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Abstract

Controlled low-strength materials (CLSMs) had been widely applied to excavation and
backfill in civil engineering. However, the engineering properties of CLSM in these
embankments vary dramatically due to different contents involved. This study is pro-
posed to employ the ANSYS software and two different artificial neural networks
(ANNs), that is, back-propagation artificial neural network (BPANN) and radial basis
function neural network (RBFNN), to determine the engineering properties of CLSM by
considering an inverse problem in which elastic modulus and the Poisson’s ratio can be
identified from inputting displacements and stress measurements. The PLANE42 element
of ANSYS was first used to investigate a 2D problem of a retaining wall with embank-
ment, with E = 0.02~3 GPa, ν= 0.1~0.4 to obtain totally 270 sampling data for two earth
pressures and two top surface settlements of embankment. These data are randomly
divided into training and testing set for ANNs. Practical cases of three kinds of backfilled
materials, soil, and two kinds of CLSMs (CLSM-B80/30% and CLSM-B130/30%) will be
used to check the validity of ANN prediction results. Results showed that maximal errors
of CLSM elastic parameters identified by well-trained ANNs can be within 6%.

Keywords: ANNs, ANSYS, CLSM, fem, parameter recognition

1. Introduction

In recent years, sustainable materials have been widely studied and developed especially for

construction, highway, and civil engineering. Controlled low-strength material (CLSM) is

commonly used as backfilled materials. It would be a friendly environment-cheap material

and typically consists of small amount of cement, supplementary, fine aggregates, and a large

amount of mixing water. Self-compacting/self-leveling, significantly low strength, as well as

almost no measured settlement after hardening are remarkable characteristics of CLSM.

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



CLSM can be defined as a kind of self-compacting cementitious material that is in a flowable

state at the initial period of placement and has specified compressive strength of 1200 psi

(8.27 MPa) (or less at 28 days) or is defined as excavatable if the compressive strength is

300 psi (2.07 MPa) (or less at 28 days) [1]. Recent studies have reported that the maximum

CLSM strength of approximately up to 1.4 MPa is suitable for most of backfilling applications

when re-excavation is required [2, 3] It is also recommended that depending upon the avail-

ability and project requirements, any recycle material would be acceptable in the production of

CLSM with prior tests its feasibility before uses [4]. The special features of CLSM can be

summarized as follows: durable, excavatable, erosion-resistant, self-leveling, rapid curing,

flowable around confined spacing, wasting material usage, elimination of compaction labors

and equipment, and so on.

There are several studies on the engineering properties of CLSMs by laboratory experiments

[5–10], and numerical analyses of applications of CLSM to civil engineering, such as excava-

tion and backfill after retaining walls [11–13], bridge abutments [14–17], pipeline and trench

ducts [18], pavement bases [19–24], and so on. All these studies reflect requirement of the

identification of mechanical constants of the CLSMs. Though it is known that the Young’s

modulus of CLSMs lies between soil and commonly used concrete, precise determination of

engineering material properties of CLSMs (even for soil and concretes) is a questionable and

difficult problem. For example, modulus of elasticity is evaluated by experiments using secant

modulus of stress-strain curve or estimated from empirical formula of Young’s modulus with

28-day compressive strength or weight of concrete.

Besides, artificial neural networks had been widely applied to various engineering [25], espe-

cially to civil and construction engineering [26, 27]. Alternately, several studies were conducted

on the application of inverse problems in structural and geotechnical problems [28–32].

2. Problem definition and data preparation

2.1. Parameter recognition considered as inverse problem

In a classical mechanical analysis of civil engineering problems, we determinate displacements

and/or stresses of a structure with known engineering constants, such as the Young’s modulus,

E (with the unit GPa), and the Poisson’s ratio, ν, which had been identified from laboratory or

in-site experiments. This kind of problems can be termed forward problems, that is, we evaluate

the unknown dependent variables (physical quantities) from prescribed parameters and

dimensions analytically if there exist some closed-form relationships, or numerically using

computational schemes (such as the finite element methods, FEMs) if the domain and/or

boundary conditions are complicated.

