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Abstract

Inverse kinematics of serial or parallel manipulators can be computed from given Car-
tesian position and orientation of end effector and reverse of this would yield forward
kinematics. Which is nothing but finding out end effector coordinates and angles from
given joint angles. Forward kinematics of serial manipulators gives exact solution while
inverse kinematics yields number of solutions. The complexity of inverse kinematic
solution arises with the increment of degrees of freedom. Therefore it would be desired
to adopt optimization techniques. Although the optimization techniques gives number
of solution for inverse kinematics problem but it converses the best solution for the
minimum function value. The selection of suitable optimization method will provides
the global optimization solution, therefore, in this paper proposes quaternion derivation
for 5R manipulator inverse kinematic solution which is later compared with teachers
learner based optimization (TLBO) and genetic algorithm (GA) for the optimum conver-
gence rate of inverse kinematic solution. An investigation has been made on the accura-
cies of adopted techniques and total computational time for inverse kinematic
evaluations. It is found that TLBO is performing better as compared GA on the basis of
fitness function and quaternion algebra gives better computational cost.

Keywords: TLBO, GA, quaternion, kinematics

1. Introduction

Kinematic chain may consist of rigid/flexible links which are connected with joints or kinemat-

ics pair permitting relative motion of the connected bodies. In case of manipulator kinematics

it can be categorized into forward and inverse kinematics. Forward kinematics for any serial

manipulator is easy and mathematically simple to resolve but in case of inverse kinematics

there is no unique solution, generally inverse kinematics gives multiple solutions. Hence,

inverse kinematics solution is very much problematic and computationally expensive. For real

time control of any configuration manipulator will be expensive and generally it takes long

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



time. Forward kinematics of any manipulator can be understand with translation of position

and orientation of end effector from joint space to Cartesian space and opposite of this is

known as inverse kinematics. It is essential to calculate preferred joint angles so that the end

effector can reach to the desired position and also for designing of the manipulator. Various

industrial applications are based on inverse kinematics solutions. In real time environment it is

obvious to have joint variables for fast transformation of end effector. For any configuration of

industrial robot manipulator for n number of joints the forward kinematics will be given by,

y tð Þ ¼ f θ tð Þð Þ (1)

where θi =θ(t), i = 1, 2, 3, …, n and position variables by yj = y(t), j = 1, 2, 3,…,m.

Inverse kinematics for n number of joints can be computed as,

θ tð Þ ¼ f
0

y tð Þð Þ (2)

Inverse kinematics solution of robot manipulators has been considered and developed differ-

ent solution scheme in last recent year because of their multiple, nonlinear and uncertain

solutions. There are different methodologies for solving inverse kinematics for example itera-

tive, algebraic and geometric etc. [8] proposed inverse kinematic solution on the basis of

quaternion transformation. [20–36] have proposed application of quaternion algebra for the

solution of inverse kinematics problem of different configurations of robot manipulator. [35]

presented a quaternion method for the demonstrating kinematics and dynamics of rigid multi-

body systems. [34] presented analytical solution of 5-dof manipulator considering singularity

analysis. [11] presented quaternion based kinematics and dynamics solution of flexible manip-

ulator. [14] proposed detailed derivation of inverse kinematics using exponential rotational

matrices. On the other hand, after numerous surveys on conventional analytical and other

Jacobian based inverse kinematics are quite complex as well as computationally exhaustive

those are not exactly well suitable for the real time applications. Because of the above-

mentioned reasons, various authors adopted optimization based inverse kinematic solution.

Optimization techniques are fruitful for solve inverse kinematics problem for different config-

urations of manipulator as well as spatial mechanisms. Conventional approaches such as

Newton-Raphson can be used for nonlinear kinematic problems and predictor corrector type

methods can compute differential problem of manipulator. But major drawback of these

methods are Singularity or ill condition which converse to local solutions. Moreover, when

initial guessing is not accurate then the method becomes unstable and does not converse to

optimum solution. Therefore, recently developed metaheuristic techniques can be used to

overcome the conventional optimization drawbacks. Literature survey shows the efficiency of

these metaheuristic algorithms or bi-inspired optimization techniques are more convenient to

achieve global optimum solutions. The major issue with these nature inspired algorithms is

framing of objective function. Even these algorithms are direct search algorithms which do not

require any gradient or differentiation of objective function. The comparison of the metaheuristic

algorithm with heuristic algorithms is based on the convergence rate as it has been proved that

the convergence of heuristic-based techniques is slower. Therefore, to adopt metaheuristic
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techniques such as GA, BBO, teachers learner based optimization (TLBO), ABC, ACO etc. will

be suitable for enhancing the convergence rate and yielding global solution. From literature

survey the teaching learning based optimization (TLBO) is similar to swarm based optimiza-

tion in which the impact of learning methods from teacher to student and student to student

has been highlighted. Wherein, the population or swarm is represented by group of students

and these students gain knowledge from either teacher or students. If these student gain

knowledge from teacher then it is called as teachers phase similarly when students learns form

student then it is student phase. The output is considered as result or grades of students.

