the linear method, and (d) the pseudo-spectrum method.
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coefficient provided by Liu is one of the best staggered grid FD coefficient provided in recent

years [35]. Figure 5(c) is obtained with the new staggered grid FD scheme with the coefficient

determined in the time-space domain by the linear method. Figure 5(d) is obtained with the

pseudo-spectrum method with the second-order acoustic wave equation. We observe that the

grid dispersion in Figure 5(b) and (c) is similar to each other and is close to the nearly analytic

results obtained with the pseudo-spectrum method in Figure 5(d). However, the required

simulation time is reduced by using the new staggered grid FD scheme because Eqs. (31) and

(32) are much simpler than Eqs. (13) and (14).

5.1.2. Numerical modeling in the salt model

Figure 6 shows the salt model from Society of Exploration of geophysicists with variations of

velocities from 1486 to 4790 m/s. The seismic source function is the same as the previous

example. The spatial sampling interval is 20 m, temporal step is 1 ms, andM = 7 for the staggered

grid FD operators in Figure 7(a) and (b). In Figure 7(c), the parameters are M = 7 for the spatial

derivatives in Eq. (1), and M = 1 for the spatial derivatives in Eqs. (2) and (3). The pseudo-

spectrummethod is used for the second-order acoustic wave equation as shown Figure 7(d).

Figure 7(a) is obtained the with the traditional staggered grid FD scheme with the coefficient

obtained in the space domain by Taylor expansion method. The grid dispersion is obvious.

Figure 7(b) is obtained with the traditional staggered grid FD scheme with the coefficient

obtained in the time-space domain by the least squares method [27]. Most of the grid

Figure 6. SEG BP salt model.
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dispersion is suppressed. Figure 7(c) is obtained the with the new staggered grid FD scheme

with the coefficient obtained in the time-space domain by the linear method. The grid disper-

sion in Figure 7(c) is very similar to the grid dispersion in Figure 7(b). However, the simulation

time to get Figure 7(c) is reduced compared with the simulation time to get Figure 7(b). Both

Figure 7. Seismic records obtained with different methods. (a) The traditional staggered grid FD scheme with FD

coefficients determined in the space domain by Taylor expansion method, (b) the traditional staggered grid FD scheme

with FD coefficients determined in the time-space domain by least squares method, (c) the new staggered grid FD scheme

with FD coefficients determined in the time-space domain by the linear method, and (d) the pseudo-spectrum method.
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seismic records in Figure 7(b) and (c) are close to seismic record in Figure 7(d). We want to

mention that the linear method is faster than the LS method to determine the FD coefficients.

Figure 8 Further compares the seismograms in Figure 7 at position x/dx = 400. It is also observed

that with the coefficient obtained in the space domain by Taylor expansion method, the grid

dispersion is serious in the simulation result. The simulation results are almost overlapped for

the traditional staggered grid FD scheme and new staggered grid FD schemewith optimized FD

coefficient. However, the required simulation time is reduced by using the new staggered grid

FD scheme because Eqs. (31) and (32) are much simpler than Eqs. (13) and (14).

Figure 9 compares snapshots of particle velocity vx with the different staggered grid FD

schemes at 2500 ms. it is also observed that with the coefficient obtained in the space domain

by Taylor expansion method, the grid dispersion is most serious. The grid dispersion in

Figure 9(c) is very similar to the grid dispersion in Figure 9(b). It demonstrated that the new

staggered grid FD scheme is accurate for the particle velocities in Eqs. (32) and (33) even when

only second-order staggered grid FD operator is used.

5.2. Elastic wave equation

5.2.1. Numerical modeling in the homogeneous media

We first consider a homogeneous model. The P wave propagation speed is 2598 m/s, and the S

wave velocity is 1500 m/s. The seismic source position is at the center of the model. The grid

Figure 8. Seismograms at x/dx = 400 from Figure 4(a)–(d).
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space interval is 20 m, the time step is 1 ms, and the operator length M is 7. A Ricker wavelet

with the main frequency as 14.3 Hz was used as the seismic source.

