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Abstract

Bioinformatics is an interdisciplinary field of information technology for understand-
ing biological data from genome to protein. It includes a combination of fields of sci-
ence, computer science, statistics, mathematics, and engineering to analyze, interpret 
and derive biological data. This chapter describes how to use Bioinformatics to identify 
pathogen virulence factor peptide sequence similarities in human nerve tissue proteins 
and for evaluation as antibody engineering target peptides.

Keywords: bioinformatics, infectious diseases, peptide, recombinant antibody

1. Introduction

Bioinformatics is the application of techniques derived from disciplines such as applied math-

ematics, computer science, and statistics to analyze and interpret biological data. In this chap-

ter, you will learn how to use bioinformatic techniques to identify pathogen virulence factor 
(VF) peptide sequence similarities to human nerve tissue proteins and then how to identify 
target peptides that could form the basis for engineering recombinant antibodies. Also, wet 
experiments could be conducted on the identified overlapping sequences to help us to single 
out target antibodies to be tested for tissue culture studies [1, 2]. The most ideal targeted pep-

tide sequences for antibody engineering are those physiologically relevant, easy to access, and 
comprise amino acid sequence regions which have high specificity in pathogenic steps and 
reduced amino acid string length.

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



1.1. Bioinformatics and its role in peptide discovery

The accessibility to the extensive genomic and proteomic databases and the availability of 
tools to compare and evaluate the information have given rise to a new interdisciplinary 
field that combines biology and computer science [3]. Bioinformatics conceptualizes physical 
and chemical biology in terms of macromolecules and then applies “informatics” techniques 
(derived from disciplines such as applied mathematics, computer science, and statistics) to 
assimilate and organize the information associated with these molecules, on a large scale [4]. 
Bioinformatics is an exciting and exploratory method for peptide discovery in antibody engi-
neering and development of antimicrobial therapies and vaccination strategies [5].

There is significantly growing evidence that a number of neurodegenerative diseases are a 
result of the association of host cell proteins with viral and bacterial infectious agents [6]. 
When pathogenic micro organisms such as bacteria, viruses, parasites, or fungi cause an infec-

tious disease, there are many molecular interactions between the host-pathogen proteins and 
host peptides [7] through all the stages of the disease whether incubation, prodromal illness, 
decline, and convalescence. There is much experimental evidence identifying the virulence 
factors (VF) of pathogen and host components such as receptors and tissue-specific pro-

teins [8, 9]. Though the pathogenic pathway of the infectious agent in various host tissues is 
unknown, many of these processes are suspected to be attributable to the yet undiscovered 
role of molecular mimics identified in pathogenic microorganisms and its corresponding host 
tissue proteins. The sequence and structural similarities between the pathogenic VF protein 
and nerve peptides could impact either directly or indirectly the pathogenesis of the infec-

tious disease [10–12]. It could contribute to molecular mimicry, steric hindrance, receptor 

binding, cell signaling, and autoantibody production events (involved in neuro degeneration) 

in the host.

Leprosy patients with peripheral nerve damage develop autoimmunity to myelin P0 (nerve 

protein). The above conclusion was drawn by gathering known scientific evidence that are as 
follows: (1) labeling and binding studies found that Mycobacterium leprae (bacterium causing 
leprosy) binds to myelin P0 [13]; (2) clinical studies confirmed the production of autoantibod-

ies as a response of the bacterium to interact with myelin P0 [14, 15]; and (3) bioinformatics 
searches identified sequences and structural similarities between M. leprae and the immuno-

globulin regions of myelin P0 [16].

Identification of molecular mimics in pathogen-host peptide sequences is one approach to 
identify target peptides for antibody engineering. There are about 180 extensive biological 
databases to retrieve information on sequence and functional aspects of biological molecules. 
The updated list is available in Nucleic Acids Research [17].

