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Abstract

In this paper, the Kuramoto-Sivashinsky equation is solved using Hermite collocation
method on an adaptive mesh. The method uses seventh order Hermite basis functions
on a mesh that is adaptive in space. Numerical experiments are carried out to validate
effectiveness of the method.

Keywords: adaptive mesh method, Kuramoto-Sivashinsky equation, collocation
method, moving mesh partial differential equation, numerical solution

1. Introduction

The Kuramoto-Sivashinsky equation (KSe) is a non-linear fourth order partial differential

equation (PDE) discovered separately by Kuramoto and Sivashinsky in the study of non-

linear stability of travelling waves. Sivashinsky [1] came up with the equation while modelling

small thermal diffusive instabilities in laminar flame fronts. Kuramoto [2–5] derived the equa-

tion in the study of the Belousov-Zhabotinsky reaction as a model of diffusion induced chaos.

The KSe is of interest to many researchers because of its ability to describe several physical

contexts such as long waves on thin films or on the interface between two viscous fluids [6]

and unstable drift waves in plasmas. The equation is also used as a model to describe spatially

uniform oscillating chemical reaction in a homogeneous medium and fluctuations in fluid

films on inclines [7]. In one dimension, consider the KSe of the form

∂u

∂t
þ u

∂u

∂x
þ

∂2u

∂x2
þ

∂4u

∂x4
¼ 0, t > 0: (1)
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The second derivative term is an energy source and thus has a distributing effect. The non-

linear term is a correction to the phase speed and responsible for transferring energy. The

fourth derivative term is the dominating term and is responsible for stabilising the equation.

Several methods have been used to solve the KSe numerically and these include Chebyshev

spectral collocation method [8], Quintic B-spline collocation method [9], Lattice Boltzmann

method [10], meshless method of lines [11], Fourier spectral method [12] and septic B-spline

collocation method [13].

2. Grid generation

Generation of an adaptive mesh in the spatial domain is based on the r-refinement technique

[14] which relocates a fixed number of nodal points to regions which need high spatial

resolution in order to capture important characteristics in the solution. This has the benefit of

improving computational effort in those regions of interest whilst using a fixed number of

mesh points. The relocation of the fixed number of nodal points at any given time is achieved

by solving Moving Mesh Partial Differential Equations (MMPDEs) [15, 16] derived from the

Equidistribution Principle (EP). The EP [17] makes use of a measure of the solution error called

a monitor function, denoted by M which is a positive definite and user defined function of the

solution and/or its derivatives. Mesh points are then chosen by equally distributing the error in

each subinterval. In this paper, MMPDE4 [15] is chosen to generate the adaptive mesh because

of its ability to stabilise mesh trajectories and ability to give unique solutions for the mesh

velocities with Dirichlet boundary conditions. MMPDE4 is given by

∂

∂ξ
M

∂ _xð Þ

∂ξ

� �

¼ �
1

τ

∂

∂ξ
M

∂x

∂ξ

� �

(2)

where τ is the relaxation parameter and it plays the role of driving the mesh towards

equidistribution. Central finite difference approximation of MMPDE4 in space on the interval

a ≤ x ≤ b gives

Miþ1 þMi

2 1
N

� �2
_xiþ1 � _xið Þ �

Mi þMi�1

2 1
N

� �2
_xi � _xi�1ð Þ ¼ �

Ei

τ
, (3)

where

Ei ¼
Miþ1 þMi

2 1
N

� �2
xiþ1 � xið Þ �

Mi þMi�1

2 1
N

� �2
xi � xi�1ð Þ, i ¼ 2,…, N (4)

x1 ¼ a xNþ1 ¼ b: (5)

The modified monitor function given by

M x; tð Þ ¼ 1þ α2 ∂u

∂x

� �2

þ α2 ∂
2u

∂x2

� �2
 !1

2

(6)
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is used. It is composed of the standard arc-length monitor and the curvature monitor func-

tions. Smoothing on the monitor function is done as described in [15]. Values of the smoothed

monitor function ~M at the grid points are given by

eM ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Piþp

k¼i�p Mkð Þ2 γ
1þγ

� � k�ij j

Piþp
k¼i�p

γ
1�γ

� � k�ij j

vuuuut (7)

where the parameter p is called the smoothing index which determines the extent of smoothing

and is non-negative. γ is non-negative and is called the smoothing index and determines the

rigidity of the grid.