On the other hand, an inverse problem in this case is to identify the engineering constants of a

structure through evaluated or measured displacements and/or stresses. For a simple problem

which can be analyzed and the results can be expressed in closed-formmathematical relationship,

the inverse problem can be easily obtained frommathematical operation. However, for a practical

huge structure of complicated shape, closed-form relationship cannot be obtained. Recently, a lot

of schemes had been developed for parameter recognition (classification and regression) in the
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field of machine learning and artificial intelligence, among which neural networks such as back-

propagation artificial neural network (BPANN) and radial basis function neural network

(RBFNN) are proven to be powerful and efficient if well designed, trained, and tested.

The two problems are compared and illustrated in Table 1, where problems with and without

closed-form relationship between parameters and physical quantities are shown, respectively. In

Table 1, a well-known example in civil engineering, displacement at the end of a cantilevered

beam subjected to a concentrated load is shown, in which Δ,P,L,E, I denotes the end displace-

ment, loading, length, Young’s modulus, and moment of inertia, respectively.

This research study aims to consider the identification of engineering constant of a typical

CLSM-backfilled region as an inverse problem. The processes employed are as follows:

(1) preparation of training data, and testing data through numerical analysis (using ANSYS);

(2) preparation of verification data (from experiments on CLSMs); (3) normalization of training

data, testing data, and verification data; (4) conducting prediction using neural networks of

BPANN and RBFNN along with comparison study of parameters involved in the networks;

and (5) selection of a useful network topology for parameter recognition.

In the following sections, the procedures are explained with numerical results.

2.2. Typical problem employed for the recognition of engineering constants

A typical problem of backfilled region after a retaining wall is considered (Figure 1). The

length and height of backfilled region is L = 20 m, H = 5 m, respectively. For simplicity, the

Problem Process Problem with closed-form expression Problem without closed-form expression

Forward model parameters !

model!

prediction of data

y = f(p1)

(e.g., Δ ¼
PL3

3EI)

parameters!

numerical models (FEM) !

displacements, stresses

Inverse data !

model !

estimation of model

parameters

p1 = f�1(y)

(e.g.,E ¼
PL3

3IΔ)

displacements, stresses !

welled trained ANNs !

parameters

Table 1. Comparison of forward problem and inverse problem.

Figure 1. Schematic of a typical CLSM-backfilled region for the analysis of parameter recognition.
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backfilled materials are considered to be linearly elastic and are within small deformation

under external loadings; therefore, linear elastic analysis can be performed using only two

engineering constants, that is, the Young’s modulus, E (with the unit GPa), and the Poisson’s

ratio, ν. Furthermore, considering the width of backfilled zone is infinitely long, and a two-

dimensional analysis can be used. In order to evaluate the engineering constants through

displacements and stresses, the backfilled region is assumed to be subjected to a concentrated

vertical loading (surcharge) Q0 = 72.5 kN acting at the point behind the retaining walla = 0.5 H.

In order to provide training data and testing data in parameter recognition using neural

networks, the following four quantities are defined:

x1 = Uy1: vertical displacement (settlement) at upper surface (x = L/4), (positive downward, m).

x2 = Uy2: vertical displacement (settlement) at upper surface (x = L/2), (positive downward, m).

x3 = Sx1: horizontal normal stress (lateral earth pressure) on wall (y = 3H/4), (tensile positive, Pa).

x4 = Sx2: horizontal normal stress (lateral earth pressure) on wall (y = H/2), (tensile positive, Pa).

These sampling points are illustrated in Figure 1.

2.3. FEM analysis using ANSYS

Finite element equation for elastic analysis of displacement and stress of a plane deformation

problem can be expressed in matrix form [33]:

K½ � Xf g ¼ Ff g (1)

where [K], {X}, {F} denotes global stiffness matrix, global degrees of freedom vector and global

load vector respectively, defined as follows:

K½ � ¼
XNE

e¼1

k½ �e ¼
XNE

e¼1

t

ðð
Ae

B½ �T D½ � B½ � dxdy

Ff g ¼
XNE

e¼1

ff ge ¼
XNE

e¼1

t ∮ Se N½ gT qf g dS

(2)

If a plane 4-node isoparametric element is used, the shape functions in Eq. (2) can be expressed as

N1 ξ; ηð Þ ¼ 1� ξð Þ 1� ηð Þ=4

N2 ξ; ηð Þ ¼ 1þ ξð Þ 1� ηð Þ=4

N3 ξ; ηð Þ ¼ 1þ ξð Þ 1þ ηð Þ=4

N4 ξ; ηð Þ ¼ 1� ξð Þ 1þ ηð Þ=4

(3)

where ξ, η are local coordinates. A typical PLANE42 element in ANSYS is shown in Figure 2.
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2.4. Numerical experiments for different combination of engineering constants

A finite element mesh with 40 � 10 = 400 elements, 41 � 11 = 451 nodes, 451 � 2 = 902 degrees

of freedom (displacements) is employed for a numerical analysis of backfilled zone (Figure 3).