1.2. The use of bioinformatics in identifying sequence similarities

This section teaches you how to conduct a search for proteins present in a target host, how to 
obtain its amino acid sequence/s from the existing databases, how to compare the sequence/s 
of the host protein to that of the pathogen protein, and finally how to interpret the results 
based on existing evidential data. In our case study, we identify the virulence factor peptide 
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sequence similarities of a few selected infectious agents with human nerve tissue proteins for 
selecting peptides to engineer antipeptide antibodies which recognizes corresponding host/
viral proteins.

1.2.1. Selection of nerve proteins

63 proteins were extracted from the Human Protein Atlas Database that were enriched and 
enhanced in the nervous tissue as observed by immunehistochemistry (Figure 1).

To conduct a search for human proteins in the nervous tissue, access the website (www.pro-

teinatlas.org), enter the tissue of study (e.g. nervous tissue) into the search box provided and 
click on search.

Manual protein selection was carried out based on their tissue expression (enriched and 
enhanced) and also on immunohistochemistry evidence (Figure 2).

The list of selected proteins are as follows: agrin (AGRN_HUMAN, O00468), calbindin 
(CALB1_HUMAN, P05937), n-chimaerin (CHIN_HUMAN, P15882), secretogranin-2 (SCG2_
HUMAN, P13521), neuromodulin (NEUM_HUMAN, P17677), kinesin (KIFC1_HUMAN,  
Q9BW19), tau (TAU_HUMAN, P10636), 2′,3′-cyclic-nucleotide 3′-phosphodiesterase (CN37_
HUMAN, P09543), myelin-associated glycoprotein (MAG_HUMAN, P20916), myelin P0 
(MYP0_HUMAN, P25189), myelin P2 (MYP2_HUMAN, P02689),  oligodendrocyte-myelin  

Figure 1. Conducting a search on the Human Protein Atlas Database.
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glycoprotein (OMGP_HUMAN, P23515), brain-derived neurotrophic factor (BDNF_HUMAN,  
P23560), ciliary neurotrophic factor (CNTF_HUMAN, P26441), neurotrophin-3 (NTF3_
HUMAN, P20783), beta-nerve growth factor (NGF_HUMAN, P01138), nestin (NEST_HUMAN,  
P48681), neurofilament heavy polypeptide (NFH_HUMAN, P12036), neurogranin (NEUG_ 

HUMAN, Q92686), voltage-dependent T-type calcium channel subunit alpha-1G 
(CAC1G_HUMAN, O43497), hippocalcin (HPCL1_HUMAN, P37235), neurocalcin-delta  
(NCALD_HUMAN, P61601), recoverin (RECO_HUMAN, P35243), bombesin receptor sub-

type-3 (BRS3_HUMAN, P32247), kininogen-1/bradykinin (KNG1_HUMAN, P01042), cal-
citonin (CALC_HUMAN, P01258), cholecystokinin (CCKN_HUMAN, P06307), galanin 
peptides (GALA_HUMAN, P22466), pro-neuropeptide Y (NPY_HUMAN, P01303), neuro-

tensin/neuromedin N (NEUT_HUMAN, P30990), protein S100-B (S100B_HUMAN, P04271), 
synapsin-1 (SYN1_HUMAN, P17600), probable tubulin polyglutamylase (TTLL1_HUMAN, 
O95922), myelin basic protein (MBP_HUMAN, P02686), protein phosphatase 1 regula-

tory subunit 1B (PPR1B_HUMAN, Q9UD71), Arf-GAP with GTPase, ANK repeat and PH 
domain-containing protein 2 (AGAP2_HUMAN, Q99490), cathepsin L2 (CATL2_HUMAN, 
O60911), D(1A) dopamine receptor (DRD1_HUMAN, P21728), BDNF/NT-3 growth factors 
receptor (NTRK2_HUMAN, Q16620), melanoma-associated antigen E1 (MAGE1_HUMAN, 
Q9HCI5), microtubule-associated protein 6 (MAP6_HUMAN, Q96JE9), protocadherin 
alpha-12 (PCDAC_HUMAN, Q9UN75), carboxypeptidase E (CBPE_HUMAN, P16870), 
Down syndrome cell adhesion molecule (DSCAM_HUMAN, O60469), dyslexia-associated 