3. Discretization in time

The Crank-Nicolson scheme for the KSe is

unþ1 � un

δt

	 

þ

uuxð Þnþ1 þ uuxð Þn

2

" #
þ

unþ1
xx þ unxx

2

	 

þ

unþ1
xxxx þ unxxxx

2

	 

¼ 0 (8)

where δt is the time step. Rubin and Graves [18] suggested the expression

uux
nþ1 ¼ unþ1unx þ ununþ1

x � uuxð Þn (9)

for the linearization of the non-linear term uuxð Þnþ1. Expression (9) is substituted into (1) and

the terms are rearranged to give

unþ1 þ
δt

2
unþ1unx þ ununþ1

x þ unþ1
xx þ unþ1

xxxx

� �
¼ un �

δt

2
unxx þ unxxxx
� �

(10)

4. Septic Hermite collocation method

Consider the mesh on the domain a; b½ � which is a solution of MMPDE4 given by

a ¼ X1 tð Þ < X2 tð Þ <… < XNþ1 tð Þ ¼ b (11)

The variable spatial length of each interval is given by Hi where Hi ¼ Xiþ1 tð Þ � Xi tð Þ for

i ¼ 1,…, N. For some xE Xi tð Þ;Xiþ1 tð Þ½ �, define the local variable s as

s ¼
x� Xi tð Þ

Hi tð Þ
(12)

such that sE 0; 1ð Þ for every subinterval of the mesh (11). Define the septic Hermite basis

functions with the local variables s as

Numerical Simulation of Wave (Shock Profile) Propagation of the Kuramoto-Sivashinsky Equation Using an…
http://dx.doi.org/10.5772/intechopen.71875

265



L0,0 ¼ 20s3 þ 10s2 þ 4sþ 1
� �

s� 1ð Þ4

L0,1 ¼ s 10s2 þ 4sþ 1
� �

s� 1ð Þ4

L0,2 ¼
s2

2
4sþ 1ð Þ s� 1ð Þ4

L0,3 ¼
s3

6
s� 1ð Þ4

L1,0 ¼ � 20s3 � 70s2 þ 84s� 35
� �

s4

L1,2 ¼ �
s4

2
s� 1ð Þ2 4s� 5ð Þ

L1,3 ¼
s4

6
s� 1ð Þ3

(13)

For l ¼ 0, 1, 2, 3 the functions L0, l sð Þ and L1, l sð Þ yield the following conditions

d
k

dsk
L0, l 0ð Þ ¼ δk, l,

d
k

dsk
L0, l 1ð Þ ¼ 0, k, l ¼ 0, 1, 2, 3

d
k

dsk
L0, l 0ð Þ ¼ 0,

d
k

dsk
L1, l 1ð Þ ¼ δk, l, k, l ¼ 0, 1, 2, 3

where δk, l denotes the Kronecker delta. The physical solution u x; tð Þ on the mesh (11) is

approximated by the piecewise Hermite polynomial [19]

Uðx;tÞ ¼ UiðtÞL0,0ðsÞ þUx, iHiðtÞL0,1ðsÞ þUxx, iðtÞH
2
i ðtÞL0,2ðsÞ þUxxx, iðtÞH

3
i ðtÞL0,3ðsÞ

þUiþ1ðtÞL1,0ðsÞ þUx, iþ1HiðtÞL1,1ðsÞ þUxx, iþ1ðtÞH
2
i ðtÞL1,2ðsÞ þUxxx, iþ1ðtÞH

3
i ðtÞL1,3ðsÞ,

(14)

Where Ui tð Þ, Ux, i tð Þ, Uxx, i tð Þ and Uxxx, i tð Þ are the unknown variables. Derivatives of U x; tð Þ

with respect to the spatial variable x for x∈ Xi tð Þ;Xiþ1 tð Þ½ � are obtained by direct differentiation

of (14) to give

∂ðlÞUðx;tÞ

∂xðlÞ
¼

1

HiðtÞ
ðlÞ

UiðtÞ
d
ðlÞ
L0,0

dsðlÞ
þUx, iðtÞHiðtÞ

d
ðlÞ
L0,1

dsðlÞ
þUxx, iðtÞH

2
i ðtÞ

d
ðlÞ
L0,2

dsðlÞ

"