The left-hand side and right-hand side can only move freely in vertical direction, while the

bottom of backfilled zone is considered fixed in both directions. In order to provide enough

sampling data for later training and testing process using supervised neural networks, the

Young’s modulus (E) ranges from 0.02 to 3 GPa (covering the general values of soil and

Figure 2. Definition of PLANE42 element of ANSYS [34].

Figure 3. FEM mesh of the typical example of CLSM-backfilled region using ANSYS of PLANE42 elements.
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CLSMs), while the Poisson’s ratio (ν) is selected to be 0.1, 0.2, 0.25, 0.3, and 0.4. A total of 270

data samples with different combinations of E and ν are used.

2.5. Data preparation

2.5.1. Data collection from FEM analysis using ANSYS

Table 2 shows part of the 270 numerical results of computed displacements and stresses for

different Young’s moduli and Poisson’s ratio using the ANSYS PLANE42 model.

2.5.2. Normalization of data

Since the output range of the sigmoid function is within [0, 1], and in order to have a better

performance of training of neural network, the input data should be normalized to have a

uniformly ranged data.

The relationship between normalized and original data can be expressed as follows:

~x ¼ axxþ bx

~y ¼ ayyþ by
(4)

where ax, bx are selected such that ~x ∈ �1; 1½ �, ay, by are chosen to let ~y ∈ 0 1½ �. In this case, the

relations are

~x1 ¼ x1=0:001

~x2 ¼ x2=0:001

~x3 ¼ x3=9000

~x4 ¼ x4=9000

~y1 ¼ 3∗y1=10
10

~y2 ¼ y2

(5)

Data x1,Uy1 (m) x2,Uy2 (m) x3, Sx1 (Pa) x4, Sx2 (Pa) y1,E(GPa) y2,ν

1 �0.00098 1.9447E-05 �4452.6 �4029.1 0.02 0.1

2 �4.91E-04 9.72E-06 �4452.6 �4029.1 0.04 0.1

55 �0.0008607 2.6951E-05 �5434.05 �5196 0.02 0.2

56 �0.0004303 1.3476E-05 �5434.05 �5196 0.04 0.2

109 �7.61E-04 4.36E-05 �5979.35 �5862.9 0.02 0.25

110 �3.80E-04 2.18E-05 �5979.35 �5862.9 0.04 0.25

163 �0.62826E-03 0.72850E-04 �6567.6 �6599 0.02 0.3

164 �3.14E-04 3.64E-05 �6567.6 �6599 0.04 0.3

269 �1.88E-06 1.50E-06 �7896.55 �8337.1 2.5 0.4

270 �1.56E-06 1.25E-06 �7896.55 �8337.1 3 0.4

Table 2. Computed displacements and stresses for different Young’s moduli and Poisson’s ratio using the ANSYS

PLANE42 model.
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Part of typical normalized FEM computed displacements and stress at sampling points are

shown in Table 3. Among these normalized data, 216 set (216/270 ≒ 80%) are selected ran-

domly for training and 54 set (54/270 ≒ 20%) for testing in the later neural work analyses.

2.5.3. Data for verification

In order to verify the trained and tested neural networks, three data set of backfilled materials

are used: (1) the first is commonly used soil (E = 0.1 GPa, ν = 0.30); (2) CLSM-B80/30%

(E = 0.27 GPa, ν = 0.25); and (3) CLSM-B130/30% (E = 0.87 GPa, ν = 0.25). The CLSM-B80/30%

and CLSM-B130/30% denote unit weight of binder of the CLSM is 80 and 130 kg/m3 with 30%

of replacement of cement by fly ash. Selection of materials for the CLSM mixture in this study

consisted of fine aggregate, type I Portland cement, stainless steel reducing slag (SSRS), and

water. Fine aggregate for CLSM was formed by well blending between river sand and residual

soil with a given proportion (e.g., 6:4, by volume) for grading improvement. The soil was

obtained from a construction site. The experimental work was conducted on two binder

content levels in mixtures (i.e., 80- and 130 kg/m3). The water-to-binder ratio was selected via

few trial mixes until the acceptable flowability for CLSM of 150�300 mm was achieved. The

detailed information can be seen in [8].