Figure 2. Conducting an advanced search on the Human Protein Atlas Database.
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protein KIAA0319 (K0319_HUMAN, Q5VV43), uncharacterized protein  KIAA1211-like 
(K121L_HUMAN, Q6NV74), microtubule-associated protein 1B (MAP1B_HUMAN, P46821), 
neuronal calcium sensor 1 (NCS1_HUMAN, P62166), neurofilament light polypeptide (NFL_
HUMAN, P07196), receptor expression-enhancing protein 2 (REEP2_HUMAN, Q9BRK0), 
secretogranin-3 (SCG3_HUMAN, Q8WXD2), ubiquitin carboxyl-terminal hydrolase iso-

zyme L1 (UCHL_HUMAN, P09936), galactosylgalactosylxylosylprotein 3-beta-glucurono-

syltransferase 1 (B3GA1_HUMAN, Q9P2W7), beta-1,4 N-acetylgalactosaminyltransferase 1 
(B4GN1_HUMAN, Q00973), caprin-2 (CAPR2_HUMAN, Q6IMN6), dopamine beta-hydrox-

ylase (DOPO_HUMAN, P09172), FAM81A (FA81A_HUMAN, Q8TBF8), mitogen-activated 
protein kinase 10 (MK10_HUMAN, P53779), N-terminal EF-hand calcium-binding protein 1 
(NECA1_HUMAN, Q8N987), neuroligin-3 (NLGN3_HUMAN, Q9NZ94), protein kinase C 
and casein kinase substrate in neurons protein 1 (PACN1_HUMAN, Q9BY11), sodium chan-

nel protein type 7 subunit alpha (SCN7A_HUMAN, Q01118), and clathrin coat assembly 
AP180 (AP180_HUMAN, O60641). The biological accepts of the proteins have been derived 
from the information presented in UniProt database for each protein [18–20].

1.2.2. Retrieving FASTA formats

FASTA formats for each of the above proteins were retrieved from NCBI PubMed. The FASTA 
format is a text-based format obtained from the PubMed search and represents either nucleo-

tide sequences or peptide sequences (Figure 3).

Upon accessing the website, select the database in which the search is to be conducted (e.g. 
Protein). Type the name of the protein and its species in brackets into the search text box pro-

vided (e.g. Agrin (Homo sapiens)) and click on the search button.

The protein with the highest number of amino acids is chosen. Click on the hyperlinked pro-

tein to access its gene bank. Upon reaching the gene bank of the selected protein, click on the 
hyperlinked FASTA (Figures 4, 5 and 6).

Obtain the FASTA format by copying all the information (Starting from the > symbol).

1.2.3. Arranging the FASTA formats

All the FASTA formats of the human proteins are saved in a sequence on Microsoft Notepad 
(Figure 7).

1.2.4. Running the BLAST

Pathogen-protein mimics, nerve protein sequences were BLAST (Basic Local Alignment 
Search Tool; Version 2.7.1; e-value ≤0.01) [21] against a pathogen genome (Figure 8).

Access the BLAST website at https://blast.ncbi.nlm.nih.gov/Blast.cgi and click on Protein 
(Protein~Protein) BLAST. The FASTA formats of 63 nerve proteins were copied and pasted from 
the notepad into the text box provided. Enter the species of the organism against which the blast 
has to be performed/the sequence comparison has to be carried out specifying its Tax ID (Figure 8).
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Figure 4. List of available sequenced protein information.

Figure 3. Conducting a search on the PubMed database.
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Figure 5. Gene information of agrin.

Figure 6. FASTA format of agrin.