þUxxx, iðtÞH
3
i ðtÞ

d
ðlÞ
L0,3

dsðlÞ
þUiþ1ðtÞ

d
ðlÞ
L1,0

dsðlÞ
þUx, iþ1ðtÞHiðtÞ

d
ðlÞ
L1,1

dsðlÞ

þUxx, iþ1ðtÞH
2
i ðtÞ

d
ðlÞ
L1,2

dsðlÞ
þUxxx, iþ1ðtÞH

3
i ðtÞ

d
ðlÞ
L1,3

dsðlÞ

#

(15)

for l ¼ 1, 2, 3, 4: In each subinterval Xi tð Þ;Xiþ1 tð Þ½ � of the mesh (11), define four Gauss-Legendre

points

0 < r1 < r2 < r3 < r4 < 1

which are given by
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r1 ¼
1

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

525þ 70
ffiffiffiffiffi

30
pp

70

r2 ¼
1

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

525� 70
ffiffiffiffiffi

30
pp

70

r3 ¼ 1� r1

r4 ¼ 1� r2

One regards these points as the collocation points in each subinterval of the mesh (11). Scaling

of the Gauss-Legendre points into subsequent intervals is done by defining the collocation

points as

Xij ¼ Xi þHirj, i ¼ 1,…:, N, j ¼ 1, 2, 3, 4: (16)

and redefining the local variable s as

s
ið Þ
j ¼ Xij � Xi

Hi
(17)

for i ¼ 1,…, N and j ¼ 1, 2, 3, 4. Evaluation of the Hermite polynomial approximation (14), its

first, second and fourth derivatives (15) is then done at the four internal collocation points in

each subinterval Xi;Xiþ1½ � and substitution of the expressions into (10) gives the difference

equation

β
ið Þ
j1 U

nþ1
i þ β

ið Þ
j2 U

nþ1
x, i þ β

ið Þ
j3 U

nþ1
xx, i þ β

ið Þ
j4 U

nþ1
xxx, i þ β

ið Þ
j5 U

nþ1
iþ1 þ β

ið Þ
j6 U

nþ1
x, iþ1 þ β

ið Þ
j7 U

nþ1
xx, iþ1 þ β

ið Þ
j8 U

nþ1
xxx, iþ1 ¼ ψn

ij

(18)

where

ψn
ij ¼ Un

i tð ÞL0,0 sj
� �

þUn
x, i Hi tð ÞL0,1 sj

� �

þUn
xx, i tð ÞH2

i tð ÞL0,2 sj
� �

þUn
xxx, i tð ÞH3

i tð ÞL0,3 sj
� �

þUn
iþ1 tð ÞL1,0 sj

� �

þUn
x, iþ1Hi tð ÞL1,1 sj

� �

þUn
xx, iþ1Hi tð ÞL1,1 sj

� �

þUn
xxx, iþ1Hi tð ÞL1,1 sj

� �

� δt

2H2
i

Un
i tð ÞL0 0

0,0 sj
� �

þUn
x, i Hi tð ÞL

0 0

0,1 sj
� �

þUn
xx, i tð ÞH2

i tð ÞL0 0

0,2 sj
� �

þUn
xxx, i tð ÞH3

i tð ÞL0 0

0,3 sj
� �

h

þUn
iþ1 tð ÞL0 0

1,0 sj
� �

þUn
x, iþ1Hi tð ÞL

0 0

1,1 sj
� �

þUn
xx, iþ1Hi tð ÞL

0 0

1,1 sj
� �

þUn
xxx, iþ1Hi tð ÞL

0 0

1,1 sj
� �




� δt

2H4
i

Un
i tð ÞL ivð Þ

0,0 sj
� �

þUn
x, i Hi tð ÞL ivð Þ

0,1 sj
� �

þUn
xx, i tð ÞH2

i tð ÞL ivð Þ
0,2 sj

� �

þUn
xxx, i tð ÞH3

i tð ÞLiv0,3 sj
� �

h

þUn
iþ1 tð ÞL ivð Þ

1,0 sj
� �

þUn
x, iþ1Hi tð ÞL ivð Þ

1,1 sj
� �

þUn
xx, iþ1Hi tð ÞL ivð Þ

1,1 sj
� �

þUn
xxx, iþ1Hi tð ÞL ivð Þ

1,1 sj
� �




(19)