Therefore, number for number of subjects resembles the variables of the function and grades

or results gives fitness value, [5, 6]. There are numerous other population centered methods

which have been effectively applied and shown efficiency [33]. However, all algorithms are not

suitable for complex problem as proved by Wolpert and Macready. On the other hand, evolu-

tionary strategy (ES) based methods such as GA, BBO etc. gives better results for various

problems and these methods are also population based metaheuristic [16, 28]. Moreover [22]

proposed inverse kinematic solution of redundant manipulator using modified genetic algo-

rithm considering joint displacement (Δθ) error minimization and the positional error of end

effector. [32] proposed inverse kinematic solution of PUMA 560 robot using cyclic coordinate

descent (CCD) and Broyden-Fletcher-Shanno (BFS) technique. [23] proposed IK solution of 4-

dof PUMA manipulator using genetic algorithm. This paper uses two different objective

functions which are based on end-effector displacement and joint variable rotations. [18]

proposed trajectory planning of 3-dof revolute manipulator using evolutionary algorithm.

[25] proposed inverse kinematics solution and trajectory planning for D-joint robot manipula-

tor based on deterministic global optimization based method. [1] proposed inverse kinematic

solution of redundant manipulator using novel developed global optimization algorithm. [4]

proposed inverse kinematic solution of PUMA robot manipulator using genetic programming.

In this work, mathematical modeling is evolved using genetic programming through given

direct kinematic equations. [17] proposed optimization of design parameter i.e. link length

using for 2-dof manipulator. [15] proposed inverse kinematic solution of 2-dof articulated

robot manipulator using real coded genetic algorithm. [19] proposed inverse kinematic solu-

tion scheme of 3-dof redundant manipulator based on reach hierarchy method. [30] proposed

inverse kinematic solution of 3-dof PUMAmanipulator for the major displacement propose. In

this work they have adopted genetic algorithm with adaptive niching and clustering. [12]

proposed inverse kinematic solution of 6-dof MOTOMAN robot manipulator for positioning

of the end-effector. In this work they have adopted adaptive genetic algorithm for optimum

placement of the end effector. [26] proposed inverse kinematic and trajectory generation of

humanoid arm manipulator using forward recursion with backward cycle computation

method. [21] proposed inverse kinematic solution for 6R revolute manipulator using real time

optimization algorithm. [24] proposed kinematic solution using three different methods such

as bee algorithm, neural network which is later optimized by bee algorithm and evolutionary

algorithm. [2] proposed kinematic solution of 3-dof serial robot manipulator using real time

genetic algorithm. [13] proposed inverse kinematic solution of 6-dof robot manipulator using

immune genetic algorithm. [9] proposed conventional approach i.e. penalty function based

optimization method for solving IK. Even though few methods can solve hard NP problems,

but it requires high-performance computing system and intricate computer programming.
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On the other hand, the use of optimization algorithms is not new in the field of multi-objective

and NP-hard problem to arrive at a very reasonable optimized solution, the TLBO algorithm

have not been tried to solve an inverse kinematics problems and trajectory of joint variables for

robot manipulator. Moreover, computational cost for yielding the inverse kinematics solution

with adopted algorithms has been compared without any specialized tuning of concern

parameters. Therefore, the key purpose of this work is focused on minimizing the Euclidian

distance of end effector position based resolution of inverse kinematics problem with compar-

ison of GA and TLBO obtained solution for 5R robot manipulator. The results of all algorithm

are computed from inverse kinematics equations and obtained resultant error for data statis-

tics. In other words, end-effector coordinates utilized as an input for joint angle calculations. At

the end 4th order spline formula is considered for generation of end effector trajectory and

analogous joint angles of robotic arm using TLBO, GA and quaternion. The sectional organi-

zation of the paper henceforth is as follows: Section 2 pertains to the mathematical modeling of

the 5R robot manipulator and detail derivation of forward and inverse kinematics of 5R

manipulator using quaternion algebra. In Section 3 discuss about the inverse kinematic objec-

tive function formulation for 5R manipulator. The experimental results as obtained from

simulations are discussed elaborately in Section 5.