In Table 4, computed displacements and stresses for verified soil and two CLSMs using the

ANSYS PLANE42 model are summarized, while the normalized data for verification are

tabulated in Table 5.

Data x1,Uy1 (m) x2,Uy2 (m) x3, Sx1 (Pa) x4, Sx2 (Pa) y1,E(GPa) y2,ν

1 0.980000 0.019447 �0.494733 �0.447678 0.006000 0.100000

2 0.491200 0.009721 �0.494733 �0.447678 0.012000 0.100000

55 0.860680 0.026951 �0.603783 �0.577333 0.006000 0.200000

56 0.430340 0.013476 �0.603783 �0.577333 0.012000 0.200000

109 0.760910 0.043562 �0.664372 �0.651433 0.006000 0.250000

110 0.380450 0.021781 �0.664372 �0.651433 0.012000 0.250000

163 0.628260 0.072850 �0.729733 �0.733222 0.006000 0.300000

164 0.314130 0.036425 �0.729733 �0.733222 0.012000 0.300000

269 0.001876 0.001505 �0.877394 �0.926344 0.750000 0.400000

270 0.001564 0.001254 �0.877394 �0.926344 0.900000 0.400000

Table 3. Typical normalized FEM computed displacements and stress at sampling points.

Data x1,Uy1 (m) x2,Uy2 (m) x3,Sx1 (Pa) x4, Sx2 (Pa) y1,E(GPa) y2,ν

Soil �1.26E-04 1.46E-05 �6567.6 �6599 0.1 0.3

CLSM-B80/30% �5.64E-05 3.23E-06 �5979.35 �5862.9 0.27 0.25

CLSM-B130/30% �1.75E-05 1.00E-06 �5979.35 �5862.9 0.87 0.25

Table 4. Computed displacements and stresses for verified soil and two CLSMs using the ANSYS PLANE42 model.
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3. Parameter recognition using BPANN

3.1. Application of BPANN for parameter recognition

Figure 4 demonstrates a typical BPANN for the identification of engineering constants of

CLSM. The BPANN shown in Figure 4 contains a single output, that is, the Young’s modulus

(y1 = E, y2 = ν), L input neurons (xi, i = 1, 2,⋯, L), andM hidden neurons (hj, j = 1, 2,⋯,M). The

predicted outputs can be expressed as [35–37]:

a. from input layer (IL) to hidden layer (HL):

hj ¼ f nj
� �

¼ f
X

L

i¼1

wji xi � bj

 !

(6a)

b. from hidden layer (HL) to output layer (OL):

yk ¼ f nkð Þ ¼ f
X

M

j¼1

wkj hj � bk

0

@

1

A (6b)

Data x1,Uy1 (m) x2,Uy2 (m) x3, Sx1 (Pa) x4, Sx2 (Pa) y1,E(GPa) y2,ν

Soil �0.126 0.0146 �0.72973 �0.73322 0.003 0.3

CLSM-B80/30% �0.0564 0.00323 �0.66437 �0.65143 0.0081 0.25

CLSM-B130/30% �0.0175 0.001 �0.66437 �0.65143 0.0261 0.25

Table 5. Normalized FEM computed displacements and stress for verified soil and two CLSMs using the ANSYS

PLANE42model.

Figure 4. Schematic of a BPANN topology for single parameter recognition.

Advanced Applications for Artificial Neural Networks104



Where the activating function (the sigmoid function) and its derivative can be expressed as.

f nð Þ ¼
1

1þ e�n

f 0 nð Þ ¼ f nð Þ 1� f nð Þ½ �:

(7)

3.2. Learning algorithms of BPANN for parameter recognition

There exist many approaches for the determination of the network parameters in BPANN (wkj,

bk,wji, bj). The most basic and popular generalized delta rule based on the method of the

steepest descent along with two learning parameters (i.e., the learning rate η and the momen-

tum factor μ)is employed, which can be expressed as

wkj pþ 1ð Þ ¼ wkj pð Þ � η
∂E

∂wkj
pð Þ þ μwkj pð Þ

bk pþ 1ð Þ ¼ bk pð Þ � η
∂E

∂bk
pð Þ þ μbk pð Þ

wji pþ 1ð Þ ¼ wji pð Þ � η
∂E

∂wji
pð Þ þ μwji pð Þ

bj pþ 1ð Þ ¼ bj pð Þ � η
∂E

∂bj
pð Þ þ μbj pð Þ

(8)

where

E pð Þ ¼
1

2

X

N

k¼1

e2k pð Þ ¼
X

N

k¼1

1

2
dk pð Þ � yk pð Þ
� �2

(9)

denotes the error between targets and trained output results.