and
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β
ið Þ
j1 ¼ L0,0 sj

� �

þ
δt

2
Un

x, iL0,0 sj
� �

þ
δt

2Hi tð Þ
Un

i L
0
0,0 sj

� �

þ
δt

2H2
i tð Þ

L000,0 sj
� �

þ
δt

2H2
i tð Þ

L
ivð Þ
0,0 sj

� �

β
ið Þ
j2 ¼ Hi tð ÞL0,1 sj

� �

þ
δt

2
Un

x, iHi tð ÞL0,1 sj
� �

þ
δt

2Hi tð Þ
Un

i Hi tð ÞL
0
0,1 sj

� �

þ
δt

2H2
i tð Þ

Hi tð ÞL
00
0,1 sj

� �

þ
δt

2H2
i tð Þ

Hi tð ÞL
ivð Þ
0,1 sj

� �

β
ið Þ
j3 ¼ H2

i tð ÞL0,2 sj
� �

þ
δt

2
Un

x, iH
2
i tð ÞL0,2 sj

� �

þ
δt

2Hi tð Þ
Un

i H
2
i tð ÞL00,2 sj

� �

þ
δt

2H2
i tð Þ

H2
i tð ÞL000,2 sj

� �

þ
δt

2H4
i tð Þ

H2
i tð ÞL

ivð Þ
0,2 sj

� �

β
ið Þ
j4 ¼ H3

i tð ÞL0,3 sj
� �

þ
δt

2
Un

x, iH
3
i tð ÞL0,3 sj

� �

þ
δt

2Hi tð Þ
Un

i H
3
i tð ÞL00,3 sj

� �

þ
δt

2H2
i tð Þ

H3
i tð ÞL000,3 sj

� �

þ
δt

2H4
i tð Þ

H3
i tð ÞL

ivð Þ
0,3 sj

� �

β
ið Þ
j5 ¼ L1,0 sj

� �

þ
δt

2
Un

x, iL1,0 sj
� �

þ
δt

2Hi tð Þ
Un

i L
0
1,0 sj

� �

þ
δt

2H2
i tð Þ

L001,0 sj
� �

þ
δt

2H4
i tð Þ

L
ivð Þ
1,0 sj

� �

β
ið Þ
j6 ¼ Hi tð ÞL1,1 sj

� �

þ
δt

2
Un

x, iHi tð ÞL1,1 sj
� �

þ
δt

2Hi tð Þ
Un

i Hi tð ÞL
0
1,1 sj

� �

þ
δt

2H2
i tð Þ

Hi tð ÞL
00
1,1 sj

� �

þ
δt

2H4
i tð Þ

Hi tð ÞL
ivð Þ
1,1 sj

� �

β
ið Þ
j7 ¼ H2

i tð ÞL1,2 sj
� �

þ
δt

2
Un

x, iH
2
i tð ÞL1,2 sj

� �

þ
δt

2Hi tð Þ
Un

i H
2
i tð ÞL01,2 sj

� �

þ
δt

2H2
i tð Þ

H2
i tð ÞL001,2 sj

� �

þ
δt

2H4
i tð Þ

H2
i tð ÞL

ivð Þ
1,2 sj

� �

β
ið Þ
j8 ¼ H3

i tð ÞL1,3 sj
� �

þ
δt

2
Un

x, iH
3
i tð ÞL1,3 sj

� �

þ
δt

2Hi tð Þ
Un

i H
3
i tð ÞL01,3 sj

� �

þ
δt

2H2
i tð Þ

H3
i tð ÞL001,3 sj

� �

þ
δt

2H4
i tð Þ

H3
i tð ÞL

ivð Þ
1,3 sj

� �

(20)

From the boundary conditions (28) and (29), one gets

U x1ð Þ ¼ σ

Ux x1ð Þ ¼ β

U xNþ1ð Þ ¼ ω

Ux xNþ1ð Þ ¼ ζ

(21)

which results in a consistent system of 4N þ 4 equations in 4N þ 4 unknowns.

5. Solution approach for the PDE system

The PDE system is solved using the rezoning approach which works best with the decoupled

solution procedure [20]. The rezoning approach allow varying criteria of convergence for the

mesh and physical equation since in practice the mesh does not require the same level of

accuracy to compute as compared to the physical solution. The algorithm for the rezoning

approach is as follows:

1. Solve the given physical PDE on the current mesh.

2. Use the PDE solution obtained to calculate the monitor function.

3. Find the new mesh by solving a MMPDE.

4. Adjust the current PDE solution to suite the new mesh by interpolation.

5. Solve the physical PDE on the new mesh for the solution in the next time.
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6. Solution adjustment by interpolation

Discretization of the time domain ta; tb½ � is done using the following finite sequence

ta ¼ t0 <… < tn <… < tk ¼ tbf g (22)