2. Quaternion vector approach for mathematical modeling

This section deals with mathematical modeling of quaternion vector algebra and application

for the derivation of inverse kinematics equations. Quaternion vector methods are fruitful for

both rotation and translation of a point, line, etc. with references to origin coordinate system

irrespective of homogeneous transformation matrix. The Interpolation of series of rotations

and translations are quite complex using Euler’s angle method. In other words, the variables

lies in isotropic space which is nothing but sphere surface topology and complex in nature. A

brief formulation of quaternion mathematics is given in this section for assessment of refer-

ences and to create background for mathematical derivation of inverse kinematic.

2.1. Rotation and translation from quaternion

The above discussions gives the importance of quaternions and the necessity of it. The quater-

nion rotation and translation are lies in four dimensional space therefore it is quite difficult to

represent here or to imagine. Figure 1 represents the rotation through quaternion and Eq. (3)

describes rotation of a point in a space mathematically.

h ¼ cos
θ

2

� �

þ i∗ sin
θ

2

� �

þ j∗ sin
θ

2

� �

þ k∗ sin
θ

2

� �

(3)

The 4-dimensional space, imagination of fourth axis is quite complex. Therefore, in Figure 1 a

unit distance point around axis (X, Y, and Z) is given and which traces a circle. When this

rotation circle is projected on a plane then the point P1 can be seen rotated through angle θ to

point P3 which crosses the mid-point P2. Therefore P1 point is transforming to P3 following by

straight line makes cos(θ/2) and sin(θ/2).
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Now two quaternions can be represented on the basis of above discussed concept. If there is

subsequent rotation of two quaternion h1 and h2 then the composite rotations h1
∗h2 can be

given by From Figure 1, p1 is the point vector representing initial position and p3 is the point

vector final condition to be transformed. Therefore,

p3 ¼ h2
∗ h1

∗p1∗h�1
1

� �∗

h�1
2

¼ h2
∗h1ð Þ∗p1∗ h�1

1
∗h�1

2

� �

¼ h2
∗h1ð Þ∗p1∗ h�1

2
∗ h�1

1

� �

(4)

Now pure translations tr can be done by quaternion operator that is given below,

tr ¼ hþ p1 (5)

Quaternion transform can be given by,

p2 ¼ h∗p1∗h�1 (6)

Therefore, an expression for the inverse of a quaternion can be given as,

Figure 1. Rotation representation of point.
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H�1
¼ < h�1

>;< �h�1
⊗P⊗ h >

� �
(7)

where,�h�1
⊗P⊗ h = �P + [�2k(j� (�P)) + 2j� (j� (�P))] quaternion product, which is defined

in the most general form for two quaternions h1 = (r1, j1), and h2 = (r2, j2) as

h1 ⊗ h2 ¼ r1r2 � j1•j2 r1j2 þ r2j1 þ j2 � j1
� �

(8)

where j1• j2 and j2� j1 denote dot and cross products, between the 3-dimensional vectors j1
and j2. Clearly, quaternion multiplication is not commutative. The set of elements {�1, �i, �j,

�k} is known as the quaternion group of order 8 in multiplication.

Similarly vector transformation multiplication can be given as

H1 ⊗H2 ¼ h1;P
1

� �
⊗ h2;P

2
� �

¼ h1
∗h2, h1

∗P2 ∗h�1
1 þ P1 (9)

where, h1
∗P2 ∗h�1

1 ¼ P2
þ 2r1 j1 � P2

� �
þ 2j1 � j1 � P2

� �

2.2. Quaternion derivation for 5R manipulator kinematics

The configuration and base coordinate frame attachment of 5R manipulator is given in Figure 2

(a) and MATLAB plot of 5R manipulator is presented in (b). Where θ1,θ2,θ3,θ4 andθ5 joint

angles for are articulated arm and d1, d2 andd3 are the link offset. a1, and a2 represents link

lengths.

Now quaternion for successive transformation of each joint can be calculated from the Eq. (3)

as follows,

H1 ¼ < C1 þ S1 bk >;< a1C1
bi þ a1S1bj þ d1bk >

h i
(10)

H2 ¼ < C2 þ S2bj >;< �a2S2bi � a2C2
bk >

h i
(11)

H3 ¼ < C3 þ S3bj >;< �d4S3bi � d4C3
bk >

h i
(12)

H4 ¼ < C4 þ S4bi >;< d4bi >
h i

(13)

H5 ¼ < C5 þ S5bj >;< �d6S5bi � d6C5
bk >

h i
(14)

Inverse of a dual quaternion can be calculated by Eq. (8),

H�1
1 ¼ < C1 � S1 bk >;< �a1bi >

h i
(15)