∂E

∂wkj
pð Þ ¼ �ek pð Þf 0 nkð Þ hj

∂E

∂bk
pð Þ ¼ �ek pð Þf 0 nkð Þ2

∂E

∂wji
pð Þ ¼ �

X

N

k¼1

ek pð Þf 0 nkð Þ wkj

� �

f 0 nj
� �

xi

∂E

∂bj
pð Þ ¼ �

X

N

k¼1

ek pð Þf 0 nkð Þ wkj

� �

f 0 nj
� �

(10)

The MATLAB toolbox nntool provides a lot of training methods along with BPANN

[38], among which four kinds of training algorithms were tested in the current research

as follows:

a. Generalized steepest decent (GD):

The learning rule can be written as Eq. (8) with η 6¼ 0, μ = 0.
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b. Generalized steepest decent including momentum (GDM):

The learning rule can be written as Eq. (8) with η 6¼ 0, μ 6¼ 0.

c. Generalized steepest decent with adjustable learning rate (GDA):

In this algorithm, the basic learning rule is the same as Eq. (6) but adding a conditional

judgment. When stable learning can be kept under a learning rate, then the learning rate is

increased, otherwise it is decreased. The learning rate increment and decrement can be

denoted as ζinc and ζdec [35].

d. Levenberg-Marquardt (LM):

The learning rule can be written as

Δwij tþ 1ð Þ ¼ wij tþ 1ð Þ � wij tð Þ ¼ � J½ �T J½ � þ λ I½ �
h i�1

J½ �T ef g (11)

where λ denotes a constant to assure the inversion of matrix, and the learning rule

becomes Gauss-Newton algorithm when λ = 0, while it approaches GD with small learn-

ing rate with large λ [35].

3.3. Numerical results of parameter recognition using BPANN

The first supervised learning employed for parameter recognition of engineering constants is

the BPANN, which can be easily implemented for multiple inputs and multiple outputs. Since

there are various design parameters in the construction of a BPANN, we study some influence

factors (such as different algorithms of training rules, different combination of input variables,

and number of neurons of hidden layer), and then we propose and analyze an appropriate

topology of BPANN. The MATLAB nntool is used for network simulation.

3.3.1. Comparison of different algorithms of learning rules

The convergence of RSME with iteration of BPANN by using different training algorithms

under a BPANN topology with 4–6-2 (NI = 4, NH = 6, NO = 2) for the 216 training set is shown

in Figure 5. The training functions in MATLAB are as follows: (1) GD (traingd); (2) GDM

(traingdm); (3) GDA (traingda); and (4) LM (trainlm). Some parameters employed in the four

BPANN algorithms are also shown in Figure 5. It can be observed that except LM (trainlm), all

another three algorithms cannot allow the root mean square errors (RMSEs) approach to zero

quickly. (The results had been verified by the self-developed BPANN by using GD learning

rule programming in Python). This reflects the current problem that contains a special feature

that first-order method of the steepest decent cannot help to find the global minimum quickly,

while the Levenberg-Marquardt (LM) algorithms based on Hessian matrix containing second-

order derivative of cost function work well.

Table 6 summarizes the effect of different training algorithms of BPANN on the predicted

accuracy. It can be shown that LM (trainlm) gives accurate prediction of both the Young’s

modulus (error is within 6% for CLSMs) and Poisson’s ratio (error is 1% for all) for three kinds

of backfilled materials.
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Figure 5. Convergence of RSME with iteration of BPANN using different training algorithms (NI = 4, NH = 6, NO = 2).