Bioinformatics as a Tool to Identify Infectious Disease Pathogen Peptide Sequences as Targets…
http://dx.doi.org/10.5772/intechopen.71011

283



Figure 7. FASTA formats of the 63 proteins in sequence.

Figure 8. BLAST home page.
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The pathogen genome sequences that were compared with the human nerve proteins are as 
follows: HIV (Tax ID: 11,676), Polio (Tax ID: 138,950), Japanese Encephalitis (Tax ID:64,320), 
M. leprae (Tax ID: 1769), Human herpes virus 1 (Tax ID: 10,298), Human herpes virus 2 (Tax 
ID: 10,310), Rabies virus (Tax ID: 11,292), Zika virus (Tax ID: 64,320), Corona virus (Tax ID: 
11,118), Varicella zoster virus (Tax ID: 10,335).

Select program PSI BLAST as the BLAST algorithm for a more position-sensitive search. It 
looks deeper into the database to best match to your query. Click on the BLAST button and 
wait for the results. Take screen shots of your result and also download the provided excel 
format (Figure 9).

The output of the BLAST identified the significant peptide sequence similarities between the 
human protein and its pathogenic counterpart Figure 10. These peptide sequence similari-
ties are identified by amino acid positions, in which amino acids exist in single-letter codes. 
The BLAST provides us with the number of sequence similarities between the pathogenic 
genomic sequence and its host proteins. It also identifies viral counterpart peptides and the 
region of similarity on the host proteins.

Further interpretations of the results can be made by referring to the Uniprot database to obtain 
the biological and functional aspects of the host and the pathogen proteins (Figures 11 and 12).

1.2.5. Ascribing a biological role and application

The results show a number of sequence similarities existing between host proteins and vari-
ous pathogen proteins. The maximum number of peptide sequence similarities were found 
between host protein caprin-2 which had 495 similarities with polio; neurogranin had 230 

Figure 9. BLAST search.
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Figure 10. BLAST results of nerve proteins showing similarity to pathogen proteins.

Figure 11. UniProtKB screenshot showing the biological and functional data of the human protein.
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similarities with HHV2; secretogranin-3 had 221 similarities with Japanese encephalitis; agrin 
had 212 similarities with varicella; caprin-2 had 198 similarities with rabies virus; galanin pep-

tides had 87 similarities with Zika virus; kinesin had 54 similarities with HIV; neurofilament 
heavy polypeptide had 46 similarities with corona virus; neurogranin had 39 similarities with 
HHV1; and 2′,3′-cyclic-nucleotide 3′-phosphodiesterase had 21 similarities with M. leprae.

This method identifies significant virulent factors which have sequence similarities to human 
nerve tissue proteins. The nerve proteins that exhibited sequence similarities with four or 
more pathogenic virulent factors are displayed in Table 1. All 63 proteins are found to have 
sequence similarities with M. leprae proteins.

Agrin is a heparin sulphate basal lamina glycoprotein with a molecular mass of 217,232 Da. 
It plays a central role in the formation and maintenance of the neuromuscular junction. It is 
known to direct events in postsynaptic differentiation. Agrin also induces the phosphoryla-

tion and activation of muscle-specific kinase (MUSK), the clustering of Acetyl choline esterase 
receptor (AChR) in the postsynaptic membrane, regulates calcium ion homeostasis in neu-

rons, and is involved in regulation of neuritis outgrowth [22, 23].

1.2.6. HHV3 peptide similarity to human protein agrin

Agrin UniProtKB-O00468 (AGRIN_HUMAN) (AA position 1269–1326) (Figure 13) has a 
similarity to membrane glycoprotein C (Sequence ID: AEW88711.1 AA Position 43–122) of 
the varicella zoster virus UniProtKB-Q9J3M8 (GE_VZVO) which by its similarity has the 

Figure 12. Uniprot screenshot showing the biological and functional data of the viral protein.
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S. No Query No. Proteins HIV Polio JE HHV 1 HHV 2 M. leprae Corona Zika Rabies Vericella