H�1
2 ¼ < C2 � S2bj >;< a2bk >

h i
(16)

H�1
3 ¼ < C3 � S3bj >;< d4bk >

h i
(17)
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H�1
4 ¼ < C4 � S4bi >;< �d4bi >

h i
(18)

H�1
5 ¼ < C5 � S5bj >;< d6bk >

h i
(19)

Qi ¼ Hi⊗Hiþ1::……Hn (20)

Where in case of 5R manipulator arm n = 5. Now calculating quaternion vector products using

Eq. (20)

Qi ¼ Hi⊗Hiþ1::……Hn

Q5 ¼ H5 ¼ < C5 � S5bj >;< �d6S5bi � d6C5
bk >

h i

Q4 ¼ H4⊗Q5 ¼ < C4 þ S4 î >;< d4 î >
h i

⊗ ½ < C5 þ S5 ĵ > ,

< �d6S5 î � d6C5k̂ > �

(21)

Q4 ¼ ½ < C4C5 þ S4C5 î þ C4S5 ĵ þ S4S5 k̂ > ,

< d4 � d6S5ð Þ̂i þ d6C5S4 ĵ � d6C4C5k̂ > �
(22)

Q3 ¼ H3⊗Q4 ¼ < C3 þ S3 ĵ >;< �d4S3 î � d4C3k̂ >

h i
⊗

½ < C4C5 þ S4C5 î þ C4S5 ĵ þ S4S5 k̂ > ,

< d4 � d6S5ð Þ̂i þ d6C5S4 ĵ � d6C4C5k̂ > �

(23)

Q3 ¼ ½ < C4C3þ5 þ S4C3�5 î þ C4S3þ5 ĵ � S4S3þ5 k̂ > ,

< d4 þ d4 � d6C4C5S3 � d4C3 � d6S5C3 � d4S3ð Þ̂i

þðd6C5S4 ĵ þ ð�d4S3 þ d6S5S3 � d6C4C5C3
^�d4C3Þk > �

(24)

Figure 2. (a) Base frame and model of 5R manipulator; (b) configuration of 5R manipulator.
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Q2 ¼ H2⊗Q3 ¼ < C2 þ S2 ĵ >;< �a2S2 î � a2C2k̂ >

h i

⊗

½ < C4C3þ5 þ S4C3�5 î þ C4S3þ5 ĵ � S4S3þ5 k̂ > ,

< d4 þ d4 � d6C4C5S3 � d4C3 � d6S5C3 � d4S3ð Þ̂i

þðd6C5S4 ĵ þ ð�d4S3 þ d6S5S3 � d6C4C5C3
^�d4C3Þk > �

(25)

Therefore,

Q2 ¼ < ðC2 C4C3þ5 � S2C4S3þ5

h �

þ C2S4C3�5 � S2S4S3þ5

� �

î

þðC2C4S3þ5 þ S2C4C3þ5 Þ̂j þ �C2S4S3þ5 � S2S4S3�5

� �

k̂ > ,

< ð�a2S2 þ d4C2 þ d4C2 � d4C2�3 þ d6S5C2þ3

�d4S2þ3 � d6C4C5S2þ3 � d4S3Þ̂i þ ðd6C5S4 ĵ

þ �a2C2 � d4S2 � d4S2 þ d6C4C5C2þ3 þ d4S2�3 þ d6S5S2þ3 þ d4Ĉ2�3Þk >
	 i

(26)

Q1 ¼ H1⊗Q2 ¼ < C1 þ S1 k̂ >;< a1C1 î þ a1S1 ĵ þ d1k̂ >

h i

⊗

< ðC2C4C3þ5 � S2C4S3þ5

h

Þ þ C2S4C3�5 � S2S4S3þ5

� �

î

þðC2C4S3þ5 þ S2C4C3þ5 Þ̂j þ �C2S4S3þ5 � S2S4S3�5

� �

k̂ > ,

< ð�a2S2 þ d4C2 þ d4C2 � d4C2�3 þ d6S5C2þ3 � d4S2þ3

�d6C4C5S2þ3 � d4S3Þ̂i þ ðd6C5S4 ĵþ

ð�a2C2 � d4S2 � d4S2 þ d6C4C5C2þ3 þ d4S2�3 þ d6S5S2þ3 þ d4Ĉ2�3Þk >
i

(27)