Case Training method RSME Soil CLSM-B80/30% CLSM-B130/30%

E(Error%) ν(Error%) E(Error%) ν(Error%) E(Error%) ν(Error%)

1 traingd 0.02 0.5855

(485.5%)

0.4109

(36.95%)

0.6875

(154.6%)

0.2769

(10.75%)

0.7356

(�15.45%)

0.2717

(8.69%)

2 traingdm 0.02 0.5234

(423.4%)

0.3307

(10.24%)

0.6700

(148.2%)

0.2628

(5.11%)

0.6875

(�20.97%)

0.2581

(3.25%)

3 traingda 0.02 0.5148

(414.8%)

0.2181

(�27.30%)

0.5695

(110.92%)

0.1999

(�20.06%)

0.5766

(�33.72%)

0.2049

(�18.06%)

4 trainlm 0.00 0.0729

(�27.11%)

0.2991

(�0.31%)

0.2862

(5.99%)

0.2512

(0.49%)

0.8561

(�1.60%)

0.2510

(0.40%)

Experimental value 0.1 0.3 0.27 0.25 0.87 0.25

Table 6. Effect of different training algorithms of BPANN on the predicted accuracy.
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3.3.2. Effects of input variable combinations

In a practical engineering situation, we are interested in a question: what physical variables

should we measure? To solve this problem, five cases of different combination of input vari-

ables are investigated:

Case 1: (Uy1,Uy2, Sx1, Sx2) (NI =4) (two displacements, two stresses).

Case 2: (Uy1,Uy2, Sx1) (NI =3) (two displacements, one stress).

Case 3: (Uy1,Uy2) (NI =2) (two displacements).

Case 4: (Uy1, Sx1,) (NI =2) (one displacement, one stress).

Case 5: (Sx1, Sx2) (NI =2) (two stresses).

The convergence of RSME with iteration of BPANN using different combinations of input

variables using LM training algorithms (NH = 6, NO = 2) for the 216 training set is shown in

Figure 6. Again, LMworks well, but the predicted accuracy shown in Table 7 depicts that only

cases 1, 2, and 3 are appropriate for use. The result of case 5 reflects the fact that only stresses

information cannot predict the material constant. Therefore, in the following analysis, we

basically consider input variables of case 1; this means we need to measure two displacements

and two stresses.

Figure 6. Convergence of RSMEwith iteration of BPANN using different combinations of input variables (trainlm, NI = 4,

NH = 6, NO = 2).
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3.3.3. Effect of number of hidden neurons

The results of BPANN results using different number of neurons of hidden layer (NH) are

shown in Figure 7 and Table 8. From the results it is recommended to employ NH > 2 for the

accurate prediction of engineering constants if training algorithms LM (trainlm) are employed.

Case NI Input variables Soil CLSM-B80/30% CLSM-B130/30%

E(Error%) ν(Error%) E(Error%) ν(Error%) E(Error%) ν(Error%)

1 4 Uy1, Uy2, Sx1, Sx2 0.1363

(36.28%)

0.3003

(0.11%)

0.2368

(�12.30%)

0.2470

(�0.86%)

0.8636

(�0.73%)

0.2480

(�0.79%)

2 3 Uy1,Uy2, Sx1 0.0895

(�10.50%)

�0.2997

(�0.09%)

0.2795

(3.50%)

0.2518

(0.71%)

0.8618

(�0.95%)

0.2516

(0.65%)

3 2 Uy1, Uy2 0.0747

(�25.31%)

0.2997

(�0.10%)

0.2555

(�5.337%)

0.2501

(0.04%)

0.8485

(�2.48%)

0.2505

(0.21%)

4 2 Uy1, Sx1 7.5206

(7420%)

�0.1752

(�158.4%)

7.5706

(2704%)

�0.1768

(�17.7%)

7.6544

(779.8%)

�0.1724

(�168.9%)

5 2 Sx1, Sx2 1.3530

(1253%)

1.6716

(457.2%)

1.3079

(384.4%)

1.6449

(557.9%)

1.2985

(49.25%)

1.6331

(553.3%)

Experimental values 0.1 0.3 0.27 0.25 0.87 0.25

Table 7. Effect of input variables on the prediction accuracy of engineering constants using BPANN.