1 O00468 Agrin 0 0 4 0 0 6 1 0 1 212

2 P17677 Neuromodulin 1 1 0 1 3 6 28 1 0 75

3 Q9BW19 Kinesin 54 1 0 0 0 9 0 0 0 0

4 P10636 Tau protein 0 1 0 0 14 5 9 0 0 19

5 P25189 Myelin protein P0 2 0 0 1 22 7 1 0 0 0

6 P23515 Oligodendrocyte-myelin glycoprotein 0 2 0 1 0 9 0 0 1 23

7 P48681 Nestin 0 0 3 2 0 8 2 30 0 22

8 P04271 Protein S100-B 0 26 0 2 11 7 0 0 0 12

9 P17600 Synapsin-1 0 1 7 11 2 13 0 0 5 0

10 P02686 Myelin basic protein 0 0 0 0 2 9 4 3 0 5

11 Q16620 BDNF/NT-3 growth factors receptor 0 0 0 23 8 11 0 0 1 15

12 Q5VV43 Dyslexia-associated protein KIAA0319 0 0 0 37 21 5 5 0 2 1

13 P07196 Neurofilament light polypeptide 0 0 0 1 1 2 4 0 0 77

14 Q8WXD2 Secretogranin-3 3 5 221 0 10 8 0 0 9 0

15 Q00973 Beta-1,4 N-acetylgalactosaminyltransferase 1 1 29 0 1 2 8 0 0 0 0

Table 1. Sequence similarities of human nerve tissue proteins with human virulent factors. Multiple alignments obtained in a single BLAST search could result in identities 
of the amino acids or substitutions of the amino acids in the same peptide region.

A
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 potential to bind to the tissue cell receptor. Experimental evidence in epithelial cells shows 
that the hetero demonization of viral receptors could spread the virus by sorting nascent 
virion to nerve tissue cell junctions. The virus particles can spread to adjacent cells through 
interactions with cellular receptors at these cell junctions. The virus at cell junctions spreads 
extremely rapidly into the tissues [24, 25]. Sequence mimics of agrin to the varicella mem-

brane glycoprotein could have an effect on either viral entry into host cell, evasion or on 
tolerance of host immune response to the virus and virion attachment to the host cell. These 
similarities in peptide regions warrant further exploration to understand pathogenesis and to 
identify target peptides for antibody engineering [26].

1.2.7. Poliovirus and rabies virus peptide similarities to human protein caprin-2

Caprin-2UniProtKB-Q6IMN6 (CAPR2_HUMAN) is a protein of molecular mass 68,429 Da. 
The structure of caprin-2 was found to be similar to the polio and rabies viruses. Caprin-2 
(AA position: 136–176) has a similarity to the polyprotein of polio virus UniProtKB– 
E0WCG5 (E0WCG5_9ENTO) (polyprotein sequence ID: ACZ05040.1 AA position: 1994–2070) 
(Figures 14 and 15). Caprin-2 (AA position: 13–54) also has a similarity to the phosphopro-

tein of rabies virus UniProtKB-Q80JL8 (Q80JL8_9RHAB) (phosphoprotein sequence ID: 
AAO60615.1 AA position 76–110) (Figure 15). Caprin-2 has a significant role in influencing 
phosphorylation of the Wnt-signaling pathways (PubMed:18,762,581) [27]. Caprin-2 also 
facilitates LRP6 phosphorylation by CDK14/CCNY during G2/M stage of the cell cycle, which 
may potentiate cells for transport or translation of mRNAs, modulate the expression of neu-

ronal proteins involved in synaptic plasticity [28], while simultaneously influencing cell cycle 
signaling and regulation of viral transcription and replication [29, 30].