Therefore,

Q1 ¼ < ðC1C4C2þ3þ5 þ S1S4S2þ3�5Þ
h

þ C1S4C2þ3�5 � S1C4S2þ3þ5

� �

î

þðC1C4S2þ3þ5 þ S1S4C2þ3�5 Þ̂j þ S1C4C2þ3þ5 � C1S4S2þ3�5

� �

k̂ > ,

< ða1C1 � a2S2 þ d4C2C1 þ d4C2C1 � d4C2�3C1 þ d6S5C2þ3C1 � d4S2þ3C1

þ d6C4C5S2þ3C1 � d6C5S4S1 Þ̂i þ ðd6C5S4 þ d6C5S4C1 � a2S2

þ a2S2C1 � a2S2S1 þ d4C2S1 þ d4C2S1 � d4C2�3S1 þ d6S5C2þ3S1

� d4S2þ3S1 � d6C4C5S2þ3S1 Þ̂j þ ðd1 � a2C2 � d4S2 � d4S2

þ d6C4C5C2þ3 þ d4S2�3 þ d6S5S2þ3 þ d4Ĉ2�3Þk >�

(28)

Ojþ1 ¼ H�1
j ⊗Oj (29)

Now calculating vector pair of quaternion using Eq. (29), to solve the inverse kinematics

problem, the transformation quaternion of end effector of robot manipulator can be defined as
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Rbe;Tbe½ � ¼ O1 ¼ < wþ abi þ bbj þ cbk >;< Xbi þ Ybj þ Zbk >

h i
(30)

Now using Eq. (29), O2 will be given by,

O2 ¼ H�1
1 ⊗O1

O2 ¼ < C1 � S1bk >;< �a1bi >
h i

⊗

< wþ abi þ bbj þ cbk >;< Xbi þ Ybj þ Zbk >

h i

O2 ¼ ½< o21ð Þ þ o22ð Þ̂i þ o23ð Þ̂j þ o24ð Þk̂ > ,

< o25ð Þ̂i þ o26ð Þ̂j þ o27k̂ >�

(31)

where, o21 ¼ wC1 þ cS1 , o22 ¼ aC1 þ bS1 , o23 ¼ bC1 � aS1 , o24 ¼ cC1 � wS1 , o25 ¼ XC1 � a1þ

YS1 , o26 ¼ YC1 � XS1 , o27¼Z.

Now,

O3 ¼ H�1
2 ⊗O2

O3 ¼ < o31 þ o32bi þ o33bj þ o34bk >;< o35bi þ o36bj þ pz
bk

h i (32)

where, o31 ¼ C2o21 þ cðC2S2Þ � wðS2S1Þ, o32 ¼ C2o22 þ S2o23, o33 ¼ C2o23 � S2o22, o34 ¼ C2o24

�S2o21, o35= �ZS2 +XC1C2 +YS1C2� a1C2, o36 =YC1�XS1, o37 = a2�ZC2 +XC1S2 +YS1S2� a1S2.

O4 ¼ < o41 þ o42bi þ o43bj þ o44bk >;< o45bi þ o27bj þ o47bk
h i

(33)

where,
o41 ¼ C2þ3o21 þ S2þ3o23

o42 ¼ C2þ3o22 � S2þ3o24

o43 ¼ C2þ3o23 � S2þ3o21

o44 ¼ C2þ3o24 � S2þ3o22

o45 ¼ �ZS2 � a2S3 � XC1S2S3 � YS1S2S3 þ a1S2S3�

ZC2S3 þ Z� ZC3 þ XC1C2C3 þ XS1C2C3 � a1C2C3

o46 ¼ YC1 � XS1

o47 ¼ �ZS2S3 þ a2C3 þ XC1C2S3 þ YS1C2S3�

a1C2S3 þ ZC2C3 þ XC1S2C3 þ YS1S2C3 � a2S2C3

Therefore, all the joint variables can be calculated by equating quaternion vector products and

quaternion vector pairs i.e. Q1, Q2 and Q3 to O1, O2 and O3 respectively.
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) θ1 ¼ a tan

Y � uy

X� ux

�
a1 þ d4C2 þ d4C2 � d4C2�3 þ d6S5C2þ3 � d4S2þ3 þ d6C4C5S2þ3ð Þ

�a2S2 þ d4C2 þ d4C2 � d4C2�3 þ d6S5C2þ3 � d4S2þ3 � d6C4C5S2þ3ð Þ

2

6

6

4

3

7

7

5

(34)

θ2 ¼ a tan 2
Zþ vx
d4

� �

; ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�
Zþ vx
d4

� �� �2
s

2

4

3

5 (35)

where, d4S2 + d4S2� vx =Z, d4S2 + d4S2 =Z + vx, S2 ¼
Zþvx
d4

	 �

θ3 ¼ a tan 2
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�
�XS2 þ XC1C2 þ YS1C2 � a1C2 � vy