The snapshots of the horizontal component obtained by different staggered grid FD methods

are presented in Figure 10(a)–(c). Figure 10(a) is obtained with the traditional staggered grid

Figure 9. Particle velocity snapshots vx obtained with different methods. (a) The traditional staggered grid FD scheme

with the traditional FD coefficients, (b) the traditional staggered grid FD scheme with FD coefficients determined in the

time-space domain by the least squares method, and (c) the new staggered grid FD scheme with FD coefficients

determined in the time-space domain by the linear method.
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FD scheme with the traditional FD coefficient. The grid dispersion is obvious. Figure 10(b) is

obtained with the traditional staggered grid FD scheme with the new FD coefficient. Com-

pared with Figure 10(a), the grid dispersion is suppressed. Figure 10(c) is obtained with the

new staggered grid FD scheme. The grid dispersion curves in Figure 10(b) and (c) are very

Figure 10. Snapshots and slices of snapshots of the horizontal component at 698 ms obtained by different simulation

methods. (a) The traditional staggered gird FD scheme with traditional FD coefficient, (b) the traditional staggered gird

FD scheme with new FD coefficient, (c) the new staggered grid FD scheme with new FD coefficient, and (d) slices of

snapshots at x/dx = 125.
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similar, which is further demonstrated in Figure 10(d). However, with the new staggered grid

FD scheme, we can save about 45% of the modeling time.

5.2.2. Numerical modeling in the homogeneous media

Figure 11 shows the salt model from Society of Exploration of geophysicists. The S wave velocity

is obtained from the P wave velocity. The seismic source function is plotted as a red asterisk. The

spatial sampling interval is 12.5 m, the temporal step is 1 ms, and M = 7 for staggered grid FD

operators.

Figure 12 displays the seismic records of the horizontal component obtained by different

staggered grid FD methods. Figure 12(a) is obtained with the traditional FD scheme with the

traditional staggered grid FD coefficient. The grid dispersion is severe. Figure 12(b) is obtained

with the traditional FD scheme with the staggered grid FD coefficient obtained by the least

squares method. Figure 12(c) is obtained the with the new FD scheme with the staggered

grid FD coefficient obtained by the linear method. It is observed that the grid dispersion in

Figure 12(b) and 12(c) is smaller than the grid dispersion in Figure 12(a). Figure 12(d) is

seismograms obtained from Figure 12(a)–(c). It further demonstrated that the grid dispersion

in Figure 12(b) and (c) is similar to each other and smaller than the grid dispersion in Figure 12(a).

However, with the new FD scheme, the simulation time is reduced about 45%. In our simulation,

there are 525 grids in the z direction and 850 grids in the x direction. With the traditional

Figure 11. SEG BP salt model. (a) P wave velocity and (b) S wave velocity.
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FD scheme, the simulation time is 920 seconds. With the new staggered FD grid scheme, the

simulation time is 530 seconds. The huge reduction in simulation time is due to using the shorter

staggered FD operator for the spatial derivatives in Eqs. (7)–(9). Figure 13 is the seismic records of

the vertical component obtained by different FDmethods. The same pattern can be observed from

Figure 13(a)–(d).

Figure 12. Seismic records of the horizontal component obtained with different staggered grid FD methods. (a) Seismic

records obtained by traditional FD scheme with traditional staggered grid FD coefficient, (b) seismic records obtained by

the traditional FD scheme with new staggered grid FD coefficient, (c) seismic records obtained by the new FD scheme

with new staggered grid FD coefficient, and (d) seismograms obtained from (a) to (c) at position x/dx = 355.
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6. Discussion and conclusion

The FD method is the most commonly used numerical method for wave equation modeling.

Suppressing the grid dispersion is an important research area. Optimization method is usually

used to determine the FD coefficients which could preserve the dispersion relation in a wider

range of wavenumber (Zhang and Yao [24]; Ren and Liu [26]; Tan and Huang [32, 33]). We

Figure 13. Seismic records of the vertical component obtained with different staggered grid FD methods. (a) The

traditional FD scheme with traditional staggered grid FD coefficient, (b) the traditional FD scheme with new staggered

grid FD coefficient, (c) the new FD scheme with new staggered grid FD coefficient, and (d) seismograms obtained from (a)

to (c) at position x/dx = 200.
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introduced the regularized optimization method to determine the FD coefficient which would

be more robust for extreme conditions. The other way to suppress the grid dispersion is the

utilization of the new FD scheme for the spatial derivatives. We introduce to use different FD

operators for different spatial derivatives in the first-order wave equation. With the new

staggered grid FD scheme, the wave equation modeling speed was accelerated while still

preserving high accuracy. Through numerical modeling, we conclude that the introduced

methods are more efficient while still preserving high accuracy for the first-order acoustic/

elastic wave equation modeling. As a result, the introduced methods can be a substitute for the

traditional FDmethods used in acoustic/elastic wave equation modeling, which are essential in

forward seismic wave modeling and reverse-time migration.
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