Figure 13. BLAST output of membrane glycoprotein of HHV3 showing similarity to human protein agrin.
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1.2.8. Mycobacterium leprae peptide similarity to 2′, 3′-cyclic-nucleotide 3′-phosphodiesterase

2′, 3′-cyclic-nucleotide 3′-phosphodiesterase UniProtKB-P09543 (CN37_HUMAN) is a pro-

tein of molecular mass 47,579 Da. 2′, 3′-cyclic-nucleotide 3′-phosphodiesterase (sequence ID: 
WP_010908292.1 AA position 191–261) has a similarity to thiamin pyrophosphokinase of M. 

leprae UniProtKB A0A197SEI9 (A0A197SEI9_MYCLR) (AA position: 170–2166) (Figure 16) 

2′, 3′-cyclic-nucleotide 3′-phosphodiesterase is involved in RNA metabolism of the myelinat-
ing cell, CN37 (2′, 3′-cyclic-nucleotide 3′-phosphodiesterase) is the one of the most abundant 
myelin protein in nervous system. The sequence similarities identified could impact cell sig-

naling and also regulate energy metabolism [31].

Figure 15. BLAST output of phosphoprotein of rabies virus showing similarity to human protein caprin-2.

Figure 14. BLAST output of polyprotein of poliovirus showing similarity to human protein caprin-2.
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1.2.9. Zika virus peptide similarity to human protein galanin

Galanin peptide UniProtKB-P22466 (GALA_HUMAN) is a protein of molecular mass 
13,302 Da. Galanin (AA position 53–99 position) has a similarity to polyprotein envelope 
protein E of Zika virus UniProtKB-Q73880 (Q73880_9HIV1) sequence ID: ARB07952.1 (AA 
position: 729–765) (Figure 17). Galanin is involved in the smooth muscle contraction of the 
gastrointestinal and genitourinary tract, regulation of growth hormone release, modulation of 
insulin release, and might also be involved in the control of adrenal secretion [32]. The enve-
lope protein E of the Zika virus is responsible for binding to host cell surface receptors and 
mediating fusion between viral and cellular membranes. It is synthesized in the endoplasmic 

Figure 16. BLAST output of thiamin pyrophosphate of Mycobacterium leprae showing similarity to human protein 2′, 
3′-cyclic-nucleotide 3′-phosphodiesterase.

Figure 17. BLAST output of polyprotein of Zika virus showing similarity to human Galanin peptide.
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reticulum with protein prM and forms a heterodimer. Galanin’s similarity with the ZIKA 
polypeptide could subsequently affect neural regulation of muscle function and play a role in 
immune evasion pathogenesis and viral replication [33].

1.2.10. HIV 1 peptide similarity to human kinesin-like protein

Kinesin-like protein KIFC1 UniProtKB-Q9BW19 (KIFC1_HUMAN) is a protein of molecular 
mass 73,748 Da. Kinesin-like protein (AA position: 411–470) has a similarity to HIV virus 
envelope glycoprotein UniProtKB-D6QPK9 (D6QPK9_9HIV1) sequence ID:ADG63850.1 (AA 
position:270–387)(Figure 18). KIFC1 along with microtubules contributes to movement of 
endocytic vesicles. These similarities could affect viral attachment to the host cell, membrane 
fusion, and entry into the cell and the nucleus [34, 35].

1.2.11. Corona virus peptide similarity to human neurofilament heavy polypeptide

Neurofilament heavy polypeptide UniProtKB-P12036 (NFH_HUMAN) is a protein of molec-

ular mass 112,479 Da. Neurofilament heavy polypeptide (AA position: 819–872) has a similar-

ity to ORF1a UniProtKB-A0A0F6SKM6 (A0A0F6SKM6_9GAMC) of Corona virus sequence 
ID: AKF17723.1 (AA positions: 890 –1031) (Figure 19) neurofilament of the nerve tissue 
usually contain three intermediate filament proteins: L, M, and H (NFH-human) which is 
involved in the maintenance of neuronal caliber. NFH-H has an important function in axon 
maturation. These similarities could affect viral replication, protein processing, and could 
generate autoantibody production [36, 37].