At each time t ¼ tn ¼ n� dt, consider a non-uniform spatial mesh Xn
i

 �Nþ1

i¼1
given by

a ¼ Xn
1 <… < Xn

Nþ1 ¼ b (23)

where Xn
i ¼ Xi tnð ÞwithHn

i ¼ Xn
iþ1 � Xn

i being a non-uniform spatial step for i ¼ 1,…, N. At the

same time step t ¼ tn one also considers the approximations to the exact solution u x; tð Þ and its

derivatives given by U
n
i

 �Nþ1

i¼1
and U

lð Þ
i

� �nn oNþ1

i¼1
respectively where U

lð Þ
i

� �n

represents the l
th

derivative approximation with respect to the variable x at the time t ¼ tn For l ¼ 1, 2, 3. A new

mesh ~X
n

i

n oNþ1

i¼1
is generated by (2) at each current time step tn. The goal is to determine the

new approximations ~U
n

i

n oNþ1

i¼1
and ~U

lð Þ

i

� �nn oNþ1

i¼1
which are related to the new mesh ~X

n

i

n oNþ1

i¼1

in a similar manner the approximations U
n
i

 �Nþ1

i¼1
and U

lð Þ
i

� �nn oNþ1

i¼1
are related to the old mesh

Xn
i

 �Nþ1

i¼1
in each subinterval Xi;Xiþ1½ �. This process of updating the solution and its derivatives

from the old mesh to the new mesh is achieved by interpolation. One considers the septic

Hermite interpolating polynomial, a piecewise polynomial which allows the function values

and its three consecutive derivatives to be satisfied in each subinterval Xi;Xiþ1½ �. The Hermite

polynomial (14) is written in compact form as

X3

l¼0
hlð Þ lð Þ

U
lð Þ
i
L0, l sð Þ þ

X3

l¼0
hlð Þ lð Þ

U
lð Þ
iþ1L1, l sð Þ (24)

where the 4 N þ 1ð Þ unknowns are given by

U
ið Þ
i

¼
∂
lu

∂xl
Xi tð Þ; tð ÞU

lð Þ
iþ1 ≈

∂
lu

∂xl
Xiþ1 tð Þ; tð Þ, l ¼ 0, 1, 2, 3:

Given the partition (23) and approximations U
lð Þ
i

� �nn o

for l ¼ 0, 1, 2, 3, suppose interpolation

of U lð Þ
xð Þ is required at x ¼ ~Xi

n where ~Xi
n
∈ Xn

i ;X
n
iþ1

� �

for i ¼ 1,…, N. Firstly, the local coordi-

nate s of ~Xi
n is defined as

s ¼
~Xi

n � Xn
i

Hn
i

(25)

~U
lð Þ ~X i

n
� �

is then defined as
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~U lð Þ ~Xi
n

� �

¼
X

3

i¼0

H
l�p
i U

lð Þ
i

d lð ÞL0, l sð Þ

ds lð Þ
þ
X

3

i¼0

H
l�p
i U

lð Þ
iþ1

d lð ÞL0, l sð Þ

ds lð Þ
(26)

for l ¼ 0, 1, 2, 3 to give the interpolated values of ~U and the first three consecutive derivatives

on the new subinterval ~X
n

i ;
~Xn
iþ1

h i

. In order to compute the approximations of U at the next

time step t ¼ tnþ1 denoted by Un
i

 �Nþ1

i¼1
, the values of the new mesh ~X

n

i

n oNþ1

i¼1
and the updated

approximations ~U
n

i

n oNþ1

i¼1
are used in a septic Hermite collocation numerical scheme. The new

approximations Unþ1
i

 �Nþ1

i¼1
and the new mesh ~X

nþ1

i

n oNþ1

i¼1
become the starting conditions for

repeating the whole adaptive process.

7. Numerical results

Consider the KSe

∂u

∂t
þ u

∂u

∂x
þ

∂2u

∂x2
þ

∂4u

∂x4
¼ 0, t > 0 (27)

in the domain �30; 30½ �, t > 0 with boundary conditions

u �30; tð Þ ¼ σ, ux �30; tð Þ ¼ β (28)

u 30; tð Þ ¼ ω, ux 30; tð Þ ¼ ζ (29)

Where σ, β,ω and ζ are obtained from the exact solution

u x; tð Þ ¼ cþ
15

19

ffiffiffiffiffi

11

19

r

�9 tanh3 k x� ct� x0ð Þð Þ þ 11 tanh k x� ct� x0ð Þð Þ
� �

(30)

With c ¼ 0:1, x0 ¼ �12 and k ¼ 1
2

ffiffiffiffi

11
19

q

.