Figure 7. Convergence of RSME with iteration of BPANN using different number of neurons of hidden layer (trainlm,

NI = 4, NO = 2).
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3.3.4. Selection of a BPANN topology

After some parametric studies, a BPANN with 4–6-2 topology using LM training algorithm is

proposed for current parameter recognition problems. The convergence of RMSE is shown in

Figure 8 to depict very fast decay of RSME. Figure 9 shows the QQ plot of tested results and

predicted results during testing stage after training process. The R2value for the Young’s

modulus and Poisson’s ratio are 0.99454 and 0.99864, respectively. It reflects that the training

Case NH NI-NH-NO Soil CLSM-B80/30% CLSM-B130/30%

E(Error%) ν(Error%) E(Error%) ν(Error%) E(Error%) ν(Error%)

1 2 4–2-2- 0.2088

(108.80%)

0.3007

(0.22%)

0.2327

(�13.80%)

0.2498

(�0.08%)

0.9413

(8.20%)

0.2499

(�0.04%)

2 4 4–4-2 0.1562

(56.19%)

0.2878

(�4.06%)

0.3097

(14.69%)

0.2453

(�1.87%)

0.8903

(2.33%)

0.2498

(�0.09%)

3 6 4–6-2 0.1653

(65.35%)

0.2985

(�0.50%)

0.3238

(19.94%)

0.2491

(�0.36%)

0.8859

(1.83%)

0.2492

(�0.31%)

4 8 4–8-2 0.0811

(�11.91%)

0.3015

(0.51%)

0.2392

(�11.43%)

0.2507

(0.29%)

0.8566

(�1.54%)

0.2508

(0.34%

5 10 4–10-2 0.1174

(17.39%)

0.2992

(�0.28%)

0.2777

(2.86%)

0.2531

(1.23%)

0.8833

(1.53%)

0.2542

(1.69%)

Experimental values 0.1 0.3 0.27 0.25 0.87 0.25

Table 8. Effect of number of neurons of hidden layer on the prediction accuracy of engineering constants using BPANN.

Figure 8. Convergence of RSME with iteration of finally selected of BPANN (trainlm, NI = 4, NH = 6, NO = 2).
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BPANN works well for testing data. Table 9 shows predicted results using final design of a

BPANN for the recognition of engineering constants of CLSM.

4. Parameter recognition using RBFNN

4.1. Application of RBFNN for parameter recognition

Figure 10 demonstrates a typical RBFNN for the identification of engineering constants of

CLSM. The RBFNN shown in Figure 10 contains a single output, that is, the Young’s modulus

(y1 =E, y2 = ν), L input neurons (xi, i = 1, 2,⋯, L), and M hidden neurons (hj, j = 1, 2,⋯,M).

Suppose we have S samples for training, we can select M ≤S. The predicted output can be

expressed as [35–37]:

yk ¼ Fk xið Þ ¼
X

M

j¼1

wj K xi � Cj

�

�

�

�

� �

Þ ¼
X

M

j¼1

wje
�1

2σ2
j

xi�Cjk k
2

(12)

where the kernel function K xi � Cj

�

�

�

�

� �

¼ e
�1

2σ2
j

xi�Cjk k
2

is the Gaussian basis function.

Figure 9. QQ plot of testing data of finally selected of BPANN (trainlm, NI = 4, NH = 6, NO = 2).

Training

method

Input

variables

NI-NH-

NO

Soil CLSM-B80/30% CLSM-B130/30%

E(Error%) ν(Error%) E(Error%) ν(Error%) E(Error%) ν(Error%)

trainlm Uy1, Uy2,

Sx1,Sx2

4–6-2- 0.0729

(�27.11%)

0.2991

(0.31%)

0.2862

(5.99%)

0.2512

(0.49%)

0.8561

(�1.60%)

0.2510

(0.40%)

Experimental values 0.1 0.3 0.27 0.25 0.87 0.25

Table 9. Predicted results using final design of a BPANN for the recognition of engineering constants of CLSM.
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4.2. Learning algorithms for RBFNN for parameter recognition

There exist many approaches for the determination of the network parameters in RBFNN (Cj,σj,wkj).

For parallel comparison, here the supervised learning algorithm, that is, the generalized delta rule

based on the method of the steepest descent is used, which can be expressed as [35–37]:

wkj pþ 1ð Þ ¼ wkj pð Þ � η
∂E

∂wkj
pð Þ þ μwkj pð Þ

Cj pþ 1ð Þ ¼ wCj pð Þ � η
∂E

∂Cj
pð Þ þ μCj pð Þ

σj pþ 1ð Þ ¼ σj pð Þ � η
∂E

∂σj
pð Þ þ μσj pð Þ

(13)

where

E pð Þ ¼
1

2

X

N

k¼1

e2k pð Þ ¼
1

2

X

N

k¼1

dk pð Þ � yk pð Þ
� �2

(14)

denotes the error between targets and trained output results.