1.2.12. HHV 1 and HHV 2 peptide similarity to human protein neurogranin

Neurogranin UniProtKB-Q92686 (NEUG_HUMAN) is a protein of molecular mass 7618 Da. 
The structure of neurogranin at identical regions has a similarity to envelope glycoprotein M of 

Figure 18. BLAST output of envelope glycoprotein of HIV 1 showing similarity to human kinesin-like protein.
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HHV1 and envelope glycoprotein M of HHV2 at partially overlapping positions. Neurogranin 
(AA position: 38–63) has a similarity to the envelope glycoprotein M of HHV1(UniProtKB-
A0A181ZHE7 (A0A181ZHE7_HHV11) (sequence ID: SBO07578.1 AA position: 347–376) 
(Figure 20). Neurogranin (AA position: 38–64) also has a similarity to the envelope glycopro-
tein M of HHV2 (UniProtKB-A0A0Y0R357 (A0A0Y0R357_HHV2)) (sequence ID: AMB66044.1 
AA position 389–416) (Figure 21). Neurogranin functions as a signaling messenger, a substrate 
for protein kinase C and has affinity to calmodulin in the absence of calcium. These similarities 

Figure 19. BLAST output of ORF1 of corona virus showing similarity to human neurofilament heavy polypeptide.

Figure 20. BLAST output of envelope glycoprotein of HHV 1 showing similarity to human protein neurogranin.
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of HHV1 & 2 with neurogranin could have an interaction with viral transport into the host cell 
Golgi network and subsequently to the host nucleus [38].

1.2.13. JE 2 peptide similarity to human protein secretogranin-3

Secretogranin-3 UniProtKB-Q8WXD2 (SCG3_HUMAN) is a protein of molecular mass 
53,005 Da. Secretogranin-3 (AA position: 139–190) has a similarity to the polyprotein of Japanese 
encephalitis virus (UniProtKB-G3LHD8 (G3LHD8_9FLAV) (sequence ID: SBO07578.1 AA 
position: 2744 to (Figure 22). Secretogranin-3 is a member of the chromogranin/secretogranin 

Figure 21. BLAST output of envelope glycoprotein of human alpha herpes virus 2 showing similarity to human protein 
neurogranin.

Figure 22. BLAST output of polyprotein of JE 2 showing similarity to human protein secretogranin-3.
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family of neuroendocrine secretory proteins comprising a number of significant cellular func-

tions. In an experimental mouse model, autoimmunity with secretogranin was associated 
with encephalitis [39]. These similarities identified in the host-pathogen could affect neuro 
endocrine secretory protein release and autoimmunity.

2. Creating a schematic model

The sequence similarities in agrin,caprin-2,2′,3′-cyclic-nucleotide 3′-phosphodiesterase, galanin 
peptide, kinesin-like protein, neurofilament heavy polypeptide, neurogranin and secreto-

granin-3 with its corresponding pathogenic peptide/s could have a number of cellular-level 
implications which include alternations in receptor binding, signaling/synaptic transmission, 
metabolic alteration, inflammation, resulting in autoimmunity and consequently neuropathy 
(Figure 23) [11, 40].

3. Conclusion

In conclusion, it is important to conduct bioinformatic searches and design wet experiments 
with the objective of identifying a vast number of functionally significant peptides for fur-

ther comparison and study. Bioinformatic search tools and various available databases are 
to be extensively explored to rapidly develop possible neuroprotective or pathogenic pep-

tide sequences. These peptides can be further explored as targets to generate recombinant 
antibodies. This exercise can also be used to develop an efficacious and safe vaccine against 
pathogens that demonstrate no autoimmune cross-reactions. It can also contribute to design 
peptide/drug molecules to neutralize the effects of neurotoxins. Bioinformatics is the key to 
open the door of understanding medical and biological processes in the future.

Figure 23. A model for the modes of host-pathogen interaction and possible intracellular regulation of metabolic 
activities.
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