�d4 � d6S5ð Þ

� �� �2
s

,

�ZS2 þ XC1C2 þ YS1C2 � a1C2 � vy

�d4 � d6S5ð Þ

� �

,

2

6

6

6

6

4

3

7

7

7

7

5

(36)

θ4 ¼ a tan 2
m



1�
�ZS2S3 þ a2C3 þ XC1C2S3 þ YS1C2S3 � a1C2S3 þ ZC2C3 þ XC1S2C3 þ YS1S2C3 � a2S2C3

�d6C5

� �� �2
s

,
�ZS2S3 þ a2C3 þ XC1C2S3 þ YS1C2S3 � a1C2S3 þ ZC2C3 þ XC1S2C3 þ YS1S2C3 � a2S2C3

�d6C5

� �

,

2

6

6

6

6

4

3

7

7

7

7

5

(37)

θ5 ¼ a tan 2

�XS2 � a2S3 � XC1S2S3 � YS1S2S3 þ a1S2S3 � ZC2S3 þ Z� ZC3 þ XC1C2C3 þ YS1C2C3 � a1C2C3 � d4
�d6

� �

,

m



1�
�ZS2 � a2S3 � XC1S2S3 � YS1S2S3 þ a1S2S3 � ZC2S3 þ Z� ZC3 þ XC1C2C3 þ YS1C2C3 � a1C2C3 � d4

�d6

� �� �2
s

2

6

6

6

6

4

3

7

7

7

7

5

(38)

3. Inverse kinematic solution scheme

In this section optimization algorithms are selected for computation of inverse kinematics solu-

tion of 5R manipulator. However, there are various types of optimization algorithms existed and

can produce the desired IK solution, the major necessity is to achieve global optimum solution

with fast convergence rate. Therefore, selection of appropriate optimization algorithm is impor-

tant for fitness evaluations and GA is so far best known tool, but on the other hand TLBO has

also proven its efficiency and performance. Finally selection of optimization algorithms has been

made on global searching point, computational cost and quality of the result.

3.1. Optimization approach to solve inverse kinematics

Any Optimization algorithms which are capable of solving various multimodal functions can

be implemented to find out the inverse kinematic solutions. The fitness function is given by the

Eq. (46) fitness function F(x). Each individual represents a joint variable solution of the inverse

kinematic problem for adopted population based metaheuristic algorithm. All individuals

moving in D-dimensional search space and sharing the information to find out best fitness
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value of the function. Each individual contains set of joint angles (θ1,θ2,θ3,θ4 andθ5) of 5R

manipulator. The optimum set of joint angle can be find by using appropriate optimization

algorithm from given desired position of end effector (X, Y, Z). In case of inverse kinematics of

5R manipulator multiple solutions exist for the single position of the end effector so it is

required to find out the best set of joint angle in order to minimize whole movement of

manipulator.

For the optimization of joint angle rotation of robot manipulator, one can define objective

function or fitness function from joint angle rotation difference and other can be defined from

end effector position displacement. These are known as joint angle error and positional func-

tion method [3, 7, 10, 29].

3.1.1. Position based function

The current position of the manipulator is described by (39):

Pc ¼ Xc; Yc; Zc½ � (39)

Desired position of end effector can be denoted by (40):

Pd ¼ Xd; Yd; Zd½ � (40)

Current position of end effector will be compared with the desired position Pd. General equation

for the fitness function is given in Eq. (41) that is based on the distance norm of homogeneous

Euclidian distance between the current positions to the desired position of end effector Pd
evaluated by number of iterations.

Pmin ¼ Pd � Pc ið Þk k2 (41)

Current position Pc can be evaluated from Eqs. (34) through (38). Now putting the value of Pc

on Eq. (42)

Pmin ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xd � Xc ið Þð Þ2 þ Yd � Yc ið Þð Þ2 þ Zd � Zc ið Þð Þ2
q

(42)

3.1.2. Joint angle error

Corresponding joint error can be given by the difference between current set of joint variables

to the final required angles.