∂E

∂wkj
pð Þ ¼ �K xi pð Þ � Cj pð Þ

�

�

�

�

� �

∂E

∂Cj
pð Þ ¼ �wkj pð Þ

1

σ2j pð Þ
K xi pð Þ � Cj pð Þ

�

�

�

�

� �

• xi pð Þ � Cj pð Þ
� �

∂E

∂σj
pð Þ ¼ �wkj pð Þ

1

σ3j pð Þ
K xi pð Þ � Cj pð Þ

�

�

�

�

� �

• xi pð Þ � Cj pð Þ
�

�

�

�

2

(15)

Figure 10. Schematic of a RBFNN topology for single parameter recognition.
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There also exist many algorithms for learning RBFNN; among those, some are unsupervised

ones such as using kNN for determination of Cj and using the pseudo-inversion method to

evaluate wkj [35–37].

4.3. Numerical results of parameter recognition using RBFNN

Table 10 summarizes the accuracy of predicted results by using RBFNN with different combi-

nations of input variables. MATLAB nntool (newrb) is used for numerical experiments [38].

Unfortunately, the results are not as good as those obtained using BPANN with the LM

training method. Figure 11 also reflects the same results that Young’s modulus cannot be

Case NI Input variables Soil CLSM-B80/30% CLSM-B130/30%

E(Error%) ν(Error%) E(Error%) ν(Error%) E(Error%) ν(Error%)

1 4 Uy1, Uy2, Sx1, Sx2 0.1877

(87.73%)

0.3009

(0.30%)

0.5786

(114.29%)

0.2498

(�0.08%)

0.8085

(�7.07%)

0.2498

(�0.08)

2 3 Uy1,Uy2, Sx1 0.1649

(64.85%)

0.300

(0.00%)

0.5561

(105.95%)

0.2486

(�0.55%)

0.7832

(�9.98%)

0.2487

(�0.53%)

3 2 Uy1, Uy2 0.2124

(112.44%)

0.2151

(�28.31%)

0.5809

(115.15%)

0.2309

(�7.63%)

0.7983

(�8.25%)

0.2549

(1.98%)

4 2 Uy1, Sx1 0.1774

(77.44%)

0.3001

(0.02)

0.5072

(87.85%)

0.2450

(�2.01%)

0.7017

(�19.34%)

0.2425

(�3.00%)

5 2 Sx1, Sx2 0.6023

(502.27%)

0.300

(0.00)

0.6365

(135.74%)

0.2500

(0.01%)

0.6365

(�26.84%)

0.2500

(0.01%)

Experimental values 0.1 0.3 0.27 0.25 0.87 0.25

Table 10. Effect of input variables on the prediction accuracy of engineering constants using RBFNN.

Figure 11. QQ plot of predicted and tested engineering constants of CLSM using RBFNN (NI = 4).
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predicted well using RBFNN (even though a lot of trials on selection of spread constants

cannot obtain satisfying results).

5. Conclusions

This chapter presents a trial of application of two supervised learning artificial neural net-

works (BPANN and RBFNN) to predict engineering material constants, Young’s modulus and

Poisson’s ratio, of backfilled materials (soil and CLSMs). The training and testing data are

obtained from numerical experiments using ANSYS. Concluding remarks can be summarized

as follows:

1. BPANN with training method LM (such as trainlm in MATLAB) works well for parame-

ter recognition of engineering constant. For example, a well-designed BPANN with LM

(trainlm) can give accurate prediction of both Young’s modulus (error is within 6% for

CLSMs) and Poisson’s ratio (error is with 1% for all) for three kinds of backfilled materials;

2. In the BPANN framework, at least two displacements at different points should be

measured, together with optional 0, 1, or 2 stress measurements;

3. In the BPANN structure, for example, small number of neurons of hidden layer is enough

for parameter recognition;

4. RBFNN is not appropriate for the parameter recognition of engineering constants, for

example, as compared with BPANN.

In future, another neural network which is appropriate for regression, such as probabilistic

neural networks (PNN) and supporting vector machines (SVM), maybe used for the study on

the parameter recognition of engineering constants of problems in civil engineering.
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