Figures 1 and 2 show the behaviour of the numerical solution and the absolute error, respec-

tively of the KSe equation on a stationary mesh using Hermite collocation method at t ¼ 4 with

N ¼ 100 and δt ¼ 0:001. In Figure 1, one observes that the numerical solution tracks the exact

solution with the absolute error variation as shown in Figure 2.

Figure 3 shows the solution obtained by the collocation method on a stationary mesh for time

t ¼ 0, 1, 2, 3, 4. The movement of the solution is from left to right as time increases and the

solution tracks the exact solution with no oscillations. One also observes that the concentration

of mesh points is higher in the flatter regions of the solution profile in comparison to the

concentration in the steeper region.
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Figure 1. Hermite collocation method, uniform mesh, numerical solution behaviour of KSe at t ¼ 4 with N ¼ 100 and

δt ¼ 0:001.

−30 −20 −10 0 10 20 30
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

x

A
b
s
o
lu

te
 E

rr
o
r

Figure 2. Hermite collocation method, uniform mesh, absolute error in numerical solution of KSe at t ¼ 4, N ¼ 100 and

δt ¼ 0:001.
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Figures 4 and 5 show the numerical solution profile and the behaviour of the maximum

absolute error, respectively at t ¼ 4 with N ¼ 100, δt ¼ 0:001 and α ¼ 8 on an adaptive mesh.

In Figure 4, one observes that the numerical solution is able to track the exact solution and the

distribution of mesh points is almost equal along the solution profile which enables resolution

of the solution with minimum errors.
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Figure 3. Hermite collocation method, stationary mesh, numerical solution behaviour of KSe problem with N ¼ 100,

δt ¼ 0:001 up to final time T ¼ 4:
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Figure 4. Hermite collocation method, non-uniform mesh, numerical solution behaviour of KSe problem at t ¼ 4 with

N ¼ 100, δt ¼ 0:001, τ ¼ 2� 10�2 and α ¼ 8.
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Figure 6 shows the numerical solution profiles produced by the adaptive collocation method

for time t ¼ 0, 1, 2, 3, 4. One observes that the solution moves from left to right as time pro-

gresses. The mesh points at different times keep on tracking the solution profile and maintain

an almost equal distribution along the profile up to final time T ¼ 4. Figure 7 shows the paths

taken by the mesh points in tracking the solution profile. In Table 1, the infinity norm error for

an adaptive collocation method is calculated and results are compared with the method in [13].

Results show improvements in the maximum point wise errors when an adaptive Hermite

collocation method is used.
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Figure 5. Hermite collocation method, non-uniformmesh, absolute error in numerical solution of KSe at t ¼ 100, δt ¼ 0:001,

τ ¼ 2� 10�2 and α ¼ 8.
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Figure 6. Hermite collocation method, adaptive mesh, numerical solution behaviour of KSe up to final time T ¼ 4 for

N ¼ 100, δt ¼ 0:001, τ ¼ 2� 10�2 and α ¼ 8.
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8. Conclusions

The KSe is solved using an adaptive mesh method with discretization in the spatial domain

done using seventh order Hermite basis functions. Numerical results show that Hermite

collocation method on a non-uniform adaptive mesh is able to improve the accuracy of the

numerical solution of the KSe. The method is able to keep track of the region of rapid solution

variation in the KSe, which is one of the desired properties of an adaptive mesh method.
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Figure 7. Hermite collocation method, mesh trajectories of KSe equation up to final time T ¼ 4 with N ¼ 100, δt ¼ 0:001,

τ ¼ 2� 10�2 and α ¼ 8.

Time Hermite collocation Method in [19]

0.5 9:0� 10�4 1:03619� 10�3

1 1:4� 10�3 1:63762� 10�3

1.5 1:9� 10�3 2:07273� 10�3

2 1:7� 10�3 2:48375� 10�3

2.5 2:0� 10�3 2:79434� 10�3

3 2:1� 10�3 3:00439� 10�3

3.5 2:1� 10�3 3:16038� 10�3

4 2:1� 10�3 3:43704� 10�3

Table 1. Comparison of maximum pointwise errors in the numerical solution of the KSe on an adaptive mesh at different

times with δt ¼ 0:001 and N ¼ 100.
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