θc ¼ θc1;θc2;θc3;θc4 θc5ð Þ (43)

θd ¼ θd1;θd2;θd3;θd4 θd5ð Þ (44)

Therefore using square norm the objective function can be given as

θmin ¼ θd � θck k2 (45)

Subjected to joint limits
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θ1 ∈ θ1min; θ1max½ �

θ2 ∈ θ2min; θ2max½ �

θ3 ∈ θ3min; θ3max½ �

θ4 ∈ θ4min; θ4max½ �

θ5 ∈ θ5min; θ5max½ �

Now overall error minimization can be given by using Eqs. (42) and (45),

F xð Þmin ¼ λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xd � Xc ið Þð Þ2 þ Yd � Yc ið Þð Þ2 þ Zd � Zc ið Þð Þ2
q

 �

þ θd � θck k2
h i

(46)

where λ is proportional weight factor for the minimization of the problem and calculation of the

entire joint angles base on constraint can be achieved using fitness function (46). The performance

of considered algorithm is checked with the parameters: a1 = 60 mm, a2 = 145 mm, d1 = 150 mm,

d2 = 125 mm, d3 = 130 mm. Upper and lower limit of five joint angles are: θ1= [0, 180]; θ2= [0, 150];

θ3= [0, 150], θ4= [0, 85] and θ5= [15, 45].

4. Results and discussions

TLBO and GA has been used to compute the inverse kinematics of 5-R manipulator and

comparison of obtained results has been made on the basis of quality and performance. Table 1

gives the five random position of end effector and respective inverse kinematics solutions.

Current work is performed in MATLAB R2013a. The data sets are obtained from Eq. (34)

through (38). The data sets are generated using quaternion vector based inverse kinematics

equations as given in Table 2. These generated data sets are used to compare the IK solution

through adopted GA and TLBO. In Table 3, comparative evaluations of fitness function and

obtained joint variables through TLBO and GA is presented.

Positions Joint angles

θ1 θ2 θ3 θ4 θ5

P1(�76.09, 54.36, �61.94) 84.559 77.518 101.74 30.616 38.697

P2(89.69, 192.55, 90.87) 84.791 97.25 130.44 50.771 36.428

P3(�4.24, 94.08, 97.55) 18.384 78.688 35.234 77.708 34.889

P4(29.10,154.02, �31.52) 104.43 115.47 124.11 7.3372 33.774

P5(�184.33, �43.21, 8.27) 39.177 107.13 97.052 65.672 15.374

Table 1. Five different positions and joint variables.

Kinematics224



This work does not use special tuning of various parameters of GA and TLBO algorithm. In

future research the sensitivity analysis can be performed to achieve better results. From Table 3,

TLBO generated solutions for the position 4 is better as compared to GA in account of fitness

function evaluation. There are different distance based norms, one of them is Euclidean distance

SN Position of joints determined through quaternion algebra

θ1 θ2 θ3 θ4 θ5 X Y Z

1 112.5641 47.3165 8.2447 65.8373 39.8977 �186.6903 183.0670 �14.7039

2 153.1316 21.9812 126.9031 57.2629 30.4168 �92.6981 32.1423 157.3316

3 66.1779 143.2985 14.6124 73.6231 41.5228 �131.5420 �22.3866 �32.2155

4 57.6085 119.6396 104.5818 71.1946 33.8225 �10.7684 111.7435 77.4862

5 31.4308 2.9242 71.5757 63.0358 39.8749 64.7966 172.0372 151.5714

6 124.3702 116.7337 102.4999 53.1482 22.4807 �111.8590 �59.6708 60.8590

7 89.1765 13.1827 101.6747 80.3340 29.4704 �76.9533 96.2813 121.3505

8 5.6698 30.9685 57.2308 29.3079 29.6421 174.3873 107.6283 143.1839

9 131.5857 108.7086 92.8278 5.6664 36.4826 �104.6410 109.7511 40.5523

10 32.8579 102.3539 138.8770 26.4141 33.7466 146.4984 48.7416 54.4041

11 134.1878 70.4224 26.3511 82.2471 44.0566 �188.7864 15.4108 �53.9823

Table 2. Desired joint variables determined through quaternion algebra.

Positions TLBO joint angles Function value

θ1 θ2 θ3 θ4 θ5

P1(�76.09, 54.36, �61.94) 86.598 72.165 72.165 40.894 30.459 0

P2(89.69, 192.55, 90.87) 83.874 69.895 69.895 39.607 30.76 0

P3(�4.24, 94.08, 97.55) 84.512 70.427 70.427 39.909 30.686 0

P4(29.10,154.02, �31.52) 85.566 71.305 71.305 40.406 30.53 0

P5(�184.33, �43.21, 8.27) 87.818 73.181 73.181 41.469 30.364 0

Positions GA Joint angles Function value

θ1 θ2 θ3 θ4 θ5

P1(�76.09, 54.36, �61.94) 60.619 49.504 58.384 62.281 27.903 0

P2(89.69, 192.55, 90.87) 88.293 34.091 14.439 15.241 51.738 0

P3(�4.24, 94.08, 97.55) 55.004 49.274 63.942 47.842 33.633 0

P4(29.10,154.02, �31.52) 72.594 22.689 68.297 85.886 27.044 0.0137

P5(�184.33, �43.21, 8.27) 25.669 70.588 31.341 66.807 52.884 0

Table 3. TLBO results for joint variable and function value.
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norm and which is used here for minimum distance between the end effector positions. If the

distance between two points reached to 0 or less than 0.001 than the evolutions of fitness function

can be reached best or global minimum value. It is clear that the obtained fitness value is less

than the defined distance norm so adopting these algorithms are fruitful and qualitative.

Figures 3–7 signify the best fitness function value and analogous joint variables for position 1.

These figures show efficiency of adopted algorithms for IK solution of 5-R manipulator. The

convergence of objective function evaluation lies to zero error for GA and TLBO algorithms

while for position 4, GA yields 0.013 error. It means that GA is less performing as compared to

TLBO. From Figures 8–12, the results obtained through GA shows in terms of convergence and

histogram graph and the obtained joint angles are in radian which is later converted into

degree and given in Table 3. The GA results are obtained through MATLAB toolbox and that

shows the zero convergence in single run. Figures 8–12, it can be seen that the generated

solutions for joint angles are multiple for single position and similarly there are multiple fitness

function evaluations. The best fitness function achieved here using the termination criteria and

the corresponding joint variables has taken for comparison.

The proposed work is performed in dual core system with 4 GB RAM computer. It has been

observe that the convergence of the solution for GA is taking less computation time as com-

pared to TLBO and quaternion algebra. Corresponding joint angles trajectory using 4th order

cubic spline is presented in Figure 13. Using inverse kinematic solution joint variables are used

Figure 3. Joint variables and fitness function value for position P1.

Figure 4. Joint variables and fitness function value for position P2.
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Figure 7. Joint variables and fitness function value for position P5.

Figure 5. Joint variables and fitness function value for position P3.

Figure 6. Joint variables and fitness function value for position P4.

Figure 8. Joint variables and fitness function value for position P1.
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Figure 12. Joint variables and fitness function value for position P5.

Figure 9. Joint variables and fitness function value for position P2.

Figure 10. Joint variables and fitness function value for position P3.

Figure 11. Joint variables and fitness function value for position P4.
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to calculate the joint space trajectory for TLBO and GA as presented in Figures 14 and 15. Final

time has been taken tf = 6 second for trajectory generation but to complete this trajectory overall

computational time is 5.674 seconds. The computation time for TLBO is 15.671 seconds which

is more than the GA i.e. 7.932 seconds. Therefore, on the basis of computational cost GA is

performing better than TLBO while quaternion algebra taken least time (Table 4).

Figure 13. Trajectory of joint angle for quaternion.

Figure 14. Trajectory of joint angle for TLBO.
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5. Conclusions

In this paper, the work discourses the problem associated to the optimization of positional and

angular error of end effector using TLBO and GA for 5R robot manipulator. Metaheuristic algo-

rithms like PSO, GA, ABC, etc. have been used in various field of industrial robotics but the most

critical issue is to solve inverse kinematic problem for any configuration of robot manipulators.

Most of the optimization approach are being used for numerical solution but it has been observed

that the numerical solutions does not yield solution when the manipulator is in ill-conditioned

besides this it has also been observed that classical optimizationmethods converge in local minima.

Therefore in this work global optimization method like TLBO and GA is adopted and after

analyzing the results it can be concluded that adopted optimization algorithms convergence rate

is higher and complexity does not increase with the manipulator configuration. Although many

researchers are tried to obtain global solution but the computations cost are more in the problem

henceforth overcoming the problem of computational cost with quaternion objective function.

The adopted algorithms are very much appropriate for constrained and unconstrained prob-

lems. To estimate the effectiveness of considered algorithms, comparison has been made with

Figure 15. Trajectory of joint angle for GA.

SN Method Computational time

1 TLBO 15.671 s

2 GA 7.932 s

3 Quaternion 0.993 s

Table 4. Computational time for inverse kinematic evaluations.
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quaternion algebra. Table 3 gives the comparative results of adopted algorithm and proposed

quaternion solutions of 5-R manipulator. This work considered forward and inverse kinematic

equations for preparing the objective function for TLBO and GA. These adopted algorithms

has shown the potential of getting faster convergence and yielding global optimum solution

for the stated problem. In future the tuning of various parameters of GA and TLBO can be

considered so as to avoid trapping in local minimum point. Even the hybridization of these

algorithms may be proposed and adopt for the IK problems.
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